randomness & structure 2...randomness & structure 2: computational modeling of interacting...

1
Randomness & Structure 2: computational modeling of interacting particle systems Ruth Chabay 1 , Nava Schulmann 2 , and Edit Yerushalmi 2 1 North Carolina State University, 2 Weizmann Institute of Science Randomness & Structure Phenomenon: Spontaneous formation of mesoscale structure 1 (for example, lipid bilayer membranes) The energy of the relevant interactions is k B T (thermal energy is enough to disrupt structures) Entropy is important in the stability of these structures Fundamental Ideas In condensed multiparticle systems, collisions result in random motion Equilibrium is a result of random events, and does not depend on initial conditions At the microscopic level everything is dynamic There are local fluctuations At equilibrium average bulk properties are constant Entropy is a measure of the number of possible configurations Entropy is a maximum at equilibrium Organization (structure) of materials is a result of a competition between interactions and random motion Lattice Gas Model: A Concrete Context for Exploring Fundamental Ideas Large molecules (phospholipids, colloids) in solution Molecules occupy sites on a lattice In this case, a 2D square lattice Molecules move via a random walk on the lattice Interactions with solvent lead to random motion Calculating Entropy 2 S = k B ln = s!/(p!(s-p)!) p = # of particles s = # of sites References 1. Langbeheim, E., Livne, S., Safran, S., & Yerushalmi, E. “Introductory physics going soft”, Am. J. Phys. 80, 51 (2012) 2. Moore, T. & Schroeder, D. “A different approach to introducing statistical mechanics”, Am. J. Phys. 65, 26 (1997) 3. Tobochnik, J. & Gould, H. “Teaching statistical physics by thinking about models and algorithms”, Am. J. Phys. 76, 353 (2008) NC STATE UNIVERSITY VPython programming language Easy for novices to learn 3D graphics as a side effect of physics code Free, open source, Windows, MacOS, Linux http://vpython.org from __future__ import division, print_function from visual import * from lattice_class12 import * setup_screen() #################### program starts here ############################# lat=square_lattice(xmax=40,ymax=40, bc='nonperiodic') make_particles(lattice=lat, xi=0, xf=10, yi=0, yf=10, number=90, color=color.red, shape='sphere', trail=False) monitor(lattice = lat, xi=0, xf=12, yi=0, yf=20, quantity = 'average_density') monitor(lattice = lat, xi=30, xf=40, yi=30, yf=40, quantity = 'average_density') while True: rate(200) pause_on_click() ## if mouse clicked, pause and wait for another click random_step(lat) ## take one random step Approach to Equilibrium Computational Explorations in Statistical Mechanics Students have no programming background Teach computational ideas incrementally: Read simple code and run programs Experiment by modifying code Eventually start to extend underlying code “There is no explicit “force” pushing the system toward equilibrium… rather…equilibrium is a result of random events 3 . Initial conditions. Each monitor calculates local average density. After many time steps, all particles are still in random motion, but average density is constant. Eventually the average local density becomes equal, but there continue to be fluctuations. Students can experiment with size of lattice, number of particles, initial location of particles, number, size, and location of monitors. The entire program is shown above. Particles can be located initially on one side of a barrier with a single hole. Particles spread out over the entire lattice through random motion. Monitors plot the log of the number of ways of arranging the particles on the left (orange) and right (green) side of the barrier. As particles diffuse to the right this quantity (S/k B ) decreases for the left side (orange) and increases for the right side (green). The sum of these quantities is the entropy of the whole system. At equilibrium entropy is at its maximum. Structure Formation Random motion of hard sphere particles does not generate structure. Attractive interactions of spherically symmetric particles can result in aggregation (Monte Carlo algorithm). More complex structures can be produced by nonspherical polar particles. To understand structure formation it is necessary to consider energy and entropy changes in the thermal reservoir. Examples of Student Projects Predict critical micelle concentration Lattice gas model of the thermal reservoir (adding energy breaks apart dimer vacancies, increasing entropy) Entropy Project Team Sam Safran, Dept. of Materials & Interfaces, WIS Edit Yerushalmi, Dept. of Science Teaching, WIS Elon Langbeheim, Shelly Livne, Nava Schulmann, WIS; Ruth Chabay, NCSU

Upload: others

Post on 09-Feb-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Randomness & Structure 2...Randomness & Structure 2: computational modeling of interacting particle systems Ruth Chabay1, Nava Schulmann2, and Edit Yerushalmi2 1North Carolina State

