r&d towards acoustic particle detection uli katz univ. erlangen schule für astroteilchenphysik,...

38
R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6- 15.10.2004 The thermo-acoustic The thermo-acoustic model model and particle detection and particle detection Sound sensors Sound sensors (hydrophones) (hydrophones) Sound transmitters and Sound transmitters and hydrophone calibration hydrophone calibration Beam test measurements Beam test measurements

Post on 20-Jan-2016

223 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

R&D Towards Acoustic Particle Detection

Uli KatzUniv. Erlangen

Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004

• The thermo-acoustic modelThe thermo-acoustic modeland particle detectionand particle detection

• Sound sensors Sound sensors (hydrophones)(hydrophones)

• Sound transmitters and Sound transmitters and hydrophone calibrationhydrophone calibration

• Beam test measurementsBeam test measurements

Page 2: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 2

Our “acoustic team” in Erlangen

Thanks to our group members for their dedicated work over the last 2 years:

Gisela Anton (Prof.) Kay Graf (Dipl./PhD) FAU-PI1-DIPL-04-002 Jürgen Hößl (PostDoc) Alexander Kappes (PostDoc) Timo Karg (PhD) UK (Prof.) Philip Kollmannsberger (Dipl.) FAU-PI4-DIPL-04-001 Sebastian Kuch (Dipl./PhD) FAU-PI1-DIPL-03-002 Robert Lahmann (PostDoc) Christopher Naumann (Dipl./PhD) Carsten Richardt (Stud.) Rainer Ostasch (Dipl.) FAU-PI1-DIPL-04-001 Karsten Salomon (PhD) Stefanie Schwemmer (Dipl.)

Page 3: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 3

The thermo-acoustic model

Particle reaction in medium (water, ice, ...) causes energy deposition by electromagnetic/hadronic showers.

Energy deposition is fast w.r.t. (shower size)/cs and dissipative processes → instantaneous heating

Thermal expansion and subsequent rarefaction causes bipolar pressure wave:

P ~ (P ~ (α/Cα/Cpp) ) ×× (c (css/L/Lcc))22 ×× E E

α = (1/V)(dV/dT) = thermal expansion coefficient of medium

Cp = heat capacity of mediumcs = sound velocity in mediumLc = transverse shower sizecs/Lc = characteristic signal frequency E = shower energy

Page 4: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 4

The signal from a neutrino reaction

signal volume ~ 0.01 km3

signal duration ~ 50 µsimportant: dV/dT ≠ 0

Page 5: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 5

The signal and the noise in the sea

Rough and optimisticestimate:

signal ≈ noiseat O(0.1-1 mPa)

(shower with10-100 PeV

@ 400m)

Page 6: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 6

The frequency spectrum of the signal

Simulation: band filter 3−100 kHz reduces noise by factor ~10 and makes signals of 50 mPa visible

Page 7: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 7

How could a detector look like?Simulation:Simulation:Instrument 2,4 or 6 sides of a kmInstrument 2,4 or 6 sides of a km33 cube cubewith grids of hydrophoneswith grids of hydrophones

No. of hydrophonesdetecting a reaction in km3 cube

Geometric efficiency(minimum of 3 hydrophonesrequired – very optimistic!)

Page 8: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 8

Current experimental activities ANTARES, NEMO:

- hydrophone development;- long-term test measurements foreseen.

SAUND- uses military hydrophone array in Caribbean Sea;- sensitive to highest-energy neutrinos (1020 eV);- first limits expected soon;- continuation: SAUND-II in IceCube experiment.

Other hydrophone arrays (Kamchatka, ...) Salt domes

- huge volumes of salt (NaCl), easily accessible from surface;

- signal generation, attenuation length etc. under study.

International workshop on acoustic cosmic ray and neutrino detection, Stanford, September 2003

http://hep.stanford.edu/neutrino/SAUND/workshop

Page 9: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 9

Sound sensors (hydrophones) All hydrophones based on Piezo-electric effect

- coupling of voltage and deformation along axis of particular anisotropic crystals;

- typical field/pressure: 0.025 Vm/Nyields O(0.1µV/mPa) → -200db re 1V/µPa;

- with preamplifier: hydrophone (receiver); w/o preamplifier: transducer (sender/receiver).

Detector sensitivity determined by signal/noise ratio.

