rapic project: toward competitive heat … · and heat and mass transfer intensification: ......

24
RAPIC PROJECT: TOWARD COMPETITIVE HEAT EXCHANGER/REACTOR 19 TH SEPTEMBER 2012 ANR Sustainable Chemistry Conference | Zoé ANXIONNAZ-MINVIELLE

Upload: others

Post on 22-Jul-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: RAPIC PROJECT: TOWARD COMPETITIVE HEAT … · and heat and mass transfer intensification: ... Optimization of the design 4. Lab-scale pilots Process fluid Cooling fluid Process fluid

RAPIC PROJECT:

TOWARD COMPETITIVE HEAT

EXCHANGER/REACTOR

19TH SEPTEMBER 2012

ANR Sustainable Chemistry Conference | Zoé ANXIONNAZ-MINVIELLE

Page 2: RAPIC PROJECT: TOWARD COMPETITIVE HEAT … · and heat and mass transfer intensification: ... Optimization of the design 4. Lab-scale pilots Process fluid Cooling fluid Process fluid

CONTEXT

Chemical syntheses = f(T)

Heat transfer limitations in

batch reactors

| PAGE 2 Z. Anxionnaz-Minvielle | 19 SEPTEMBER 2012

Transposition from batch to plug flow continuous reactors and heat and mass transfer intensification: • Continuous production

• Quality enhancement

• Safer process

• Environmental-friendly

Page 3: RAPIC PROJECT: TOWARD COMPETITIVE HEAT … · and heat and mass transfer intensification: ... Optimization of the design 4. Lab-scale pilots Process fluid Cooling fluid Process fluid

CONTEXT

Plate heat exchanger/reactors

Industrial well-known plate heat exchanger technology Compact technology Demonstrated in the 1-10kg/h range… …But expensive apparatuses

| PAGE 3 Z. Anxionnaz-Minvielle | 19 SEPTEMBER 2012

Pour insérer une image :

Menu « Insertion / Image »

ou

Cliquer sur l’icône de la zone

image

RAPIC Project to develop an

innovative and low-cost component

Scientific and technical challenges:

• Compacity vs. Residence time?

• Scale-up x10 up to x100

• Low-cost manufacturing technique

Page 4: RAPIC PROJECT: TOWARD COMPETITIVE HEAT … · and heat and mass transfer intensification: ... Optimization of the design 4. Lab-scale pilots Process fluid Cooling fluid Process fluid

RAPIC PROJECT - OBJECTIVES

• Funded by the French National Research Agency

• Consortium : CEA LITEN, Rhodia, Fives Cryo, LGC et LTN

• Budget : 1,9 M€ / 4 ans

• Objectives:

| PAGE 4 Z. Anxionnaz-Minvielle | 19 SEPTEMBER 2012

Pour insérer une image :

Menu « Insertion / Image »

ou

Cliquer sur l’icône de la zone

image

• To develop an innovative and low-cost component

• To comply with the implementation constraints of

exo/endothermal reactions

•To be as close as possible to mature

technologies of the heat exchanger

sector

• To respect the cost constraints

imposed by the market

Page 5: RAPIC PROJECT: TOWARD COMPETITIVE HEAT … · and heat and mass transfer intensification: ... Optimization of the design 4. Lab-scale pilots Process fluid Cooling fluid Process fluid

RAPIC PROJECT - STRUCTURE

| PAGE 5 Z. Anxionnaz-Minvielle | 19 SEPTEMBER 2012

Pour insérer une image :

Menu « Insertion / Image »

ou

Cliquer sur l’icône de la zone

image

1. End-user specifications

2. Design of a basic HEX/reactor

3. Optimization of the design

4. Lab-scale pilots

Process fluid

Cooling fluid

Process fluid Cooling fluid

Structuration of the

process flow

Plates assembled by

HIP (Hot Isostatic

Pressing) or brazing

Page 6: RAPIC PROJECT: TOWARD COMPETITIVE HEAT … · and heat and mass transfer intensification: ... Optimization of the design 4. Lab-scale pilots Process fluid Cooling fluid Process fluid

RAPIC PROJECT - SPECIFICATIONS

Rhodia chemical reaction target:

Homogeneous liquid-phase exothermal reaction

Adiabatic temperature rise = 200°C

Residence time = 2-3 min

Isothermal reactor: max temperature rise = 10°C

𝑈∙𝐴

𝑉𝑓𝑙𝑢𝑖𝑑= 580 kW ∙ 𝑚−3 ∙ 𝐾−1

Lab-scale: 1-10 kg.h-1

Production scale: 100-4000 kg.h-1

Assessment of a maximal cost to be equivalent to the industrial batch process

cost assessment from reactants to building

| PAGE 6 Z. Anxionnaz-Minvielle | 19 SEPTEMBER 2012

Pour insérer une image :

