radon: lesson one what is...

46
Radon Lesson 1 1 Clear plastic or glass container with a lid (e.g., a petri dish) Half Life Experiment 100 pennies A small cup or Ziploc bag Graph paper Graphing calculator RADON: LESSON ONE What is Radioactivity? LESSON SUMMARY This lesson introduces students to the origin of radioactive isotopes and how they react within the environment. Lab 1 “Vapor Trails,” allows students to observe energy rays emitted by a radioactive source, helping students gain a more complete understanding of how radiation is released from various sources. In Lab 2, “Pennicium, Pennithium, & Pennium” students will use pennies to simulate the decay process of three different “isotopes” and determine the equation for halflife. These activities are followed by application exercises where students solve problems related to the radioactive decay process of various isotopes. CORE UNDERSTANDING/OBJECTIVES By the end of this lesson, students will have a basic understanding of radioactivity, radioactive isotopes, the process of radioactive decay, halflife and the procedure for balancing radioactive reactions. Specific learning objectives and standards addressed can be found on pages 44 and 45. MATERIALS/INCORPORATION OF TECHNOLOGY The Cloud Chamber Experiment Gloves or forceps Flashlight Block of dry ice A radioactive rock/material* Pure ethyl or 90% Isopropyl alcohol Aluminum foil or flat tray Blotter/construction paper *Potential radioactive sources include uranium ore, Fiesta dinnerware produced prior to 1972, or 0.01 microcuries of Lead210 (available online from vendors such as Spectrum Techniques). A radioactive source can also be requested from CEHS. When it is not possible to complete the cloud chamber experiment, a video of a similar experiment can be shown (e.g., http://bit.ly/13dMJmB) Personal Annual Radiation Dose Calculator: http://bit.ly/PMU9w4 SUGGESTED READINGS Beneficial uses of radiation: http://1.usa.gov/11A9qUH Marie Curie and the science of radioactivity: http://bit.ly/c3me02 Radiation risk from Mars travel: http://nyti.ms/12Mh40M Grade Level: 9 – 12 Subject(s) Addressed: Science, Math Class Time: 24 Periods Inquiry Category: Guided

Upload: others

Post on 17-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

  Radon  Lesson  1    

1      

Clear  plastic  or  glass  container  with  a  lid  (e.g.,  a  petri  dish)  

 

Half  Life  Experiment    

100  pennies   A  small  cup  or  Ziploc  bag   Graph  paper   Graphing  calculator  

 

RADON: LESSON ONE    

What is Radioactivity?  

LESSON  SUMMARY  

This  lesson  introduces  students  to  the  origin  of  radioactive  isotopes  and  how  they  react  within  the  environment.  Lab  1  “Vapor  Trails,”  allows  students  to  observe  energy  rays  emitted  by  a  radioactive  source,  helping  students  gain  a  more  complete  understanding  of  how  radiation  is  released  from  various  sources.  In  Lab  2,  “Pennicium,  Pennithium,  &  Pennium”  students  will  use  pennies  to  simulate  the  decay  process  of  three  different  “isotopes”  and  determine  the  equation  for  half-­‐life.  These  activities  are  followed  by  application  exercises  where  students  solve  problems  related  to  the  radioactive  decay  process  of  various  isotopes.        

CORE  UNDERSTANDING/OBJECTIVES  

By  the  end  of  this  lesson,  students  will  have  a  basic  understanding  of  radioactivity,  radioactive  isotopes,  the  process  of  radioactive  decay,  half-­‐life  and  the  procedure  for  balancing  radioactive  reactions.    Specific  learning  objectives  and  standards  addressed  can  be  found  on  pages  44  and  45.    

MATERIALS/INCORPORATION  OF  TECHNOLOGY  

The  Cloud  Chamber  Experiment         Gloves  or  forceps           Flashlight   Block  of  dry  ice   A  radioactive  rock/material*   Pure  ethyl  or  90%  Isopropyl  alcohol   Aluminum  foil  or  flat  tray   Blotter/construction  paper  

 

*Potential  radioactive  sources  include  uranium  ore,  Fiesta  dinnerware  produced  prior  to  1972,  or  0.01  microcuries  of  Lead-­‐210  (available  online  from  vendors  such  as  Spectrum  Techniques).  A  radioactive  source  can  also  be  requested  from  CEHS.  When  it  is  not  possible  to  complete  the  cloud  chamber  experiment,  a  video  of  a  similar  experiment  can  be  shown  (e.g.,  http://bit.ly/13dMJmB)  

Personal  Annual  Radiation  Dose  Calculator:  http://bit.ly/PMU9w4      

SUGGESTED  READINGS    

Beneficial  uses  of  radiation:  http://1.usa.gov/11A9qUH   Marie  Curie  and  the  science  of  radioactivity:  http://bit.ly/c3me02     Radiation  risk  from  Mars  travel:  http://nyti.ms/12Mh40M    

Grade  Level:  9  –  12    

Subject(s)  Addressed:    Science,  Math      Class  Time:  2-­‐4  Periods  

Inquiry  Category:  Guided  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 2: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1    

2    

 INDIAN  EDUCATION  FOR  ALL  

Radiation  and  radioactive  materials  have  been  and  continue  to  be  a  part  of  many  Native  American  cultures.  Some  examples  include  sun  dances,  food  preservation  (e.g.,  drying  salmon),  and  navigation  using  the  sun.  Granite,  which  can  contain  naturally  occurring  radioactive  isotopes,  was  also  used  for  tools  (e.g.,  harvesting  mauls)  and  in  sweat  lodges  (i.e.,  heating  granite  rocks).  

ENGAGE  

Before  introducing  the  lesson,  distribute  3  x  5  index  cards  or  a  half  sheet  of  paper  to  each  student  and  have  students  number  1  through  4  on  one  side  of  the  card,  allowing  for  some  space  to  write  under  each  number.  Instruct  students  to  write  their  names  on  the  top  right  corner.  Ask  students  to  record  in  their  own  words,  1)  How  would  you  define  radioactivity?,  2)  List  3  natural  sources  of  radioactivity,  and  3)  List  3  manmade  sources  of  radioactivity,  4)  How  does  radioactivity  play  a  role  in  our  lives?  When  students  are  finished  recording  their  answers,  collect  all  of  the  cards  and  explain  to  the  students  that  you  will  come  back  to  their  original  responses  at  a  later  time.  Note:  This  allows  time  in  between  assessing  students’  knowledge  about  radioactivity  and  the  “Vapor  Trails”  and  “Pennicium,  Pennithium,  &  Pennium”  experiments,  allowing  for  a  true  guided-­‐inquiry  experience.  

VOCABULARY  

Copies  of  blank  student  vocabulary  banks  (see  page  4)  can  be  distributed  for  completion  as  either  a  classroom  or  homework  assignment.  

EXPLORE  

Distribute  Lab  1:  “Vapor  Trails”  (p.  6-­‐8)  for  students  to  complete  in  small  groups.  This  activity  is  a  great  way  to  help  the  students  visualize  radiation.  Notes  to  the  teacher:  1)  Depending  on  available  materials,  the  teacher  may  choose  to  complete  one  experiment  and  have  students  make  observations  in  small  groups,  2)  The  teacher  may  choose  to  assemble  the  experiments  prior  to  the  class  arriving  to  allow  time  for  the  chamber  to  cool,  3)  The  teacher  may  want  to  have  an  alternate  activity/discussion    (e.g.,  see  suggested  readings)  while  students  wait  for  their  chambers  to  cool,  4)  To  facilitate  rapid  cooling  of  the  experiment,  use  dry  ice  as  soon  as  possible.  

EXPLAIN  

Once  students  complete  the  “Vapor  Trails”  lab,  distribute  Comprehension  1:  “What  is  Radioactivity”  (p.  11-­‐14)  for  students  to  review  individually  during  the  remainder  of  the  class  or  as  a  homework  assignment.    

At  the  beginning  of  the  next  class,  lead  a  class  discussion  to  review  the  Vapor  Trails  lab  and  Comprehension  1.      

Optional  Demonstration:  Place  an  undeveloped  roll  of  film  next  to  a  radioactive  source  in  a  drawer  for  approximately  24  hours.  Develop  the  film  and  discuss  with  students  how  and  why  the  film  was  partially  exposed.      

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 3: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1  

            3    

ELABORATE:  

Distribute  Lab  2:  “Pennicium,  Pennithium,  &  Pennium”  (p.  18-­‐19)  for  students  to  complete  in  pairs  or  small  groups.    For  teacher  instructions  see  page  16.    When  students  have  completed  the  lab,  pass  out  “Calculating  Half-­‐Life”  for  students  to  complete  individually  or  in  pairs.  Note:  there  are  two  versions  of  the  Calculating  Half-­‐Life  activity,  A  (p.  22-­‐23)  and  B  (p.  27-­‐28).  Calculating  Half-­‐Life  (A)  uses  a  graph  and  the  half-­‐life  equation,  and  should  be  appropriate  for  most  students.  Calculating  Half-­‐Life  (B)  involves  the  use  of  logarithmic  properties  and  may  be  appropriate  for  students  who  have  completed  Algebra  II  or  above.  The  teacher  may  choose  to  have  students  complete  one  of  the  Calculating  Half-­‐Life  exercises  or  both  when  appropriate  and  time  allows.  Following  the  half-­‐life  exercise,  the  teacher  can  distribute  “Comprehension  2:  Half-­‐Life”  (p.  29-­‐33)  for  students  to  read  in  its  entirety  either  individually  or  as  a  group.  When  all  students  have  completed  the  assigned  tasks,  review  the  lesson  material  as  a  class  and  check  for  understanding  using  some  of  the  following  discussion  points:    

• How  does  ionizing  radiation  differ  from  penetrating  radiation?  (To  guide  students  in  answering  this  question,  the  teacher  can  refer  students  to  their  vocabulary  lists.)  

