rare b-decays - cernrare decay observables • (differential) branching ratios – q2dependence for...

30
Lars Eklund on behalf of the LHCb Collaboration Rare B-decays Experimental overview Results from Babar, Belle, LHCb, ATLAS and CMS

Upload: others

Post on 24-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Lars Eklund on behalf of the LHCb Collaboration

    Rare B-decays

    Experimental overview

    Results from Babar, Belle, LHCb, ATLAS and CMS

  • Why study rare processes?

    • Rare decays: SM is suppressed– Sensitive to BSM contributions

    • Flavour Changing Neutral Currents (FCNC)– Forbidden at tree-level in the SM– Further suppression, e.g. helicity

    • Probes mass scales beyond direct searches– Up to ~ 100 TeV

    1 September 2017 2

    B(s) → µ+µ-

    b → s l+ l-

    B(s) → µ+µ-

    10-9

    b → s l+ l-

    10-7 10-2

    B → D(*) l+ 𝝂 -

    ~10-50

    lepton flavour

    violation

    semi-leptonicEW penguinshelicity suppressed

    0

    baryon number violation

    branching ratio

    lepton flavour universality tests

    L. Eklund

  • FCNC: theoretical description

    • Processes at many different energy scales

    • Described by an effective Hamiltonian– Oi (Operators): long-distance, non-perturbative physics– Ci (Wilson coefficients): short distance, high energy physics

    • BSM processes may modify these coefficients

    1 September 2017 3

    0.2 GeV ... 4 GeV … 80 GeV … 10-100 TeVΛQCD Λb ΛEW ΛBSM

    (non-perturbative) b mass W mass BSM scale Example of SM terms

    i = 7

    i = 9

    i = 10

    L. Eklund

  • Rare decay observables

    • (Differential) branching ratios– q2 dependence for b → s l+ l-

    • E.g. B0 → K*µ+µ-

    • Angular distributions– b → s l+ l- decays

    • Effective lifetime– Bs decays where ΔΓ$ ≠ 0

    • Measure of CP violation

    • BSM processes can modify the effective Hamiltonian by– Modifying Wilson coefficients of operators present in SM– Making Wilson coefficients dependent on lepton flavour– Introducing new operators

    1 September 2017 L. Eklund 4

    Invariant mass2 of di-leptons

    Reproduced from arXiv:1606.00916v2

  • Overview of results

    • Fully leptonic decays– B(s) → µ+µ- & B(s) → 𝛕+𝛕 -

    • Electroweak b → s l+ l- transitions– B0 → K*µ+µ- and friends– Differential branching ratios & angular analysis– Global fits to Wilson coefficients

    • Lepton flavour universality test (l+ = e+, µ+ or 𝛕+) – B → K(*) l+ l- decay rates – B → D(*) l+ 𝝂 decay rates

    • Outlook

    1 September 2017 5L. Eklund

  • Fully leptonic final states

    B(s) → µ+µ- and friends

    6

  • B(s) → μ+μ- branching ratio

    • Very precise predictions available– Only C10 contribute in the SM:

    – BSM scalar & pseudo-scalar operators may contribute• Change in decay rate• Mixing induced CP violation

    • LHCb & CMS: Run 1 dataset– Observation of Bs → µ+µ- (6.2 σ)– Evidence for B0 → µ+µ- (3.0 σ)

    1 September 2017 7

    𝐵𝑅(𝐵, → 𝑙/𝑙0) ∝ 𝑚45 1 −4𝑚45

    𝑚895

    �𝐶

  • B(s) → μ+μ- branching ratio

    • ATLAS: 25 fb-1 run I– First ATLAS result on B(s) → µ+µ-

    • LHCb 3+1.4 fb-1 run I+II– First single experiment observation

    • 7.9σ significance Bs → µ+µ-

    – Effective lifetime of Bs → µ+µ-

    1 September 2017 8

    ]9− [10)− µ +µ → s0BB(

    0 1 2 3 4 5 6 7

    ]9− [1

    0)−

    µ +µ

    → 0B

    B(

    0.2−

    0

    0.2

    0.4

    0.6

    0.8

    CMS & LHCb

    68.2

    7%

    95.4

    5%

    99.7

    3%

    ATLAS-1 = 7 TeV, 4.9 fbs

    -1 = 8 TeV, 20 fbs

    ATLAS

    SM

    ) = 2.3,Lln(∆Contours for -2 L6.2, 11.8 from maximum of

    Significance: 1.4σ (3.0 expected from SM)