Noise sources:- intrinsic noise of Piezo crystal (small);- preamplifier noise (dominant);- to be compared to ambient noise level in sea.

Coupling to acoustic wave in water requirescare in selection of encapsulation material.

Page 10: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 10

Example hydrophonesPiezo elementsPiezo elements →→

CommercialCommercialhydrophoneshydrophones::← ← cheapcheap ↓ ↓ expensiveexpensive

Self-made Self-made hydrophoneshydrophones

Page 11: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 11

How we measure acoustic signals

Readout:Digitization via ADCcard or digital scope,typical sampling freq.O(500 kHz)

Positioning:Positioning:Precision Precision O(2mm) in allO(2mm) in allcoordinatescoordinates

Page 12: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 12

Hydrophone sensitivities Sensitivity is strongly frequency-dependent,

depends e.g. on eigen-frequencies of Piezo element(s) Preamplifier adds additional frequency dependence

(not shown)

Commercialhydrophone

Self-madeSelf-madehydrophoneshydrophones

Page 13: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 13

Directional sensitivity

... depends on Piezo shape/combination, positions/sizes of preamplifier and cable,mechanical configuration

Page 14: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 14

Noise level of hydrophones Currently dominated by preamplifier noise Corresponds to O(10 mPa) →

shower with 1018eV in 400 m distance

Expected intrinsic noise levelof Piezo elements: O(few nV/Hz1/2)

Page 15: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 15

Sound transmitters

Acoustic signal generation by instantaneousenergy deposition in water:- Piezo elements

- wire or resistor heated by electric current pulse

- laser

- particle beam

How well do we understand signal shape and amplitude?

Suited for operation in deep sea?

Page 16: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 16

How Piezo elements transmit sound

P ~ d2U / dt2 (remember: F ~ d2x / dt2)

signal compared to to d2U/dt2 (normalized)

Page 17: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 17

… but it may also look like this:

Important issues: Quality &

assessment of Piezo elements

Acoustic coupling Piezo-water,impact of housing or encapsulation

Impact of electronics

Page 18: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 18

Going into details of Piezo elements

Equation of motion of Piezo element is complicated(coupled PDE of an anisotropic material):- Hooks law + electrical coupling- Gauss law + mechanical coupling

Finite Element Method chosen to solve these PDE.

Page 19: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 19

How a Piezo element moves20 kHz sine voltage applied to

Piezo disc with r=7.5mm, d=5mm

r=7.5mm

z=2.5mm

z = 0,r = 0

Polarization of the Piezo

Page 20: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 20

Checking with measurementsDirect measurementDirect measurement

of oscillation amplitude withof oscillation amplitude withFabry-Perot interferometerFabry-Perot interferometeras function of frequencyas function of frequency

Page 21: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 21

Acoustic wave of a Piezo @ 20kHz

Detailed description of acoustic wave, including effects of Piezo geometry (note: λ ≈ 72 mm)

Still missing: simulation of encapsulation Piezo transducers probably well suited for in situ calibration

Page 22: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 22

Resonant effects Piezo elements have resonant oscillation modes with

eigen-frequencies of some 10-100 kHz. May yield useful amplification if adapted to signal

but obscures signal shape.

non-resonant resonant

Page 23: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 23

Wires and resistors Initial idea:

instantaneous heating of wire (and water) by current pulse

Signal generation by

- wire expansion (yes)

- heat transfer to water (no)

- wire movement (no)

Experimental finding:also works using normal resistors instead of thin wires.

Probably not useful for deep-sea application but very instructive to study dynamics of signal generation.

Page 24: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 24

Listening to a resistor

… more detailed studies ongoing

pulse length 40µs,5mJ energy deposited

red: currentblue: voltage

acoustic signal

red: expectedacoustic signalif P ~ d2E/dt2

(arbitrary normalization)

Page 25: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 25

Dumping an infrared laser into water

NdYag laser (up to 2.5J / 10ns pulse); Time structure of energy deposition

very similar to particle shower.

Page 26: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 26

… and recording the acoustic signal

Acoustic signal detected, details

under study.

Page 27: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 27

Measurements with a proton beam Signal generation with Piezo, wire/resistor and laser differs

from particle shower (energy deposition mechanism, geometry)→ study acoustic signal from proton beam dumped into water.