• What  is  radioactive  decay?  • Explain  what  the  half-­‐life  of  an  isotope  is  in  your  own  words.  • How  do  alpha,  beta,  and  gamma  decay  differ?  • Why  does  the  dentist  put  a  lead  apron  over  you  during  dental  x-­‐rays?  • Do  you  think  there  are  potential  health  risks  associated  with  radiation  

exposure?      EVALUATE  Distribute  blank  3  x  5  index  cards  to  each  student  and  have  students  number  1  through  3  on  one  side  of  the  card.  Instruct  students  to  write  their  names  on  the  top  right  corner.  Ask  students  to  record  in  their  own  words,  1)  How  would  you  define  radioactivity?,  2)  List  3  natural  sources  of  radioactivity,  and  3)  List  3  manmade  sources  of  radioactivity.  When  students  are  finished  recording  their  answers,  hand  out  the  student’s  original  cards  that  they  completed  prior  to  the  Lesson  1  activities.  Review  questions  1  through  3  as  a  class  and  ask  students  to  discuss  how  their  answers  changed  from  the  first  time  they  answered  the  three  questions.  At  the  end  of  the  class,  ask  students  to  turn  in  both  of  their  cards.    Vocabulary  sheets,  lab  sheets,  Comprehension  Guiding  Questions,  and  the  Evaluation  Questions  (p.  36-­‐39)  all  provide  opportunities  for  formal  assessment.  

 

 

Notes:                                                                          

 

Page 4: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1    

4    

What  is  Radioactivity?  –  Vocabulary      

Atomic  nuclei:                                                                                        

Ionizing  radiation:                                                                                    

Penetrating  radiation:                                                                                  

Progeny:                                                                                        

Isotope:                                                                                        

Radioactive  decay:                                                                                    

Radioactivity:                                                                                    

 

Page 5: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1  

            5    

What  is  Radioactivity?  –  Vocabulary      

Atomic  nuclei:    The  central  region  of  an  atom  consisting  of  protons  and  neutrons                                                                  

Ionizing  radiation:  Radiation  with  enough  energy  to  alter  chemical  bonds  (i.e.,  removing  or    knocking  out  electrons  from  atoms),  thus  resulting  in  positively  charged  ions                                                                    

Penetrating  radiation:  Radiation  with  enough  energy  to  penetrate  the  skin  and  reach  internal  organs  and  tissues.                                                        

Progeny:  An  offspring  or  descendant                                                                              

Isotope:  A  form  of  a  chemical  element  that  has  the  same  atomic  number  (number  of  protons),  but  a  different  atomic  mass  (protons  +  neutrons)                                                

Radioactive  decay:  The  spontaneous  disintegration  of  a  radionuclide  accompanied  by  the    emission  of  ionizing  radiation  in  the  form  of  alpha  or  beta  particles  or  gamma  rays.  Note:  Nuclide  is  a  general  term  describing  a  unique  atom  with  an  atomic  number  and  mass  number          

Radioactivity:  The  act  of  spontaneously  emitting  particles  and/or  radiation  from  unstable    atomic  nuclei  or  as  the  result  of  a  nuclear  reaction                                            

Page 6: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1      

6      

  Lab  1:  Vapor  Trails      

Guiding  Question:  How  can  you  see  high-­‐energy  particles?  

Teacher  Directions    Note:  The  teacher  may  choose  to  set  up  this  demonstration  and  allow  students  to  observe  the  experiment  individually  or  in  small  groups,  or  the  teacher  may  choose  to  show  the  YouTube  video  of  the  Vapor  Trails  experiment  (https://www.youtube.com/watch?v=a9tl7O7AWhE  -­‐  also  known  as  the  Cloud  Chamber  experiment)  to  the  students  and  have  the  students  observe  the  vapor  trails  experiment  in  the  classroom.  An  added  benefit  of  the  video  is  that  the  video  can  be  stopped  and  the  length  of  the  different  ions  can  be  measured,  and  their  speed  can  be  calculated.  One  to  three  different  source  materials  can  be  used,  showing  a  radioactive  source(s)  (e.g.,  Fiesta  dinnerware  and  Lead-­‐210)  and  a  non-­‐radioactive  source  (e.g.,  a  piece  of  concrete).  The  teacher  may  also  choose  to  use  one  large  chamber  with  multiple  sources.  This  approach  would  ensure  that  the  amount  of  vapor  would  be  the  same  for  each  source  material.  Note:  The  isotopes  suggested  for  use  in  this  demonstration  emit  very  low-­‐level  radiation  and  are  not  harmful.    

1. Cut  a  circular  piece  of  black  blotter  or  construction  paper  large  enough  to  cover  the  bottom  of  two  to  three  clear  containers  (e.g.,  a  glass  or  plastic  petri  dishes  with  lids).    

2. Insert  the  paper  inside  each  container,  covering  the  bottom  of  the  container.  3. Cut  a  ½-­‐1  inch  section  of  black  blotter  or  construction  paper  long  enough  to  cover  the  bottom  ½  inch  –  1  

inch  of  the  sides  of  each  container.  4. Insert  the  blotter/construction  paper  inside  the  bottom  of  the  containers,  fitting  it  snuggly  against  the  sides.  5. Pour  ethyl  alcohol  into  each  container  until  approximately  1/8  inch  of  alcohol  covers  the  bottom  of  the  

containers.  Note:  The  paper  will  absorb  some  of  the  alcohol.    6. Using  forceps,  place  the  source  material  in  the  center  of  one  container.    7. In  the  center  of  the  other  container(s),  place  a  non-­‐radioactive  material  (e.g.,  a  dinnerware  fragment,  rock,  

iron,  etc.)  8. Next,  place  blocks  of  dry  ice  (large  enough  to  cover  the  bottom  of  your  containers)  in  a  flat  tray  or  on  a  piece  

of  aluminum  foil.    9. Carefully  set  your  containers  on  top  of  the  dry  ice  and  let  them  cool  for  approximately  5-­‐10  minutes.  Note:  

Longer  cooling  times  will  have  better  results.    10. Turn  off  the  lights  and  shine  a  flashlight  through  the  top  or  the  sides  of  the  containers.        11. Observe  what  is  happening  by  looking  through  the  lid  or  the  sides  of  the  containers.  12. (Optional)  Have  students  share  their  data/tables  on  the  whiteboard  in  question  #5  so  the  students/groups  

can  compare  their  data  to  the  class  data.        

Page 7: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1      

7      

  Lab  1:  Vapor  Trails      

Guiding  Question:  How  can  you  see  high-­‐energy  particles?  

In  this  lab,  two  to  three  chambers  will  be  set  up.  Each  chamber  will  contain  a  different  source  material.  Follow  the  directions  below  to  complete  this  lab.  

Student  Observations  (possible  student  answers):  

1. Once  the  lights  are  turned  off,  view  the  inside  of  each  chamber  for  a  minimum  of  three  minutes.  Describe  your  observations.  

 

 

 

2. Are  any  of  your  observations  measurable  or  quantifiable?  If  so,  please  describe.  

 

 

 

3. Two  to  three  different  tracks  or  trails  should  be  emitted  from  one  or  more  of  the  source  materials.  Develop  a  table  below  to  record  your  data  (e.g.,  estimate  the  length,  describe  the  shape  or  speed  of  your  observations,  etc.).    

 

 

 

 

 

 

       

4. Hypothesize  as  to  the  relationship  between  your  observations  and  the  source  material(s).        

 

Page 8: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Clean  Air  and  Healthy  Homes:  Radon  Lesson  1        

8    

 5. One  or  more  of  the  source  materials  provided  contained  radioactive  isotopes.  (Note:  These  isotopes  emit  very  

low-­‐level  radiation  and  are  not  harmful.)  Radioactive  isotopes  are  unstable,  and  therefore  they  are  constantly  decaying  and  emitting  radiation.  There  are  three  main  types  of  radiation  emitted  during  radioactive  decay  –  Alpha  and  Beta  particles  and  Gamma  rays.  Alpha  particles  are  slower  moving  particles  that  extend  in  a  straight  line  approximately  one  centimeter  or  less  in  length.  Beta  particles  move  at  a  faster  speed  than  alpha  particles,  and  extend  in  thinner  straight  lines  approximately  three  to  ten  centimeters  in  length.  Gamma  rays  (if  present)  may  be  seen  as  fast,  spiraling  puffs  of  vapor.  

Using  your  data  and  answers  from  question  3,  determine  if  the  tracks  you  observed  were  Alpha  or  Beta  particles,  and/or  Gamma  rays.  Support  your  findings  with  data.  

 

 

 

6. If  possible,  view  the  chambers  for  two  to  three  more  minutes  to  confirm  your  observations  above.  Record  any  new  or  revised  observations  below.  

 

 

 

7. Based  on  your  observations  how  would  you  modify  your  data  table?  

 

 

 

 

8. If  you  had  a  sample  of  Polonium-­‐214  (a  radioactive  isotope  known  to  emit  alpha  particles)  what  would  you  expect  to  see?    Explain  your  reasoning.  

 

 

 

 

 

 

 

Page 9: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1  

            9    

Lab  1:  Vapor  Trails-­‐  Teacher  Key      

Guiding  Question:  How  can  you  see  high-­‐energy  particles?  