    )−µ+µ → 0sBF(B0 2 4 6 8

    9−10×)− µ+ µ

    → 0B

    F(B

    00.10.20.30.40.50.60.70.80.9

    9−10×

    68.27%

    95.45%

    99.73%

    99.99%

    SM

    LHCb

    L. Eklund

    Eur. Phys. J. C (2016) 76:513

    PRL 118, 191801 (2017)

  • The heavier cousin: B(s) → 𝛕+𝛕 -

    • LHCb 3 fb-1 run 1– Larger branching ratio due to the larger mass

    • Additional enhancement possible in BSM scenarios that violate LFU

    – Experimentally challenging: multiple neutrinos in the final state • Reconstructed in the mode• Normalisation Bs→D-(→ K+𝜋-𝜋-)Ds(→ K-K+𝜋+)

    1 September 2017 9

    Can

    dida

    tes

    1

    10

    210

    310

    410

    LHCb

    DataTotal

    Signal×1 −Background

    Neural network output0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Pull

    5−05

    Fit to B(s) → 𝛕+𝛕 - NN output

    L. Eklund

    PRL 118, 251802 (2017)

  • Electroweak b → s l+ l- transitionsB0 → K*µ+µ- and friends

  • b → s l+ l- differential branching ratios

    • LHCb: differential branching fractions in several b → s l+ l- modes– Versus di-muon invariant mass squared: q2

    • Discrepancy in the low di-muon invariant mass region

    1 September 2017 11L. Eklund

    ]4c/2 [GeV2q0 5 10 15 20

    ]2/G

    eV4 c ×

    -8 [1

    02 q

    /dBd 01

    2

    3

    4

    5

    LCSR Lattice Data

    −µ+µ0 K→0BLHCb

    ]4c/2 [GeV2q0 5 10 15 20

    ]2/G

    eV4 c ×

    -8 [1

    02 q

    /dBd 01

    2

    3

    4

    5

    LCSR Lattice Data

    LHCb−µ+µ+ K→+B

    ]4c/2 [GeV2q0 5 10 15 20

    ]2/G

    eV4 c ×

    -8 [1

    02 q

    /dBd 0

    5

    10

    15

    20LCSR Lattice Data

    LHCb−µ+µ*+ K→+B

    ]4c/2 [GeV2q0 5 10 15

    ]2/G

    eV4 c [2 q

    /dB d

    0

    0.05

    0.1

    0.156−10×

    LHCb

    ]4c/2 [GeV2q0 5 10 15 20

    ]-1 )4 c/2

    (GeV

    -7 [1

    02 q

    ) / d

    µ µ Λ

    → bΛ(Bd 0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    LHCb

    SM prediction

    Data

    ]4c/2 [GeV2q5 10 15

    ]4 c

    -2G

    eV-8

    [10

    2q

    )/d

    µµ

    φ→

    s0B

    dB

    ( 0

    1

    2

    3

    4

    5

    6

    7

    8

    9LHCb

    SM pred.

    Data

    JHEP 06 (2014) 133: 1 fb-1

    JHEP 11 (2016) 047: 3 fb-1 JHEP 06 (2015) 115: 3 fb-1 JHEP 09 (2015) 179: 3 fb-1

    BS → ϕµ+µ-ΛB → Λµ+µ-

    B0 → K*µ+µ-

  • b → s l+ l- differential branching ratios

    • CMS: 20.5 fb-1 run I– B0 → K*µ+µ- differential branching ratio– Compatible with SM & LHCb results

    1 September 2017 L. Eklund 12

    )2 (GeV2q2 4 6 8 10 12 14 16 18

    )2− G

    eV× 8−

    (10

    2 q /

    dΒd

    0

    2

    4

    6

    8

    10

    12Data

    〉 SM, LCSR 〈〉 SM, Lattice 〈

    CMS (8 TeV)1−20.5 fb

    Phys. Lett. B 753 (2016) 424

  • b → s l+ l- angular observables

    • Angles defined in B meson rest frame– Angular variables: θl, θK & Φ– Di-lepton invariant mass2: q2