Experiments performed at Theodor-Svedberg-Laboratory, Uppsala (Sweden) in collaboration with DESY-Zeuthen.

Beam characteristics:- kinetic energy per proton = 180 MeV- kinetic energy of bunch = 1015 – 1018eV- bunch length ≈ 30µs

Objectives of the measurements:- test/verify predictions of thermo-acoustic model;- study temperature dependence (remember: no signal

expected at 4°C);- test experimental setup for “almost real” signal.

Page 28: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 28

The experimental setup

Data taken at- different beam

parameters(bunch energy,beam profile);

- different sensor positions;

- different temperatures.

Data analysis notyet complete, allresults preliminary

Problem with calibration of beam intensity.

Page 29: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 29

Simulation of the signal Proton beam in water:

GEANT4 Energy deposition fed into

thermo-acoustic model.

Page 30: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 30

A signal compared to simulation

measured signalat x = 10 cm,

averaged over1000 p bunches

expectedstart of

acousticsignal

simulationsdiffer byassumed

time structureof bunches

normalizationarbitrary

Fourier transformsof measured andsimulated signals

Expected bi-polar shape verified. Signal is reproducible

in all details. Rise at begin of signal is

non-acoustic (assumed: elm. effect of beam charge).

Am

plitu

de

Page 31: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 31

It’s really sound!

Arrival time of signal vs. distance beam-hydrophone confirms acoustic nature of signal.

Measured velocity of sound = (1440±3)m/s(literature value: (1450±10)m/s).

Confirms precision of time and position measurements.

Page 32: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 32

Energy dependence

Signal amplitude vs. bunch energy (measured by Faraday cup in accelerator).

Consistent calibration for two different runs with different beam profiles.

Inconsistent results for calibration using scintillator counter at beam exit window.

Confirmation that amplitude ~ bunch energy

Page 33: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 33

Signal amplitude vs. distance

Signal dependence on distance hydrophone-beam different for different z positions.

Clear separation between near and far field at ~30cm. Power-law dependence of amplitude on x. Well described by simulation (not shown).

hydrophone position 2(middle of beam)

hydrophoneposition 3(near Bragg peak)

x-0.58

x-0.89

x-0.72

x-0.39

Page 34: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 34

Measuring the T dependence Motivation: observe signal behavior around water anomaly at 4°C. Water cooling by deep-frozen ice in aluminum containers. Temperature regulation with 0.1°C precision by automated

heating procedure controlled by two temperature sensors. Temperature homogeneity better than 0.1°C.

cooling block

temperatureregulation(target: 10.6°C)

Page 35: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 35

The signal is thermo-acoustic !

Signal amplitude depends (almost) linearly on (temperature – 4°C).

Signal inverts at about 4°C (→ negative amplitude). Signal non-zero at all temperatures.

Page 36: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 36

Temperature dependence not entirely consistent with expectation.

Measurements of temperature dependences (Piezo sensitivity, amplifier, water expansion) under way.

… not all details understood at 4oC

Signal minimal at 4.5°C, but different shape (tripolar?).

Possible secondary mechanism (electric forces, micro-bubbles)?

Time shift due to temperature dependence of sound velocity.

Page 37: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 37

Next steps …

Improve hydrophones (reduce noise, adapt resonance frequency, use antennae)

Perform pressure tests, produce hydrophones suited for deep-sea usage.

Study Piezo elements inside glass spheres.

Equip 1 or 2 ANTARES sectors with hydrophones, perform long-term measurements, develop trigger algorithms, ...

Page 38: R&D Towards Acoustic Particle Detection Uli Katz Univ. Erlangen Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 6-15.10.2004 The thermo-acoustic

07.10.2004 U. Katz: Acoustic detection 38

Conclusions Acoustic detection may provide access to neutrino astronomy at

energies above ~1016 eV. R&D activities towards

- development of high-sensitivity, low-price hydrophones- detailed understanding of signal generation and transport- verification of the thermo-acoustic model

have yielded first, promising results. Measurements with a proton beam have been performed and

allow for a high-precision assessment of thermo-acoustic signal generation and its parameter dependences.

Simulations of signal generation & transport and of thesensor response agree with the measurements and confirm the underlying assumptions.

Next step: instrumentation of 1-2 ANTARES sectors with hydrophones for long-term background measurements.