In  this  lab,  two  to  three  chambers  will  be  set  up.  Each  chamber  will  contain  a  different  source  material.  Follow  the  directions  below  to  complete  this  lab.  

Student  Observations  (possible  student  answers):  

1. Once  the  lights  are  turned  off,  view  the  inside  of  each  chamber  for  a  minimum  of  three  minutes.  Describe  your  observations.  

  Students  should  notice  that  there  are  two  distinct  types  of  vapor  trails  produced.  One  of  the  types  of  trails  is     shorter  and  the  particles  (alpha  particles)  appear  to  move  a  little  slower  than  the  particles  (beta  particles)  that     produce  trails  that  are  significantly  longer.  

 

2. Are  any  of  your  observations  measurable  or  quantifiable?  If  so,  please  describe.  

  Students  could  determine  approximate  lengths  of  the  vapor  trails  produced,  they  could  record  relative  speed,     and  they  could  count  the  relative  number  of  each  type  of  vapor  trail  produced  over  a  specified  time  period.  

 

3. Two  to  three  different  tracks  or  trails  should  be  emitted  from  one  or  more  of  the  source  materials.  Develop  a  table  below  to  record  your  data  (e.g.,  estimate  the  length,  describe  the  shape  or  speed  of  your  observations,  etc.).    

 Table  1:  Comparisons  of  Vapor  Trails  Produced  in  the  Cloud  Chamber  

Type  of  Vapor  Trail   Approximate  Vapor  Trail  Length,  cm  

Relative  Speed  of  Particle  

Relative  Number  of  Particles  

Shortest   ≈  1  cm   Slower   18/minute  

Longest   ≈5  cm   Faster   22/minute  

 

Do  not  introduce  the  names  of  the  different  particles  at  this  point  so  students  have  to  develop  their  own  labels  for  the  “Type  of  Vapor  Trail”  column.  To  determine  the  relative  number  of  particles,  suggest  to  students  that  they  count  the  number  of  trails  produced  over  a  specified  time  period  such  as  a  minute.  Students  should  do  several  trials  here  as  this  is  not  easy.  These  counts  are  much  easier  to  do  using  the  video  suggested  in  the  instructions.  

4. Hypothesize  as  to  the  relationship  between  your  observations  and  the  source  material(s).    Based  on  the  data  collected  in  question  3  above,  the  source  material  appears  to  produce  two  different  types  of  particles  in  approximately  equal  numbers.  One  of  the  particles  produces  shorter  vapor  trails  and  moves  more  slowly  than  the  second  particle.  

Page 10: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Clean  Air  and  Healthy  Homes:  Radon  Lesson  1        

10    

5. One  or  more  of  the  source  materials  provided  contained  radioactive  isotopes.  (Note:  These  isotopes  emit  very  low-­‐level  radiation  and  are  not  harmful.)  Radioactive  isotopes  are  unstable,  and  therefore  they  are  constantly  decaying  and  emitting  radiation.  There  are  three  main  types  of  radiation  emitted  during  radioactive  decay  –  Alpha  and  Beta  particles  and  Gamma  rays.  Alpha  particles  are  slower  moving  particles  that  extend  in  a  straight  line  approximately  one  centimeter  or  less  in  length.  Beta  particles  move  at  a  faster  speed  than  alpha  particles,  and  extend  in  thinner  straight  lines  approximately  three  to  ten  centimeters  in  length.  Gamma  rays  (if  present)  may  be  seen  as  fast,  spiraling  puffs  of  vapor.  

Using  your  data  and  answers  from  question  3,  determine  if  the  tracks  you  observed  were  Alpha  or  Beta  particles,  and/or  Gamma  rays.  Support  your  findings  with  data.  

The  tracks  labeled  shorter  in  Table  1,  question  3,  are  alpha  particles  as  they  are  shorter  in  length  and  the  particles  producing  the  tracks  move  more  slowly.  The  tracks  labeled  longer  are  beta  particles  as  the  vapor  trails  are  longer  and  the  particles  producing  the  trails  move  faster.  

 

6. If  possible,  view  the  chambers  for  two  to  three  more  minutes  to  confirm  your  observations  above.  Record  any  new  or  revised  observations  below.  

Students  may  notice  the  trajectories  of  the  vapor  trails  vary;  some  are  relatively  straight  while  others  appear  to  be  arcs.  The  alpha  particles  appear  to  produce  more  arcing  trails  than  the  beta  particles.  

 

7. Based  on  your  observations  how  would  you  modify  your  data  table?  

 

This  response  would  depend  on  the  student’s  original  table  developed  in  question  3.  After  observing  the  cloud  chamber  over  a  period  of  time,  they  should  recognize  that  they  can  collect  data  in  at  least  three  areas  –  length  of  vapor  trail,  relative  speed  of  the  particles,  and  relative  number  of  particles.  

 

8. If  you  had  a  sample  of  Polonium-­‐214  (a  radioactive  isotope  known  to  emit  alpha  particles)  what  would  you  expect  to  see?    Explain  your  reasoning.  

According  to  the  data  collected  in  Table  1,  question  3,  and  the  information  from  question  5,  students  should  observe  relatively  short  vapor  trails  of  approximately  1  cm  in  length.  Students  would  not  be  able  to  supply  information  on  the  speed  of  the  particles  or  relative  number  of  particles  produced  because  there  would  not  be  other  types  of  trails  produced  for  comparison.  

 

Page 11: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1  

            11    

COMPREHENSION 1

 What  is  Radiation?  INTRODUCTION  

During  the  formation  of  the  Earth  nearly  4.6  billion  years  ago,  radioactive  minerals  became  a  small  but  significant  part  of  the  Earth’s  crust.  Today,  these  minerals  can  be  found  naturally  in  the  environment  in  rocks,  soil,  and  water.  Radioactive  minerals  exist  in  most  countries  and  within  all  50  states.    

In  order  to  gain  an  understanding  of  radioactivity,  one  must  have  a  basic  understanding  of  radiation  science.  

WHAT  IS  RADIATION?  

Radiation  is  a  general  term,  defined  as  a  process  in  which  energy  is  transmitted  or  propagated  through  matter  or  space.  Radiation  exists  on  Earth  and  comes  to  Earth  from  outer  space  from  the  sun  and  in  the  form  of  cosmic  rays.  Light,  sound,  microwaves,  radio  waves,  and  diagnostic  x-­‐rays  are  all  examples  of  radiation.  Most  radiation  is  not  detected  by  our  senses  –  we  cannot  feel  it,  hear  it,  see  it,  taste  it,  or  smell  it.  However,  if  radiation  is  present  it  can  be  detected  and  measured.    

The  Discovery  of  Radioactive  Minerals.  Radioactivity  was  discovered  in  1896  by  Henri  Becquerel  and  grew  as  a  result  of  later  investigations,  including  those  of  Pierre  and  Marie  Curie.  In  1902,  Ernest  Rutherford  and  Frederick  Soddy  determined  that  radioactivity  results  from  the  spontaneous  decomposition  of  an  atom  (i.e.,  radioactive  decay),  resulting  in  the  formation  of  a  new  element.  These  changes  are  often  accompanied  by  the  emission  of  particles  and/or  rays.    

Ionizing  Radiation.  Although  not  all  radiation  is  harmful,  ionizing  radiation  (or  radiation  that  alters  chemical  bonds  and  produces  ions)  often  comes  to  mind  when  the  topic  is  discussed.  To  understand  ionization,  it  is  important  to  review  the  basic  composition  of  an  atom.  An  atom  consists  of  a  central  nucleus  that  contains  comparatively  larger  particles  known  as  protons  and  neutrons.  These  particles  are  orbited  by  smaller  particles  known  as  electrons.  Their  relative  masses  are  displayed  in  the  sidebar.  One  way  to  think  of  an  atom  is  to  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Relative  Masses    

Proton  –  1.6727  x  10-­‐24  g  

Neutron  –  1.6750  x  10-­‐24  g  

Electron  –  9.110  x  10-­‐28  g  

 

Page 12: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Clean  Air  and  Healthy  Homes:  Radon  Lesson  1        

12    

visualize  a  miniature  solar  system  where  the  sun  represents  the  nucleus  and  the  orbiting  planets  represent  electrons.  In  a  normal  situation  or  in  the  case  of  a  neutral  atom,  the  number  of  electrons  orbiting  a  nucleus  equals  the  number  of  protons  in  the  nucleus.    

When  an  atom  or  molecule  gains  or  loses  electrons,  it  becomes  an  ion.  Ions  can  be  either  positively  or  negatively  charged.  A  positively  charged  ion  (i.e.,  cation)  results  from  the  removal  of  one  or  more  electrons,  while  a  negatively  charged  ion  (i.e.,  anion)  results  from  gaining  extra  electrons.    

Radiation  that  has  enough  energy  to  remove  or  knock  out  electrons  from  atoms,  and  thus  create  positively  charged  ions  is  known  as  ionizing  radiation.  Many  types  of  ionizing  radiation  exist,  but  the  most  well  known  include  alpha,  beta  and  gamma  radiation.  These  basic  types  of  ionizing  radiation  are  also  emitted  during  the  process  of  radioactive  decay,  which  is  described  below.  

Radioactive  Decay.  Many  atomic  nucleuses  are  radioactive  or  in  other  words,  unstable.  As  a  result,  these  nuclei  often  give  up  energy  to  shift  to  a  more  stable  state.  Known  as  radioactivity,  this  spontaneous  disintegration  of  unstable  atomic  nuclei,  results  in  the  emission  of  radiation.    