    – Fit PDF for B0 → K*µ+µ-

    • Form-factor uncertainties in the predictions of observables

    – Alternative set of 7 observables with reduced uncertainties: 𝑃@

    (A)

    1 September 2017 L. Eklund 13

    For instance:

  • B → K* μ+ μ– angular analysis

    • LHCb: 3 fb-1 run I data set– Full angular analysis B → K* µ+ µ–

    – Local SM deviation P5’• 2.8σ in 4 < q2 < 6 GeV2/c4

    • 3.0σ in 6 < q2 < 8 GeV2/c4

    – Fit to C9 3.4σ from SM

    • Belle: 711 fb-1 full data set– Both e± and µ± modes– Local SM deviation P5’

    • 2.6σ in 4 < q2 < 8 GeV2/c4 in the muon mode

    • e± mode consistent with SM

    1 September 2017 14L. Eklund

    ]4c/2 [GeV2q0 5 10 15

    5'P

    -2

    -1

    0

    1

    2LHCb

    SM from DHMV

    PRL 118, 111801 (2017)

    JHEP02 (2016) 104

  • B → K* μ+ μ – angular analysis

    • ATLAS: 20.3 fb-1 run I data

    • CMS: 20.5 fb-1 run 1 data

    – Recent, preliminary result– Compatible with SM– Compatible with LHCb & Belle

    1 September 2017 15L. Eklund

    ATLAS-CONF-2017-023

    CMS PAS BPH-15-008

  • Global fits to Wilson coefficients

    • Is there a pattern in these deviations?• Global fits of Wilson coefficients

    – Approximately 100 observables• B(s) → µ+µ- and b → s ɣ BR• b → s l+ l- BR & angular observables

    – Several global fits in literature• Fits prefer BSM contribution to C9• 3-5σ from SM depending on constraints

    • Possible interpretations– BSM physics contributions

    • e.g. Z’ of a few TeV– Limits in our understanding of QCD

    • E.g. contributions from charm loops

    1 September 2017 16L. Eklund

    Branching Ratios

    Angular Observables HPiLAll

    -3 -2 -1 0 1 2 3-3

    -2

    -1

    0

    1

    2

    3

    C9NP

    C 10NP

    𝐶@ = 𝐶@CD + 𝐶@FGB → K* 𝛕 + 𝛕 – not yet observedBabar limit BR < 2.3 x 10-3PRL 118, 031802 (2017)

    JHEP 06 (2016) 092

  • Lepton flavour universality

    Ratios of branching ratios – comparing lepton flavour

    1 September 2017 17

    See talk by Anna Lupato:“Lepton flavour universality tests at LHCb”Sunday 15:40 in ‘Test of symmetries and conservation laws’

  • LFU: B → K(*) μ+ μ – vs. B → K(*) e+ e –

    • Lepton flavour universality test– Close to unity in SM

    • Measurements by Belle & Babar – Combines B0 & B+ ratios– R(K) and R(K*) for different q2 ranges

    • Consistent with SM prediction

    • LHCb 3 fb-1 run I: RK– Measured as a double ratio

    • 2.6σ deviation from SM

    1 September 2017 18L. Eklund

    𝑅H(∗) =ℬ(𝐵=// → 𝐾=// ∗ 𝜇/𝜇0)ℬ(𝐵=// → 𝐾=// ∗ 𝑒/𝑒0)

    Summary plot from arXiv:1606.00916v2

    𝑅H =ℬ(𝐵/ → 𝐾/𝜇/𝜇0)

    ℬ(𝐵/ → 𝐾/ 𝐽 𝜓⁄ → 𝜇/𝜇0 )ℬ(𝐵/ → 𝐾/ 𝐽 𝜓⁄ → 𝑒/𝑒0 )