Menu « Insertion / Image »

ou

Cliquer sur l’icône de la zone

image

Page 7: RAPIC PROJECT: TOWARD COMPETITIVE HEAT … · and heat and mass transfer intensification: ... Optimization of the design 4. Lab-scale pilots Process fluid Cooling fluid Process fluid

1ST SIMPLE PLATE REACTOR CONCEPT

| PAGE 7 Z. Anxionnaz-Minvielle | 19 SEPTEMBER 2012

Pour insérer une image :

Menu « Insertion / Image »

ou

Cliquer sur l’icône de la zone

image

Process side

Straight stainless steel tubes (8/10mm)

Twisted inserts

Copper matrix

2x25 process plates (1.25 x 0.8 x 0.02 m3) and 60 tubes/plate

Cooling side

Straight perforated fins (h=0,4mm – e=0,5mm)

51 plates

Reactor

580 kW.m-3.K-1

Vreactor = 1,44 m3

ΔP = 7 bars

Page 8: RAPIC PROJECT: TOWARD COMPETITIVE HEAT … · and heat and mass transfer intensification: ... Optimization of the design 4. Lab-scale pilots Process fluid Cooling fluid Process fluid

1ST SIMPLE PLATE REACTOR CONCEPT

| PAGE 8 Z. Anxionnaz-Minvielle | 19 SEPTEMBER 2012

Pour insérer une image :

Menu « Insertion / Image »

ou

Cliquer sur l’icône de la zone

image

Manufacture of the 1st concept mock-up:

To validate the pre-sizing correlations

To assess the manufacture costs

2nd step objective : more efficient, compact and cheaper heat

exchanger/reactor:

Modification of channel cross-section shape Structuration of the channel geometry (2D)

Page 9: RAPIC PROJECT: TOWARD COMPETITIVE HEAT … · and heat and mass transfer intensification: ... Optimization of the design 4. Lab-scale pilots Process fluid Cooling fluid Process fluid

LAB-SCALE MOCK-UPS

| PAGE 9 Z. Anxionnaz-Minvielle | 19 SEPTEMBER 2012

Pour insérer une image :

Menu « Insertion / Image »

ou

Cliquer sur l’icône de la zone

image

Objectives:

Manufacturing qualification processes:

Machining, fins bending

Brazing, hot isostatic pressing

Thermo-hydraulic characterizations

Flow structure: pressure drops, RTD

Heat and mass transfers

Overall dimensions:

~320 x 130 x 20 mm3

Material: 316L, copper, PMMA

Milli-reaction channel

Page 10: RAPIC PROJECT: TOWARD COMPETITIVE HEAT … · and heat and mass transfer intensification: ... Optimization of the design 4. Lab-scale pilots Process fluid Cooling fluid Process fluid

LAB-SCALE MOCK-UPS

| PAGE 10 Z. Anxionnaz-Minvielle | 19 SEPTEMBER 2012

Pour insérer une image :

Menu « Insertion / Image »

ou

Cliquer sur l’icône de la zone

image

2D-structure of the reaction channel

Process side Utility side

Page 11: RAPIC PROJECT: TOWARD COMPETITIVE HEAT … · and heat and mass transfer intensification: ... Optimization of the design 4. Lab-scale pilots Process fluid Cooling fluid Process fluid

LAB-SCALE MOCK-UPS

| PAGE 11 Z. Anxionnaz-Minvielle | 19 SEPTEMBER 2012

Pour insérer une image :

Menu « Insertion / Image »

ou

Cliquer sur l’icône de la zone

image

2D-structure of the reaction channel

Thermo-hydraulic performances

• Global mixing

• Thermal performances

PMMA mock-ups: flow characterization in the

2D reaction channel

Flow hydrodynamics

• Residence Time Distribution

• Pressure drops

PhD Thesis

LGC/CEA

Page 12: RAPIC PROJECT: TOWARD COMPETITIVE HEAT … · and heat and mass transfer intensification: ... Optimization of the design 4. Lab-scale pilots Process fluid Cooling fluid Process fluid

0,01

0,1

1

10

10 100 1 000 10 000

Nombre de Reynolds

Coeff

icie

nt

de D

arc

y

Maq. aMaq. bMaq. cMaq. dMaq. etube droit littératuretube droit exp carré

0,01

0,1

1

10

10 100 1 000 10 000

Nombre de Reynolds

Coeff

icie

nt

de D

arc

y

Maq. aMaq. bMaq. cMaq. dMaq. etube droit littératuretube droit exp carré

LAB-SCALE MOCK-UPS

| PAGE 12 Z. Anxionnaz-Minvielle | 19 SEPTEMBER 2012

Pour insérer une image :