Sources  of  Radiation  Exposure.  We  are  exposed  to  radiation  every  day.  For  example,  radon  is  a  radioactive  gas  produced  from  uranium  decay.  Radon  gas  can  be  dispersed  into  the  air  as  well  as  ground  and  surface  water.  Radioactive  potassium  (which  comes  from  uranium,  radium,  and  thorium  in  the  Earth’s  crust)  can  be  found  in  our  food  and  water.  Radiation  can  also  come  to  us  via  cosmic  rays  and  the  sun.  These  are  all  examples  of  natural  or  background  radiation.  In  the  United  States,  it  is  estimated  that  a  person  is  exposed  to  an  average  of  300  millirems  of  background  radiation  each  year.  However,  300  millirems  only  equates  to  half  of  an  adult’s  average  yearly  exposure.  The  other  300  millirems  of  exposure  come  from  manmade  sources  of  radiation,  primarily  from  medical  tests  such  as  x-­‐rays  and  CT  scans.  Some  additional  manmade  radiation  sources  that  people  can  be  exposed  to  include:  tobacco  or  cigarettes,  television,  smoke  detectors,  antique/vintage  Fiesta  dinnerware,  lantern  mantles,  and  building  materials.  

             Radioactive  decay  processes  can  be  natural  or  manmade.        Different  units  exist  for  radiation.  These  units  are  dependent  on  what  is  being  measured:  

Biological  damage  from  radiation  is  measured  in  millirems.  

Absorbed  energy  from  radiation  is  measured  in  rads.  

The  decay  rate  of  a  radioactive  substance  is  measured  in  curies.  

Radiation  intensity  of  x-­‐rays  or  gamma  rays  is  measured  in  roentgens.    The  biological  equivalent  dose  to  human  tissue  is  measured  in  sieverts.    

 

 

 

 

 

 

 

 

Radioactive  Isotopes.  An  isotope  of  an  element  is  a  form  of  a  chemical  element  that  has  the  same  atomic  number  (proton  number)  but  a  different  atomic  mass  (protons  +  neutrons).  An  element  can  have  more  than  one  isotope.  For  example,  Thorium,  a  heavy  metal  that  occurs  naturally  in  the  Earth’s  crust,  has  26  known  isotopes.  Although  most  elements  have  isotopes,  not  all  isotopes  are  radioactive.  For  example,  the  most  common  isotopes  of  hydrogen  and  oxygen  are  stable  or  non-­‐reactive.      A  commonly  studied  radioactive  isotope  is  Uranium-­‐238  (U-­‐238).  When  U-­‐238  decays  over  time,  a  cascade  of  different  decay  products  (also  known  as  daughters  or  progeny)  are  formed.  Of  these  daughters  or  progeny,  a  number    

Page 13: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1  

            13    

of  them  also  go  through  radioactive  decay  leaving  Lead-­‐206  (Pb-­‐206)  remaining.  This  cascade  of  decay  stops  with  Pb-­‐206  because  it  is  a  stable  isotope.    

 

 

Notes:                                                                                                                                                                                                                                                                                                                                

               

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 14: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1      

14      

Comprehension  1  -­‐  Guiding  Questions    

1. Explain  the  difference  between  radiation  and  radioactivity.    

 

 

   

2. Who  was  primarily  responsible  for  the  discovery  of  radioactivity?  When  was  this  discovery  made?  

 

   

3. Explain  how  ionizing  radiation  affects  an  atom.  What  radioactive  particles  are  primarily  responsible  for  causing  ionization  to  occur?  How  are  those  radioactive  particles  produced?  

 

 

   

4. What  is  an  isotope?  Why  do  some  isotopes  produce  high-­‐energy,  radioactive  particles?  

 

 

 

 

5. A  number  of  radioactive  progeny  are  produced  by  the  decay  of  Uranium  238.  Why  does  the  decay  ultimately  end?  

 

 

 

 

Page 15: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1  

            15    

Radioactivity  Comprehension  1  -­‐  Guiding  Questions    Teacher  Key

 

1. Explain  the  difference  between  radiation  and  radioactivity.    

  Radiation  is  a  general  term,  defined  as  a  process  in  which  energy  is  transmitted  or  propagated  through  matter  or  space.  Radiation  exists  on  Earth  and  comes  to  Earth  from  outer  space  from  the  sun  and  stars.  Examples  include  visible  light,  microwaves,  radio  waves,  and  diagnostic  x-­‐rays.    Radioactivity  results  from  the  spontaneous  decomposition  of  an  atom  (i.e.,  radioactive  decay),  resulting  in  the  formation  of  a  new  element  or  isotope.  These  changes  are  often  accompanied  by  the  emission  of  particles  and/or  rays.  

 

2. Who  was  primarily  responsible  for  the  discovery  of  radioactivity?  When  was  this  discovery  made?  

  Radioactivity  was  discovered  in  1896  by  Henri  Becquerel  and  grew  as  a  result  of  later  investigations,  including  those  of  Pierre  and  Marie  Curie.  In  1902,  Ernest  Rutherford  and  Frederick  Soddy  determined  that  radioactivity  results  from  the  spontaneous  decomposition  of  an  atom  (i.e.,  radioactive  decay),  resulting  in  the  formation  of  a  new  element.  

 

3. Explain  how  ionizing  radiation  affects  an  atom.  What  radioactive  particles  are  primarily  responsible  for  causing  ionization  to  occur?  How  are  those  radioactive  particles  produced?  

  Radiation  that  has  enough  energy  to  remove  or  knock  out  electrons  from  atoms,  and  thus  create  positively  charged  ions  is  known  as  ionizing  radiation.  Alpha  and  beta  particles  are  the  radioactive  particles  that  cause  ionizing  radiation  to  occur.  Alpha  and  beta  particles  are  produced  during  radioactive  decay.  

 

4. What  is  an  isotope?  Why  do  some  isotopes  produce  high-­‐energy,  radioactive  particles?  

  An  isotope  of  an  element  is  a  form  of  a  chemical  element  that  has  the  same  atomic  number  (proton  number)  but  a  different  atomic  mass  (protons  +  neutrons).  An  element  can  have  more  than  one  isotope.  Unstable  isotopes,  such  as  those  in  the  decay  series  of  U-­‐238  undergo  radioactive  decay,  which  emit  radioactive  particles.  

 

5. A  number  of  radioactive  progeny  are  produced  by  the  decay  of  Uranium  238.  Why  does  the  decay  ultimately  end?  

Uranium  decays  through  a  number  of  radioactive  elements  and  isotopes.  The  decay  series  ultimately  ends  with  the  stable  isotope  Lead-­‐206.

Page 16: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Clean  Air  and  Healthy  Homes:  Radon  Lesson  1      

16      

Lab  2:  Pennicium,  Pennithium,  &  Pennium      Guiding  Question:  How  can  the  rate  of  radioactive  decay  be  determined  by  using  isotopes  of  Pennicium,  Pennithium,  and  Pennium?  

Teacher  Instructions  In  this  activity,  students  will  be  working  with  three  (fictitious)  distinct  isotopes:  Pennicium-­‐100,  Pennithium-­‐80,  and  Pennium-­‐30.  The  teacher  can  have  students  complete  the  data  tables  for  all  of  the  isotopes  in  small  groups  or  break  the  class  up  into  groups,  assigning  one  isotope  to  each  group.  Note:  If  the  math  is  too  advanced  for  a  specific  class  of  students,  the  teacher  can  go  through  the  different  types  of  regression  with  the  class  to  determine  the  type  of  regression  used  in  question  #9.    The  teacher  can  also  demonstrate  how  to  determine  the  equation  for  the  line  of  best  fit  in  question  #10.  The  students  can  then  follow  this  example  and  complete  questions  #11-­‐15  in  small  groups.  When  each  group  has  finished  collecting  data  for  their  assigned  isotope,  they  can  then  write  their  data  and  equations  on  the  board  for  the  other  students  to  analyze  when  completing  the  rest  of  the  activity.      

A  TI  graphing  calculator  or  the  freeware  program,  Meta-­‐Calculator  2.0,  can  be  used  to  determine  the  regression  equation  for  the  student-­‐generated  graph.    

TI  Graphing  Calculator  Option:  1. To  enter  the  data,  press  STAT  then  choose  option  1  Edit.  2. Enter  the  number  of  shakes  in  the  L1  column  (if  there  is  existing  data  in  the  column,  scroll  up  to  the  

top  of  the  column  until  L1  is  highlighted  then  press  CLEAR).  Enter  the  number  of  heads  remaining  for  each  shake  in  the  L2  column.  

3. To  determine  the  line  of  best  fit  and  corresponding  equation  based  on  the  chosen  regression  type,  use  STAT  then  toggle  over  to  the  second  option  CALC.  Under  CALC,  scroll  down  to  ExpReg  then  press  ENTER.  A  screen  will  appear  with  the  heading  ExpReg.  Press  ENTER  again,  the  regression  equation  will  appear  in  the  form  y=a∙b^x  with  the  corresponding  values  of  a,  b,  r2,  and  r  included.    Be  sure  to  write  down  the  equation  that  appears  on  your  screen  before  moving  onto  the  next  step.  