Randomness & Structure 2: computational modeling of interacting particle systems

Ruth Chabay1, Nava Schulmann2, and Edit Yerushalmi21North Carolina State University, 2Weizmann Institute of Science

Randomness & Structure

Phenomenon: Spontaneous formation of meso‐scale structure1

(for example, lipid bilayer membranes)

The energy of the relevant interactions is ≈ kBT(thermal energy is enough to disrupt structures)

Entropy is important in the stability of these structures

Fundamental Ideas

In condensed multiparticle systems, collisions result in random motionEquilibrium is a result of random events, and does not depend on initial  conditions

At the microscopic level everything is dynamicThere are local fluctuationsAt equilibrium average bulk properties are constant

Entropy is a measure of the number of possible configurationsEntropy is a maximum at equilibriumOrganization (structure) of materials is a result of a competition between interactions and random motion

Lattice Gas Model: A Concrete

Context for Exploring

Fundamental Ideas

Large molecules (phospholipids, colloids) in solutionMolecules occupy sites on a lattice

In this case, a 2D square lattice

Molecules move via a random walk on the lattice

Interactions with solvent lead to random motion

Calculating Entropy2

S = kB ln = s!/(p!(s-p)!)p = # of particles s = # of sites

References

1. Langbeheim, E., Livne, S., Safran, S., & Yerushalmi, E. “Introductory physics going soft”, Am. J. Phys. 80, 51 (2012)2. Moore, T. & Schroeder, D. “A different approach to introducing statistical mechanics”, Am. J. Phys. 65, 26 (1997) 3. Tobochnik, J. & Gould, H. “Teaching statistical physics by thinking about models and algorithms”, Am. J. Phys. 76, 353 (2008)

NC STATE UNIVERSITY

VPython programming languageEasy for novices to learn3D graphics as a side effect of physics codeFree, open source, Windows, MacOS, Linux

http://vpython.org

from __future__ import division, print_functionfrom visual import *from lattice_class12 import *setup_screen()#################### program starts here #############################

lat=square_lattice(xmax=40,ymax=40, bc='nonperiodic')

make_particles(lattice=lat, xi=0, xf=10, yi=0, yf=10, number=90,color=color.red, shape='sphere', trail=False)

monitor(lattice = lat, xi=0, xf=12, yi=0, yf=20, quantity = 'average_density')monitor(lattice = lat, xi=30, xf=40, yi=30, yf=40, quantity = 'average_density')

while True:rate(200)pause_on_click() ## if mouse clicked, pause and wait for another clickrandom_step(lat) ## take one random step

Approach to Equilibrium

Computational Explorations

in Statistical Mechanics

Students have no programming backgroundTeach computational ideas incrementally: Read simple code and run programsExperiment by modifying codeEventually start to extend underlying code

“There is no explicit “force” pushing the system toward equilibrium… rather…equilibrium is a result of random events3. “

Initial conditions. Each monitor calculates local average density.

After many time steps, all particles are still in random motion, but average density is constant.

Eventually the average local density becomes equal, but there continue to be fluctuations.

Students can experiment with size of lattice, number of particles, initial location of particles, number, size, and location of monitors.  The entire program is shown above.

Particles can be located initially on one side of a barrier with a single hole. 

Particles spread out over the entire lattice through random motion.

Monitors plot the log of the number of ways of arranging the particles on the left (orange) and right (green) side of the barrier. As particles diffuse to the right this quantity (S/kB) decreases for the left side (orange) and increases for the right side (green). The sum of these quantities is the entropy of the whole system. At equilibrium entropy is at its maximum.

Structure Formation

Random motion of hard sphere particles does not generate structure. Attractive interactions of spherically symmetric particles can result in aggregation (Monte Carlo algorithm).  More complex structures can be produced by nonspherical polar particles.

To understand structure formation it is necessary to consider energy and entropy changes in the thermal reservoir.

Examples of Student Projects

Predict critical micelle concentrationLattice gas model of the thermal reservoir(adding energy breaks apart dimer vacancies, increasing entropy)

Entropy Project Team

Sam Safran, Dept. of Materials & Interfaces, WISEdit Yerushalmi, Dept. of Science Teaching, WISElon Langbeheim, Shelly Livne, Nava Schulmann, WIS; Ruth Chabay, NCSU