    ℬ(𝐵/ → 𝐾/𝑒/𝑒0)S

    PRL 113 (2014)151601

    Babar: PRD 86 (2012) 032012Belle: PRL 103 (2009) 171801

  • LFU: B → K(*) μ+ μ – vs. B → K(*) e+ e –

    • LHCb: 3 fb-1 run I: RK*– Tension with SM

    • 2.1-2.3σ in 0.045 < q2 < 1.1 GeV2/c4

    • 2.2-2.4σ in 1.1 < q2 < 6.0 GeV2/c4

    • Fit to Wilson coefficients– Allowing for 𝐶@TFG ≠ 𝐶@UFG

    • 3.5σ from SM • Preference for 𝐶VUFG ≠ 0

    1 September 2017 L. Eklund 19

    𝑅H∗ =ℬ(𝐵= → 𝐾=∗𝜇/𝜇0)ℬ(𝐵= → 𝐾=∗𝑒/𝑒0) 0 1 2 3 4 5 6

    q2 [GeV2/c4]

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0RK

    ⇤0

    LHCb

    LHCb

    BIP

    CDHMV

    EOSflav.ioJC

    JHEP01 (2017) 055

    ���

    ����

    -� -� -� � � � �-�

    -�

    -�

    �� �

    �����

    PSI-PR-17-05a

    rXiv:1704.05340 𝐶@ = 𝐶@CD + 𝐶@FG

  • R(D)0.2 0.3 0.4 0.5 0.6

    R(D

    *)0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5 BaBar, PRL109,101802(2012)Belle, PRD92,072014(2015)LHCb, PRL115,111803(2015)Belle, PRD94,072007(2016)Belle, PRL118,211801(2017)LHCb, FPCP2017Average

    SM Predictions

    = 1.0 contours2χ∆

    R(D)=0.300(8) HPQCD (2015)R(D)=0.299(11) FNAL/MILC (2015)R(D*)=0.252(3) S. Fajfer et al. (2012)

    HFLAV

    FPCP 2017

    ) = 71.6%2χP(

    σ4

    σ2

    HFLAVFPCP 2017

    LFU: B → D(*) 𝛕+𝝂 vs. B → D(*) l+ 𝝂 - (l = e or μ)

    • LFU ratios for semi-leptonic D(*) decays• RD measurements

    – Belle & Babar• Hadronic tag, 𝜏0 → 𝑙0�̅�4𝜐[

    • RD* measurements– Belle & Babar

    • Hadronic tag, 𝜏0 → 𝑙0�̅�4𝜐[– Belle

    • Hadronic tag, 𝜏0 → 𝜋0𝜐[, 𝜏0 → 𝜌0𝜐[• Semi-leptonic tag, 𝜏0 → 𝑙0�̅�4𝜐[

    – LHCb 3 fb-1 (run I)• 𝜏0 → 𝑙0�̅�4𝜐[• 𝜏0 → 𝜋0𝜋/𝜋0𝜐[

    1 September 2017 20L. Eklund

    𝑅^(∗) =ℬ(𝐵=/0 → 𝐷=/0 ∗ 𝜏/𝜈[)ℬ(𝐵=/0 → 𝐷=/0 ∗ 𝑙/𝜈4)

    Tension with SM prediction• 2.3σ in RD• 3.4σ in RD*• 4.1σ combined

  • Interpretations of the 𝑅^(∗) results

    • Example of BSM model that would influence 𝑅^(∗)– 2-Higgs-dublet model Type II

    • Parametrised by tan(𝛽) 𝑚de⁄– Affects both measured and predicted 𝑅^(∗)

    1 September 2017 L. Eklund 21

    Comparison with Babar hadronic result Comparison with Belle hadronic result

    Not consistent with 2HDM type II

    Consistent with 2HDM type IIwith tan(𝛽) 𝑚de⁄ ~0.45

    PRD 88 (2013) 072012

    PRD 92 (2015) 072014

  • Outlook

    Many exciting results in the years to come

    1 September 2017 22

  • LHCb datasets

    • LHCb results almost exclusively from 3 fb-1 Run I data– Run II doubles signal yield/fb-1

    • Increased 𝑏𝑏j cross section

    • LHCb Phase-I upgrade– Remove H/W trigger – 40 Mhz readout

    • Doubles signal yield/fb-1 for hadronic channels• Construction progressing at full speed