4. To  graph  the  equation,  use  Y=  (it  is  on  the  upper  most  row  of  buttons)  and  enter  your  equation  from  step  3  above  then  press  ENTER.  To  view  the  graph  of  the  equation  use  2ND  then  STAT  PLOT  (it  is  the  same  as  the  Y=  button)  scroll  down  to  1:Plot  1  and  press  enter.  Under  Plot1,  be  sure  the  On  command  is  highlighted;  scroll  down  to  choose  the  graph  type;  and  insure  Xlist  is  L1  and  YList  is  L2.  Press  the  ZOOM  button  (top  row  of  buttons),  scroll  down  to  9:ZoomStat  and  press  ENTER.  If  a  student’s  line  is  not  a  good  fit,  he/she  probably  did  not  choose  the  exponential  regression  option  so  they  should  review  the  options  from  question  8,  choose  a  different  regression  option,  and  repeat  steps  3  and  4  above.    

 Examples  Using  Actual  Experimental  Data  

 

L1   L2  0   100  1   54  2   20  3   12  4   6  5   4  

Page 17: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1  

            17    

 5. When  the  data  is  entered  into  the  calculator  according  to  steps  1-­‐3,  the  following  information  should  

be  presented:  ! = #×%&, # = 92.98, % = 0.5154, 01 = 0.9867, 0 = −0.9933.  6. When  the  equation  is  graphed  according  to  step  4,  the  graph  displayed  above  should  result.  

 Meta-­‐Calculator  2.0  Option:  

1. Proceed  to  the  web  address  http://www.meta-­‐calculator.com/online/  and  open  the  Statistics  Calculator.    

2. Open  the  Regression  Analysis  window  and  enter  the  number  of  shakes  in  the  xi  column  and  the  number  of  heads  remaining  in  the  fi  column.  Select  Exponential  as  the  type  of  regression  then  press  the  Analyze>>      button  at  the  bottom  of  the  page.  The  Regression  Analysis  window  will  show  the  regression  equation  in  the  form  y=a∙b^x  and  it  will  also  show  the  co-­‐efficient  of  co-­‐relation,  r,  as  well  as  the  co-­‐efficient  of  determination,  r2.  

3. To  graph  the  equation,  press  the  Plot  Graph>>  at  the  bottom  of  the  Regression  Analysis  window.  A  graph  will  appear  with  options  for  changing  the  minimum  and  maximum  X  and  Y  values.  If  a  student’s  line  is  not  a  good  fit,  he/she  probably  did  not  choose  the  exponential  regression  option  so  they  should  review  the  options  from  question  8,  choose  a  different  regression  option,  and  repeat  steps  2  and  3.  The  graph  can  be  saved  as  an   image  file  by  right-­‐clicking  on  it  (the  Save  Graph  function  is   not  operational).    Example  Using  Actual  Experimental  Data:            

4. After  the  data  is  entered  according  to  step  2  and  the  Analyze>>  button  is  pushed,  the  following  information  will  be  provided:  

 Regression  Analysis    

1.  Regression  Equation          ! = 92.9809×0.5154∧-    2.  Co-­‐efficient  of  co-­‐relation     -­‐0.9933  3.  Co-­‐efficient  of  determination    0.9867    

5. Pressing  the  Plot  Graph>>  button  generates  the  following  graph  (the  X  and  Y  minimum  and  maximum  values  were  adjusted  accordingly  to  show  the  graph  in  this  format):  

   

  xi   fi  1.   0   100  2.   1   54  3.   2   20  4.   3   12  5.   4   6  6.   5   4  

Page 18: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1        

18    

Lab  2:  Pennicium,  Pennithium,  &  Pennium    

Guiding  Question:  How  can  the  rate  of  radioactive  decay  be  determined  by  using  isotopes  of  Pennicium,  Pennithium,  and  Pennium?    

In  this  activity,  you  will  be  working  with  three  distinct  isotopes,  Pennicium-­‐100,  Pennithium-­‐80,  and  Pennium-­‐30.  Follow  the  directions  below  to  determine  the  rate  of  radioactive  decay  for  each  isotope.      

Student  Directions  1. Obtain  100  pennies  (i.e.,  Pennicium-­‐100)  and  place  them  in  a  cup  or  Ziploc  bag.  2. Shake  the  contents  of  your  container  and  empty  the  pennies  onto  a  flat  surface.  3. Remove  all  of  the  pennies  with  the  tails  side  facing  up.    4. Record  the  number  of  “heads”  that  remain  in  the  table  below.  Note:  One  or  more  heads  must  remain  each  time  

to  record  an  observation.  If  no  heads  remain,  simply  return  the  remaining  pennies  to  your  container  and    repeat  steps  2-­‐4.  

5. Weigh  each  group  of  “heads”  and  record  your  findings  in  the  table  below.  Note:  If  a  scale  is  not  available,  you  can  assume  each  penny  weighs  1  g.  

6. Place  the  remaining  pennies  back  in  the  container  and  repeat  steps  2-­‐4  four  more  times.  7. Repeat  steps  1-­‐5  for  Pennithium-­‐80  and  Pennium-­‐30,  beginning  with  80  pennies  for  trial  2,  and  30  pennies  for  

trial  3.  8. Graph  your  results  from  each  experiment  on  one  sheet  of  graph  paper  using  different  colored  pens.  Note:  Make  

sure  you  put  your  independent  and  dependent  variables  on  the  correct  axis,  include  a  graph  title,  and  label  your  axes.  

 9. Using  the  information  below,  determine  what  type  of  trend  line/regression  type  will  produce  the  line  of  best  fit  

for  your  data.  Record  your  answer  below.  

  Linear:  A  linear  trend  line  is  used  when  data  points  resemble  a  straight  line  that  increase  or  decrease  at  a     steady  rate.  

  Logarithmic:  A  logarithmic  trend  line  is  a  curved  line  where  the  data  increases  or  decreases  at  a  steady  rate  and  then  levels  outs.  A  logarithmic  line  can  contain  negative  and/or  positive  values.    

  Exponential:  An  exponential  trend  line  is  a  curved  line  that  is  used  when  values  rise  or  fall  at  constantly  increasing  rates.  An  exponential  trend  line  will  approach  zero  or  infinity,  however  data  points  will  never  include  zero  or  negative  values.      

  Polynomial:  A  polynomial  trend  line  is  a  curved  line  that  is  used  when  data  fluctuates  (e.g.,  one  or  more  bends  in  the  data).  

  Power:  A  power  trend  line  is  a  curved  line  that  is  best  used  when  data  increases  at  a  specific  rate.  A  power     trend  line  cannot  contain  zero  or  negative  values.      

Shakes/rolls   Pennicium-­‐100   Mass  (g)   Pennithium-­‐80  

Mass  (g)   Pennium-­‐30   Mass  (g)  

0   100     80     30    1              2              3              4              5              

Page 19: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1  

            19    

10. Using  a  TI  graphing  calculator  or  the  online  Meta-­‐Calculator  2.0  (http://bit.ly/HXcjnE),  enter  your  data  points  (shakes/rolls  and  mass)  for  Pennicium-­‐100  in  the  appropriate  columns.  If  using  a  TI  Calculator:  select  STAT,  Edit,  and  enter  data  points  in  L1  and  L2.    If  using  the  Meta-­‐Calculator:  select  “Statistics  Calculator”  and  then  select  the  “Regression  Analysis”  tab;  enter  data  points  in  the  xi  and  fi  columns.    Determine  the  line  of  best  fit  using  the  regression  type  you  chose  above  in  question  8  (TI  Hint:  STAT,  CALC;  META  Hint:  select  type  of  regression  and  click  “Analyze”).  Write  the  equation  below.      

11. Graph  your  equation  from  question  10  with  the  data  points  you  entered  in  question  9.  (TI  Hint:  Y=;  enter  equation;  make  sure  Plot  1  is  turned  on;  ZOOM;  select  9;  Meta  Hint:  “Plot  Graph”,  note:  you  may  need  to  change  the  bounds  to  view  full  graph).  How  well  does  the  line  fit  your  data?  If  the  line  is  not  a  good  fit,  review  the  definitions  in  question  8  to  determine  if  there  is  another  regression  type  that  may  produce  a  better  fit.  

   

12. Repeat  steps  9  through  11  with  Pennithium-­‐80  and  Pennium-­‐30.  Record  the  type  of  regression  used  and  the  equation  for  each  line  of  best  fit  below.  

 

 

 

13. Write  the  equations  for  the  lines  of  best  fit  for  Pennicium-­‐100,  Pennithium-­‐80,  Pennium-­‐30  below.  What  does  each  of  your  equations  have  in  common?  

 

 

   

14. Thinking  about  the  material  (pennies)  you  began  each  experiment  with,  what  does  the  similarity  you  identified  in  question  13  model?  

.    

15. If  you  were  given  a  200g  sample  of  the  isotope  Pennercum-­‐200,  what  would  the  data  table  and  graph  for  its  radioactive  decay  look  like?  Use  the  space  below  to  sketch  your  data  table  and  graph.  

 

 

 

 

   

Page 20: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1        

20    

Lab  2:  Pennicium,  Pennithium,  &  Pennium  -­‐Teacher  Key    

Guiding  Question:  How  can  the  rate  of  radioactive  decay  be  determined  by  using  isotopes  of  Pennicium,  Pennithium,  and  Pennium?    

In  this  activity,  you  will  be  working  with  three  distinct  isotopes,  Pennicium-­‐100,  Pennithium-­‐80,  and  Pennium-­‐30.  Follow  the  directions  below  to  determine  the  rate  of  radioactive  decay  for  each  isotope.      