Menu « Insertion / Image »

ou

Cliquer sur l’icône de la zone

image

2D-structure of the reaction channel

12

Reynolds number

Da

rcy c

oe

ffic

ien

t

Reynolds number

UA

/V (

kW

.m-3

.K-1

)

0

1000

2000

3000

4000

5000

0 2 4 6 8 10 12 14 16 18

Débit côté procédé (kg.h-1

)

UA

/V (

kW.m

-3.K

-1)

'Maquette 'b'Maquette 'c'Maquette 'd'Maquette 'e

Page 13: RAPIC PROJECT: TOWARD COMPETITIVE HEAT … · and heat and mass transfer intensification: ... Optimization of the design 4. Lab-scale pilots Process fluid Cooling fluid Process fluid

LAB-SCALE MOCK-UPS

Manufacturing techniques

d=8 mm

Twisted inserts

Vfluid=301 mL

Ldev=2.88 m

2x4 mm2

Vfluid=34 mL

Ldev=4.67 m

Z. Anxionnaz-Minvielle | 19 SEPTEMBER 2012 | PAGE 13

Page 14: RAPIC PROJECT: TOWARD COMPETITIVE HEAT … · and heat and mass transfer intensification: ... Optimization of the design 4. Lab-scale pilots Process fluid Cooling fluid Process fluid

LAB-SCALE MOCK-UPS

Manufacturing techniques

2x4 mm2

Vfluid=23 mL

Ldev=2.21 m

hfin=5.1 mm

Lfin=1.54 mm

Vfluid=102 mL

Ldev=0.9 m

Z. Anxionnaz-Minvielle | 19 SEPTEMBER 2012 | PAGE 14

Page 15: RAPIC PROJECT: TOWARD COMPETITIVE HEAT … · and heat and mass transfer intensification: ... Optimization of the design 4. Lab-scale pilots Process fluid Cooling fluid Process fluid

LAB-SCALE MOCK-UPS

Z. Anxionnaz-Minvielle | 19 SEPTEMBER 2012

Experimental characterizations

UA

/V (

kW

.K-1

.m-3

)

Flowrate (kg.h-1)

| PAGE 15

Flowrate (kg.h-1)

Pum

p p

ow

er

(W)

Page 16: RAPIC PROJECT: TOWARD COMPETITIVE HEAT … · and heat and mass transfer intensification: ... Optimization of the design 4. Lab-scale pilots Process fluid Cooling fluid Process fluid

| PAGE 16 Z. Anxionnaz-Minvielle | 19 SEPTEMBER 2012

LAB-SCALE MOCK-UPS

Experimental characterizations

Pe = 40 to 150

Iodide-Iodate method with

adaptive procedure*

Page 17: RAPIC PROJECT: TOWARD COMPETITIVE HEAT … · and heat and mass transfer intensification: ... Optimization of the design 4. Lab-scale pilots Process fluid Cooling fluid Process fluid

FROM THE MOCK-UPS TO THE PILOTS

Z. Anxionnaz-Minvielle | 19 SEPTEMBER 2012

• Integration of cooling plates

• 2 manufacturing techniques

• 10 kg/h range

• Tests with exothermic reactions

• Process plate (x3):

– Wavy channel

– Stainless steel

– HIP technique

• Cooling plate (x4):

– Parallell wavy channels

– Stainless steel

– HIP technique

• Dimensions : 320 x 140 x 33 mm3

• Fluid volume = 30 mL

• Process plate (x1):

– Herringbones

– Stainless steel

– Brazing technique

• Cooling plate (x2):

– Herringbones

– Stainless steel

– Brazing technique

• Dimensions : 319 x 129 x 30 mm3

• Fluid volume = 102 mL

• Process plate (x3):

– Straight circular tube with twisted

inserts

– Copper matrix

– HIP technique

• Cooling plate (x4):

– Stainless steel herringbones

– Brazing techniques

• Dimensions: 800 x 400 x 70 mm3

• Fluid volume = 1.17 L

| PAGE 17

Page 18: RAPIC PROJECT: TOWARD COMPETITIVE HEAT … · and heat and mass transfer intensification: ... Optimization of the design 4. Lab-scale pilots Process fluid Cooling fluid Process fluid

PILOT-SCALE HEAT EXCHANGER/REACTOR

Z. Anxionnaz-Minvielle | 19 SEPTEMBER 2012

2 Na2S2O3 + 4H2O2 Na2S3O6 + Na2SO4 + 4H2O

ΔHr = -586.2 kJ.mol-1 of Na2S2O3

Oxidation reaction:

Process fluid Cooling fluid Conversion

Qp (L.h-1) Re tr (s) Tu,in (°C) Tu,out (°C) Reactor (%)

14.0 2500 6.9 39.7 39.9 60

7.0 1300 13.8 39.7 41.1 88

7.0 1500 13.8 59.4 60.1 95

0

10

20

30

40

50

3000 3200 3400 3600 3800 4000

Time (s)

T (

°C)

Tp,in

Tp,out

Tu,in

Tu,out

Reactants

introduction

| PAGE 18

Page 19: RAPIC PROJECT: TOWARD COMPETITIVE HEAT … · and heat and mass transfer intensification: ... Optimization of the design 4. Lab-scale pilots Process fluid Cooling fluid Process fluid

Z. Anxionnaz-Minvielle | 19 SEPTEMBER 2012

Data of the oxidation reaction experiments (Tu=49°C), heat generated :

Q/V=14.103 kW.m-3

Comparison with batch reactors

Heat that could be removed in a batch reactor

(1L<V<1m3 - ∆T=45°C – Umax=500 W.m2.K-1)

Volume (m3) 1.10-3 1.10-2 0,1 1

Diameter (m) 0,08 0,2 0,4 0,9

Height (m) 0,2 0,3 0,8 1,4

A (m2) 0,055 0,22 1,13 4,6

Qmax/V

(kW.m3) 1200 500 250 100

PILOT-SCALE HEAT EXCHANGER/REACTOR

| PAGE 19

Page 20: RAPIC PROJECT: TOWARD COMPETITIVE HEAT … · and heat and mass transfer intensification: ... Optimization of the design 4. Lab-scale pilots Process fluid Cooling fluid Process fluid

Z. Anxionnaz-Minvielle | 19 SEPTEMBER 2012

Simulation tool • Design assistance

• Operating conditions optimization

• Reaction implementation in safe conditions

PILOT-SCALE HEAT EXCHANGER/REACTOR

| PAGE 20

Page 21: RAPIC PROJECT: TOWARD COMPETITIVE HEAT … · and heat and mass transfer intensification: ... Optimization of the design 4. Lab-scale pilots Process fluid Cooling fluid Process fluid

Z. Anxionnaz-Minvielle | 19 SEPTEMBER 2012

Ac. + KOH intermediate Final product 30°C 40°C

Secondary products

• Batch process

• Operating times >3h to

keep T<40°C

• 2ndary products = 0,2%

Flowrate

(kg/h) 5 9

Res. time (s) 73 480

% 2ndary Prod. 1,3 (Tinlet=60°C

Toutlet=32°C) 0

PILOT-SCALE HEAT EXCHANGER/REACTOR

| PAGE 21

Page 22: RAPIC PROJECT: TOWARD COMPETITIVE HEAT … · and heat and mass transfer intensification: ... Optimization of the design 4. Lab-scale pilots Process fluid Cooling fluid Process fluid

Z. Anxionnaz-Minvielle | 19 SEPTEMBER 2012

PILOT-SCALE HEAT EXCHANGER/REACTOR

Costs assessments

Offset strip fins (refroidissement)

usinage et matière plaques réactionnelles

Main d'œuvre

Herringbones

Process plates machining and

raw materials

Labour costs

Matière première partie réactive

Matière première

refroidissement

Main d'œuvre-Montage

CIC et usinage final

Process plates

raw materials

Utility plates raw

materials

Labour costs

HIP and final

machinig

| PAGE 22

Page 23: RAPIC PROJECT: TOWARD COMPETITIVE HEAT … · and heat and mass transfer intensification: ... Optimization of the design 4. Lab-scale pilots Process fluid Cooling fluid Process fluid

CONCLUSION

Z. Anxionnaz-Minvielle | 19 SEPTEMBER 2012 | PAGE 23

Design, manufacture and tests of 3 plate heat exchanger/reactors

Low manufacturing costs

Additional gains thanks to the transopsition from batch to continuous process

Severe operating conditions vs. Residence time

Tests in industrial conditions (Rhodia reaction)

Outlooks

Manufacturing techniques transfer

Scale-up x100

Multiphase applications (G/L, L/L)

Page 24: RAPIC PROJECT: TOWARD COMPETITIVE HEAT … · and heat and mass transfer intensification: ... Optimization of the design 4. Lab-scale pilots Process fluid Cooling fluid Process fluid

LITEN

Département des Technologies Solaires

Laboratoire des Systèmes Thermiques

Commissariat à l’énergie atomique et aux énergies alternatives

Centre de Saclay | 91191 Gif-sur-Yvette Cedex

T. +33 (0)4 38 78 35 67

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

| PAGE 24

Z. Anxionnaz-Minvielle | 19 SEPTEMBER 2012

Thank you !

[email protected]