    • LHCb Phase-II upgrade– Preliminary studies ongoing

    • Major detector upgrade• EoI submitted

    1 September 2017 23L. Eklund

    CERN-LHCC-2017-003

  • SuperKEKB luminosity projection

    Goal of Be!e II/SuperKEKB

    9 months/year20 days/month

    Inte

    grat

    ed lu

    min

    osity

    (a

    b-1 )

    Peak

    lum

    inos

    ity

    (cm

    -2s-

    1 )

    Calendar Year

    Belle II, ATLAS & CMS

    • Babar & Belle datasets– 550 + 1000 fb-1

    • Belle II: 50 ab-1– Physics data taking from 2018

    • See previous speaker (Mikihiko Nakao)– Dedicated talk by Jake Bennet

    • Sunday, 14:50 (accelerators & detectors)

    • ATLAS & CMS: results from 20-25 fb-1– ~ 80 fb-1 on tape

    • Expect ~300 fb-1 by 2023– 3 ab-1 for sLHC upgrade era– Many important results are expected

    1 September 2017 24L. Eklund

  • Physics prospects

    • Belle II: RD & RD*

    • LHCb Phase I & II

    1 September 2017 25L. Eklund

    Currentprecision

    Belle II 5 ab-1

    Belle II50 ab-1

    RD 12% 5.6% 3.2%RD* 5.4% 3.9% 2.2%RK 12% 7% 2%

    B(s) → µ+µ-Current

    precisionPhase-I50 fb-1

    Phase-II300 fb-1

    σBR x10-9 0.7 0.15 0.07

    Effective lifetime στ

    25% 5% 2%

    ATLAS & CMS are competitive in B(s) → µ+µ-

    Prediction for B0 → K*µ+µ-CERN-LHCC-2017-003CERN-LHCC-2012-007 CERN

    -LHC

    C-2017-003

    arXiv:1002.5012 andEPS-HEP 2017 talk by S. Falke

  • Summary

    • Rare B-decays are an excellent probe for BSM physics

    • B(s) → µ+µ- branching ratios consistent with SM– Within experimental precision

    • Intriguing deviations from SM predictions– b → s l+ l- branching ratios & angular observables– Lepton flavour universality test: 𝑅H(∗) and 𝑅^(∗)

    • Exciting results expected from– Data already recorded– Upgraded detectors

    1 September 2017 26L. Eklund

  • Backup slides

  • Bs → μ+μ- effective lifetime

    • LHCb update: 3 fb-1 (run I) + 1.4 fb-1 (run 2)• New observable sensitive to CP violation

    – AΔΓ = 1 in SM (i.e. no CPV)

    1 September 2017 28

    Decay time [ps]0 5 10

    can

    dida

    tes /

    (1 p

    s)− µ+ µ

    → s0W

    eigh

    ted

    B

    0

    2

    4

    6

    8

    Effective lifetime fit

    LHCb

    𝜏Tkk = 𝜏8l = 1.619 ± 0.009

    De Bruyn et al., PRL 109, 041801 (2012)

    Measurement for the sLHC era

    L. Eklund

  • B0 → K* e+ e– angular analysis

    • LHCb: 3 fb-1 run I– Particular interest in the low q2 region

    • Sensitivity to photon polarisation• Wilson coefficients C7 & C7’

    – Folded angular distributions• Increase sensitivity for low yields• 4 observables

    1 September 2017 L. Eklund 29

    ]2c/ [MeV)−e+e−π+K(m4500 5000 5500 6000

    ) 2 cC

    andi

    date

    s / (

    40 M

    eV/

    0

    20

    40

    60

    80

    100

    DataModel

    −e+e0*K → 0B−e+e)X0*K (→B

    Combinatorial

    LHCb

    0.002 < q2 < 1.12 GeV2/c4

    JHEP04 (2015) 064

  • Belle: 𝛕 polarisation in B → D* 𝛕+ 𝝂

    • Belle full dataset– Complementary observable– Hadronic tag, 𝜏0 → 𝜋0𝜐[, 𝜏0 → 𝜌0𝜐[

    • Polarisation of 𝛕-

    – Γ±(D*): decay rate with 𝛕 helicity ±½– Differential BR

    1 September 2017 L. Eklund 30

    Result:𝑃[CD = −0.497 ± 0.013𝑃[ = −0.38 ± 0.510=.