Student  Directions  1. Obtain  100  pennies  (i.e.,  Pennicium-­‐100)  and  place  them  in  a  cup  or  Ziploc  bag.  2. Shake  the  contents  of  your  container  and  empty  the  pennies  onto  a  flat  surface.  3. Remove  all  of  the  pennies  with  the  tails  side  facing  up.    4. Record  the  number  of  “heads”  that  remain  in  the  table  below.  Note:  One  or  more  heads  must  remain  each  time  

to  record  an  observation.  If  no  heads  remain,  simply  return  the  remaining  pennies  to  your  container  and    repeat  steps  2-­‐4.  

5. Weigh  each  group  of  “heads”  and  record  your  findings  in  the  table  below.  Note:  If  a  scale  is  not  available,  you  can  assume  each  penny  weighs  1  g.  

6. Place  the  remaining  pennies  back  in  the  container  and  repeat  steps  2-­‐4  four  more  times.  7. Repeat  steps  1-­‐5  for  Pennithium-­‐80  and  Pennium-­‐30,  beginning  with  80  pennies  for  trial  2,  and  30  pennies  for  

trial  3.  8. Graph  your  results  from  each  experiment  on  one  sheet  of  graph  paper  using  different  colored  pens.  Note:  Make  

sure  you  put  your  independent  and  dependent  variables  on  the  correct  axis,  include  a  graph  title,  and  label  your  axes.  

*Examples  of  student-­‐derived  data  are  shown  above  in  red.  Results  will  vary.  

9. Using  the  information  below,  determine  what  type  of  trend  line/regression  type  will  produce  the  line  of  best  fit  for  your  data.  Record  your  answer  below.  

  Linear:  A  linear  trend  line  is  used  when  data  points  resemble  a  straight  line  that  increase  or  decrease  at  a     steady  rate.  

  Logarithmic:  A  logarithmic  trend  line  is  a  curved  line  where  the  data  increases  or  decreases  at  a  steady  rate  and  then  levels  outs.  A  logarithmic  line  can  contain  negative  and/or  positive  values.    

  Exponential:  An  exponential  trend  line  is  a  curved  line  that  is  used  when  values  rise  or  fall  at  constantly  increasing  rates.  An  exponential  trend  line  will  approach  zero  or  infinity,  however  data  points  will  never  include  zero  or  negative  values.      

  Polynomial:  A  polynomial  trend  line  is  a  curved  line  that  is  used  when  data  fluctuates  (e.g.,  one  or  more  bends  in  the  data).  

  Power:  A  power  trend  line  is  a  curved  line  that  is  best  used  when  data  increases  at  a  specific  rate.  A  power     trend  line  cannot  contain  zero  or  negative  values.      

Shakes/rolls   Pennicium-­‐100   Mass  (g)   Pennithium-­‐80  

Mass  (g)   Pennium-­‐30   Mass  (g)  

0   100   261.49   80   209.06   30   79.12  1   61   158.64   39   102.86   15   39.88  2   13   34.28   22   58.06   9   13.79  3   12   32.50   11   29.96   2   5.54  4   9   24.96   5   11.20   2   5.64  5   2   6.16   1   2.52   1   3.11  

                                                                                                                                                                                 Exponential  

Page 21: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1  

            21    

1. Using  a  TI  graphing  calculator  or  the  online  Meta-­‐Calculator  2.0  (http://bit.ly/HXcjnE),  enter  your  data  points  (shakes/rolls  and  mass)  for  Pennicium-­‐100  in  the  appropriate  columns.  If  using  a  TI  Calculator:  select  STAT,  Edit,  and  enter  data  points  in  L1  and  L2.    If  using  the  Meta-­‐Calculator:  select  “Statistics  Calculator”  and  then  select  the  “Regression  Analysis”  tab;  enter  data  points  in  the  xi  and  fi  columns.    Determine  the  line  of  best  fit  using  the  regression  type  you  chose  above  in  question  8  (TI  Hint:  STAT,  CALC;  META  Hint:  select  type  of  regression  and  click  “Analyze”).  Write  the  equation  below.  

Equations  will  vary  (e.g.,  using  sample  data  above  ! = 249.5 ∗ (. 50),)  

10. Graph  your  equation  from  question  10  with  the  data  points  you  entered  in  question  9.  (TI  Hint:  Y=;  enter  equation;  make  sure  Plot  1  is  turned  on;  ZOOM;  select  9;  Meta  Hint:  “Plot  Graph”,  note:  you  may  need  to  change  the  bounds  to  view  full  graph).  How  well  does  the  line  fit  your  data?  If  the  line  is  not  a  good  fit,  review  the  definitions  in  question  8  to  determine  if  there  is  another  regression  type  that  may  produce  a  better  fit.  The  line  should  fit  the  data  very  well  (similar  to  the  graph  shown  in  question  15  below).  If  not,  the  student  

likely  chose  the  incorrect  type  of  regression.    

11. Repeat  steps  9  through  11  with  Pennithium-­‐80  and  Pennium-­‐30.  Record  the  type  of  regression  used  and  the  equation  for  each  line  of  best  fit  below.  

Equations  will  vary.  Examples  shown  use  sample  data  above.  

 Exponential  -­‐  Pennithium-­‐80:      ! = 260.7 ∗ (. 43)-  

  Exponential  -­‐  Pennithium-­‐30:    ! = 65.6 ∗ (. 52)*  

12. Write  the  equations  for  the  lines  of  best  fit  for  Pennicium-­‐100,  Pennithium-­‐80,  Pennium-­‐30  below.  What  does  each  of  your  equations  have  in  common?  

Pennithium-­‐100:    ! = 249.5 ∗ (. 50),  

     Pennithium-­‐80:    ! = 260.7 ∗ (. 43)-  

         Pennithium-­‐30:    ! = 65.6 ∗ (. 52)*    

13. Thinking  about  the  material  (pennies)  you  began  each  experiment  with,  what  does  the  similarity  you  identified  in  question  13  model?  

After  each  shake/roll  (x),  approximately  half  of  the  material  (i.e.,  mass)  remains.  

14. If  you  were  given  a  200g  sample  of  the  isotope  Pennercum-­‐200,  what  would  the  data  table  and  graph  for  its  radioactive  decay  look  like?  Use  the  space  below  to  sketch  your  data  table  and  graph.  

 

 

 

 

 

Shakes/Rolls   Pennercum-­‐200  (g)  0   200  

1   100  

2   50  

3   25  

4   12.5  

5   6.25  

Page 22: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1        

22    

Calculating  Half-­‐Life  (A)    

Guiding  Question:  How  are  half-­‐lives  calculated?  

The  graph  you  developed  in  the  Pennicium,  Pennithium,  &  Pennium  lab  should  resemble  the  graph  below  and  illustrates  the  concept  of  half-­‐life  or  the  exponential  nature  of  decay  exhibited  by  radioactive  materials.  Radioactive  decay  is  important  in  a  variety  of  fields  from  medicine  to  energy  production,  astronomy,  and  geology.  Some  of  the  applications  of  the  radioactive  decay  process  include  determining  how  long  spent  nuclear  fuel  poses  an  environmental  danger  and  dating  geological  materials  based  on  their  half-­‐lives.      

 

When  appropriate,  use  the  graph  to  solve  the  following  problems:  

Example:  Francium-­‐223,  one  of  the  most  unstable  and  reactive  elements,  has  a  half-­‐life  of  approximately  22  minutes.  If  you  initially  had  a  10.0  g  of  Francium-­‐223,  how  many  grams  would  remain  after  55  minutes?    

  First,  determine  the  number  of  half-­‐lives  that  have  occurred:    

!!#$%&'()*)$*+ =

--#$%.'()*)$/+0 1ℎ34546789 = 55;6<× &'()*)$*+

!!#$% = 2.5ℎ34546789  

  Using  the  graph,  determine  what  percent  of  the  material  remains  after  2.5  half-­‐lives.  

10.0%×0.18 = 1.8%)*+,-./0-223*40+.,.,%  

 -­‐    -­‐    -­‐  

 -­‐    -­‐  

Page 23: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1  

            23    

 

1. Iodine-­‐131  (I-­‐131)  has  a  half-­‐life  of  approximately  8.0  days.  If  you  started  with  an  80.0g  sample,  how  many  grams  of  I-­‐131  would  be  left  after  2  days?  

 

 

 

 

2. There  are  200.0  grams  of  an  isotope  with  a  half-­‐life  of  42  hours  present  at  time  zero.  How  much  time  will  have  elapsed  when  76.0  grams  remain?  

 

 

 

 

3. After  15  days,  approximately  70%  of  a  sample  of  a  radioactive  isotope  remains  from  the  original  material.  What  is  the  half-­‐life  of  the  sample?            

15. The  half-­‐life  of  the  radioactive  isotope  phosphorus-­‐32  is  approximately  14.3  days.  How  long  until  a  sample  loses  98%  of  its  radioactivity?                

16. Uranium-­‐238  has  a  half-­‐life  of  4.46  x  109  years.  How  much  U-­‐238  should  be  present  in  a  sample  2.5  x  109  years  old,  if  2.00  grams  was  present  initially?    

 

 

 

 

Page 24: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1        

24    

Calculating  Half-­‐Life  (A)-­‐  Teacher  Key    

1. Iodine-­‐131  (I-­‐131)  has  a  half-­‐life  of  approximately  8.0  days.  If  you  started  with  an  80.0g  sample,  how  many  grams  of  I-­‐131  would  be  left  after  2  days?  

2  days  represents  ¼  or  0.25  half-­‐lives.  

According  to  the  graph,  at  0.25  half-­‐lives,  approximately  80%  of  the  original  material  will  remain:  

80.0%×0.80 = 64.0%*-131./012323%.  

2. There  are  200.0  grams  of  an  isotope  with  a  half-­‐life  of  42  hours  present  at  time  zero.  How  much  time  will  have  elapsed  when  76.0  grams  remain?  

First,  solve  for  the  percentage  of  the  isotope  remaining  after  time,  t.  

%#$%&'('() = 76.0) ÷ 200.0) = 0.380 = 38%.  

According  to  the  graph,  38%  remaining  represents  1.4  half-­‐lives:  

!"#$$&'()$* = 1.4ℎ'&0&"1$)× 34567589:9;:< = 59ℎ?)  .    

3. After  15  days,  approximately  70%  of  a  sample  of  a  radioactive  isotope  remains  from  the  original  material.  What  is  the  half-­‐life  of  the  sample?  

According  to  the  graph,  70%  remaining  represents  0.5  half-­‐lives:    

ℎ"#$#&$' = 15+",-× /0.234565789: = 30+",-    

4. The  half-­‐life  of  the  radioactive  isotope  phosphorus-­‐32  is  approximately  14.3  days.  How  long  until  a  sample  loses  98%  of  its  radioactivity?  

 If  the  sample  loses  98%  of  its  radioactivity,  then  there  will  be  2%  of  the  original  sample  of  P-­‐32  remaining.  According  

to  the  graph,  2%  remaining  represents  approximately  5.6  half-­‐lives.    

!"#$ = 5.6ℎ"+,+-./$× 12.345671859:9;:< = 80?"#$.  

 5. Uranium-­‐238  has  a  half-­‐life  of  4.46  x  109  years.  How  much  U-­‐238  should  be  present  in  a  sample  2.5  x  109  years  old,  if  

2.00  grams  was  present  initially?    

!". ℎ%&'&)*+, = .../0123456789.:012345678 = 0.56ℎ%&'&)*+,  .    

According  to  the  graph,  approximately  68%  of  U-­‐238  will  remain  after  0.56  half-­‐lives.  

!#-238 = 2.00!×0.68 = 1.36!  .  

 -­‐    -­‐  

 -­‐    -­‐  

 -­‐    -­‐  

 -­‐    -­‐  

Page 25: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1  

            25    

Calculating  Half-­‐Life  (B)-­‐Teacher  Key    Guiding  Question:  How  are  half-­‐lives  calculated?    

The  equations  you  calculated  in  the  Pennicium,  Pennithium,  &  Pennium  experiment  should  resemble  ! = # $%&where  a  

equals  the  number  of  pennies  in  the  beginning,  x  is  the  number  of  shakes/rolls,  and  y  is  the  number  of  pennies  remaining  after  that  throw.  This  equation  illustrates  the  concept  of  half-­‐life  or  the  exponential  nature  of  decay  exhibited  by  radioactive  materials.  Radioactive  decay  is  important  in  a  variety  of  fields  from  medicine  to  energy  production,  astronomy,  and  geology.  Some  of  the  applications  of  the  radioactive  decay  process  include  determining  how  long  spent  nuclear  fuel  poses  an  environmental  danger  and  dating  geological  materials  based  on  their  half-­‐lives.  A  common  equation  that  is  used  for  the  exponential  decay  process  (shown  below)  is  very  similar  to  the  equation  you  developed  and  can  also  be  used  to  solve  half-­‐life  or  radioactive  decay  problems.      

*Note  to  Teacher:  The  following  problems  are  optional,  as  they  require  advanced  mathematical  solutions.  For  example,  some  of  the  solutions  require  the  use  of  logarithms  and  therefore  a  minimum  of  an  Algebra  II  background.  Team  teaching  this  exercise  with  a  math  teacher  is  an  option.    To  guide  students  in  the  right  direction,  provide  the  following  logarithmic  property  (shown  in  red  text  in  the  box  below).    Student  worksheet  follows  this  key.  

 

   ! " = !$ %&

()*/,  

Where:  • ! " = "ℎ%'()*+"),'-*.-"'+/%"ℎ'"0%('1+-',"%0'-2%/1,1/"1(% " ),3%/'4  • !" = $ℎ&"()*+,-,."/+$"0$ℎ&1/21$,+3&$ℎ,$4)--5&3,6  • ! = !#$%  • !"/$ = ℎ'()(+),-).ℎ,/,0'1+234564.'20,  

     Using  the  equation  above,  solve  the  following  problems:    

Example:  There  are  200.0  grams  of  an  isotope  with  a  half-­‐life  of  42  hours  present  at  time  zero.  How  much  time  will  have  elapsed  when  76.0  grams  remain?  

!"#$%'ℎ)*+,#-+.'#/),).+0)12+'#-$, 4 ' = 4- 12

89:/< '-"-=/)>-*':

 

76# = 200# '( *+,-./01    !        To  solve  for  t,  you  need  to  take  the  log  of  each  side.  

!"# $%&'((& = *

+'-./01 !"# 2'      !          !"# $%&

'((& =-­‐.420        !            !"# $% =-­‐.301  

-.#$%-.&%' *42ℎ-./0 =  t        !          t  =  58.6  hours  

1. Iodine-­‐131  (I-­‐131)  has  a  half-­‐life  of  8.0197  days.  If  you  started  with  an  80.0g  sample,  how  many  grams  of  I-­‐131  would  be  left  after  2  days?  Use  the  radioactive  decay  equation  to  solve  the  problem  then  compare  your  result  with  the  original  result  derived  from  using  the  graph.  

! " = 80.0 '( *+.,-./        !          ! " = 67.3(  

The  following  logarithmic  property  is  needed  to  correctly  solve  some  of  the  problems  in  this  activity.  

Log  Un  =  n*Log  (U)  

According  to  the  graph,  2  days  represents  0.25  of  a  half-­‐life  of  8  days.  After  0.25  half-­‐lives,  approximately  80%  of  the  original  material  remains  -­‐  80.0g  ×  0.80  =  64.0g.  The  two  answers  are  reasonably  similar.  

 

 -­‐  

Page 26: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1        

26    

 

2. After  15  days,  two-­‐thirds  of  a  sample  remains.  If  the  original  sample  was  87mg,  what  is  the  half-­‐life  of  the  sample?  

3.

23 87% = 58%à58% = 87% 1

2*+,-./0*/2

 

4. To  solve  for  half-­‐life,  you  need  to  take  the  log  of  each  side.  

5. !"# $%&%'& = )$+,-.

/0/2!"# )

3

     !          !"# $%&

%'& =.176        !            !"# $% =-­‐.301  

6. -.#$%-.&'# *)#/+ =  15  days        !      !"/$=  15  days  *  1.71      

7. !"/$  =  25.7  days  

8. Radon-­‐222  has  a  half-­‐life  =  3.8235  days.  How  many  grams  of  a  64.0  g  sample  of  Rn-­‐222  will  remain  after  11.5  days?  

!"#$%'ℎ)*+,#-+.'#/),).+0)12+'#-$, 4 ' = 4- 67 89:/< à4 ' = 64.0 6

7 ::.ABCDEF.G<FABCDE                

     ! " = 7.96(  

 9. The  isotope  Radium-­‐226  has  a  half-­‐life  of  1640  years.  Chemical  analysis  of  a  certain  chunk  of  concrete  from  an  

atomic-­‐bombed  city,  preformed  by  an  archaeologist  in  the  year  6264  AD,  indicated  that  it  contained  2.50  g  of  Ra-­‐226.  By  comparing  the  amount  of  Ra-­‐226  to  its  end  product  Lead-­‐206,  it  was  determined  the  original  amount  of  Ra-­‐226  was  9.962  g.  What  was  the  year  of  the  nuclear  war?  

!"#$%'ℎ)*+,#-+.'#/),).+0)12+'#-$:4 ' = 4- 12

89:/< , "->/)?-*'.

 

2.50% = 9.962% )* ,-./012345    !        To  solve  for  t,  you  need  to  take  the  log  of  each  side.  

!"# $.&'().)*$( = ,

-*.'01234 !"# -$      !          !"# $.&'(

).)*$( =-­‐.600        !            !"# $% =-­‐.301  

-.#$$-.%$& *1640-./01 =  t        !          t  =  3271  years  

!"#$ = 6264)*-3271/01 = 2993)*  

10. Carbon-­‐14  has  a  half-­‐life  of  5730  years  making  it  useful  for  dating  organic  materials.  A  piece  of  charcoal  found  by  an  archaeologist  at  an  excavation  of  an  ancient  campsite  was  found  to  have  30.0%  of  that  in  living  trees.  What  is  the  approximate  age  of  the  piece  of  charcoal?  

!"#$%'ℎ)*+,#-+.'#/),).+0)12+'#-$:4 ' = 4- 12

89:/< , "->/)?-*'.

 

. 30 = 1.00 &' )*+,-./012    !        To  solve  for  t,  you  need  to  take  the  log  of  each  side.  

!"# $.&$'(.$$' = *

+,&$./012 !"# (3      !          !"# $.&$'

(.$$' =-­‐.523        !            !"# $% =-­‐.301  

-.#$%-.%&' *5730./012 =  t        !          t  =  9956  years  

Page 27: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1  

            27    

Calculating  Half-­‐Life  (B)    

Guiding  Question:  How  are  half-­‐lives  calculated?    

The  equations  you  calculated  in  the  Pennicium,  Pennithium,  &  Pennium  experiment  should  resemble   where  a  

equals  the  number  of  pennies  in  the  beginning,  x  is  the  number  of  shakes/rolls,  and  y  is  the  number  of  pennies  remaining  after  that  throw.  This  equation  illustrates  the  concept  of  half-­‐life  or  the  exponential  nature  of  decay  exhibited  by  radioactive  materials.  Radioactive  decay  is  important  in  a  variety  of  fields  from  medicine  to  energy  production,  astronomy,  and  geology.  Some  of  the  applications  of  the  radioactive  decay  process  include  determining  how  long  spent  nuclear  fuel  poses  an  environmental  danger  and  dating  geological  materials  based  on  their  half-­‐lives.  A  common  equation  that  is  used  for  the  exponential  decay  process  (shown  below)  is  very  similar  to  the  equation  you  developed  and  can  also  be  used  to  solve  half-­‐life  or  radioactive  decay  problems.      

 

! " = !$ %&

()*/,  

Where:  

• ! " = "ℎ%'()*+"),'-*.-"'+/%"ℎ'"0%('1+-',"%0'-2%/1,1/"1(% " ),3%/'4  • !" = $ℎ&"()*+,-,."/+$"0$ℎ&1/21$,+3&$ℎ,$4)--5&3,6  • ! = !#$%  • !"/$ = ℎ'()(+),-).ℎ,/,0'1+234564.'20,  

     Using  the  equation  above,  solve  the  following  problems:    

Example:  There  are  200.0  grams  of  an  isotope  with  a  half-­‐life  of  42  hours  present  at  time  zero.  How  much  time  will  have  elapsed  when  76.0  grams  remain?  

!"#$%'ℎ)*+,#-+.'#/),).+0)12+'#-$, 4 ' = 4- 12

89:/< '-"-=/)>-*':

 

76# = 200# '( *+,-./01    !        To  solve  for  t,  you  need  to  take  the  log  of  each  side.  

!"# $%&'((& = *

+'-./01 !"# 2'      !          !"# $%&

'((& =-­‐.420        !            !"# $% =-­‐.301  

-.#$%-.&%' *42ℎ-./0 =  t        !          t  =  58.6  hours  

1. Iodine-­‐131  (I-­‐131)  has  a  half-­‐life  of  8.0197  days.  If  you  started  with  an  80.0g  sample,  how  many  grams  of  I-­‐131  would  be  left  after  2  days?  Use  the  radioactive  decay  equation  to  solve  the  problem  then  compare  your  result  with  the  original  result  derived  from  using  the  graph.                

 -­‐  

Page 28: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1        

28    

2. After  15  days,  two-­‐thirds  of  a  sample  remains.  If  the  original  sample  was  87mg,  what  is  the  half-­‐life  of  the  sample?  

 

 

 

 

 

 3. Radon-­‐222  has  a  half-­‐life  =  3.8235  days.  How  many  grams  of  a  64.0  g  sample  of  Rn-­‐222  will  remain  after  11.5  

days?    

                       

   

4. The  isotope  Radium-­‐226  has  a  half-­‐life  of  1640  years.  Chemical  analysis  of  a  certain  chunk  of  concrete  from  an  atomic-­‐bombed  city,  preformed  by  an  archaeologist  in  the  year  6264  AD,  indicated  that  it  contained  2.50  g  of  Ra-­‐226.  By  comparing  the  amount  of  Ra-­‐226  to  its  end  product  Lead-­‐206,  it  was  determined  the  original  amount  of  Ra-­‐226  was  9.962  g.  What  was  the  year  of  the  nuclear  war?  

 

 

 

 

 

 

 

5. Carbon-­‐14  has  a  half-­‐life  of  5730  years  making  it  useful  for  dating  organic  materials.  A  piece  of  charcoal  found  by  an  archaeologist  at  an  excavation  of  an  ancient  campsite  was  found  to  have  30.0%  of  that  in  living  trees.  What  is  the  approximate  age  of  the  piece  of  charcoal?  

 

 

 

 

 

 

 

Page 29: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1  

            29    

COMPREHENSION 2

How  does  Radioactive  Decay  Occur?  HALF-­‐LIFE  OF  RADIOACTIVE  ISOTOPES  

We  cannot  determine  when  radioactive  materials  will  decay  and  give  off  radiation.  However,  there  is  a  pattern  we  can  use  to  estimate  how  long  it  takes  for  an  isotope  to  lose  half  of  its  radioactivity.  This  pattern  is  known  as  half-­‐life.  For  example,  if  an  isotope  has  a  half-­‐life  of  20  years,  half  of  the  original  substance  will  decay  in  20  years.  Then  in  another  20  years,  half  of  the  substance  that  remained  will  decay.  This  process  will  continue  every  20  years.  It  is  important  to  note  that  a  radioactive  substance  will  never  completely  decay,  no  matter  how  insignificant  or  small  of  an  amount  is  left.    

The  half-­‐life  of  a  radioactive  isotope  is  important  as  it  dictates  its  behavior,  its  effects  on  the  environment,  and  the  amount  of  radiation  it  emits.  For  example,  a  radioactive  isotope  with  a  long  half-­‐life  will  emit  its  radiation  infrequently.  However,  a  radioactive  isotope  with  a  short  half-­‐life  will  emit  its  radiation  repeatedly  in  a  short  period  of  time.    

Not  only  is  radiation  emitted  when  the  radioactive  isotope  decays,  but  the  decay  products  of  an  isotope  can  also  give  off  radiation.  As  discussed  earlier,  these  decay  products  are  referred  to  as  daughters  or  progeny.    

Alpha,  Beta,  and  Gamma  Radiation.  Although  there  are  several  forms  of  ionizing  radiation  (i.e.,  when  the  energy  produced  is  strong  enough  to  knock  electrons  out  of  molecules  and  create  ions  or  free  radicals,  we  will  concentrate  on  just  three.  These  three  types  of  radiation  -­‐  alpha,  beta,  and  gamma  -­‐  result  from  the  decay  of  radioactive  isotopes.    

An  alpha  particle,  beta  particle,  or  gamma  ray  is  emitted  during  radioactive  decay.  Each  time  an  alpha  particle  is  emitted  the  number  of  protons  decreases  by  2  and  the  number  of  neutrons  decreases  by  2.  This  is  always  the  same  because  an  alpha  particle  is  made  up  of  2  protons  and  2  neutrons,  identical  to  a  helium  nucleus  (i.e.,  He+).  A  beta  particle  is  formed  when  a  neutron  breaks  apart  into  a  proton  and  an  electron.  A  beta  particle  is  essentially  an  electron  emitted  from  a  nucleus.  When  a  beta  particle  (i.e.,  the  newly  formed  electron)  is  emitted,  the  atomic  number  increases  by  one.  This  can  be  thought  of  as  a  conversion  of  one  neutron  into  one  proton  to  account  for  the  loss  of  the  negatively  charged  beta  particle.  Although  the  atomic  number  changes  during  beta  emission  (thus  creating  a  new  element),  the  mass  number  stays  the  same.    

Alpha  particles  are  comparatively  larger  particles  with  an  electrical  charge  (+2).  For  these  reasons,  alpha  particles  travel  at  relatively  slow  velocities  and  have  low  penetration  depths.  Alpha  particles  can  be  stopped  by  one  to  two  

 

Alpha  particle  

Beta  particle  

Gamma  ray  

Page 30: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1        

30    

inches  in  air,  a  thin  sheet  of  paper,  or  the  body’s  outer  layer  of  skin.  Outside  of  the  human  body,  alpha  particles  are  not  considered  a  hazard  because  they  are  stopped  by  our  body’s  first  line  of  defense  –  the  skin.  However,  when  alpha  particles  are  inhaled  or  swallowed,  they  interact  with  live  tissues  and  cells.  When  this  occurs,  alpha  particles  can  produce  large  amounts  of  ionizing  radiation,  thus  causing  internal  tissue  and  cell  damage.    

Compared  to  alpha  particles,  beta  particles  are  much  faster  and  lighter.  Beta  particles  can  also  travel  farther  (~  10  feet  in  air)  and  can  penetrate  past  the  most  outer  (dead)  layer  of  skin.  Since  beta  particles  can  cause  damage  to  the  skin,  they  are  considered  both  an  internal  and  external  hazard.  Solid  materials  such  as  clothing  or  a  thin  layer  of  metal  or  plastic  can  stop  these  particles  and  the  effects  of  damaging  radiation.  

Gamma  rays  are  high  energy,  electromagnetic  waves  that  travel  at  the  speed  of  light.  Gamma  rays  have  no  mass  and  can  travel  farther  distances  than  alpha  and  beta  particles,  reaching  distances  up  to  thousands  of  yards  in  air.  Gamma  rays  can  pass  through  human  tissue  and  can  only  be  stopped  by  dense  materials  such  as  lead,  cement,  or  steel.  X-­‐rays,  another  type  of  electromagnetic  radiation,  are  similar  to  gamma  rays  and  also  produce  penetrating  radiation  (i.e.,  radiation  capable  of  penetrating  the  skin  and  reaching  internal  organs  and  tissues.)  

The  ionizing  radiation  produced  from  alpha,  beta,  or  gamma  decay  can  be  especially  harmful  because  it  can  change  the  chemical  makeup  of  many  things,  including  the  chemistry  of  the  human  body  and  other  living  organisms.  X-­‐rays  and  CT  scans  are  good  examples  of  ionizing  radiation.  If  possible,  it  is  good  to  avoid  any  unnecessary  exposure  to  ionizing  radiation.  

Balancing  Radioactive  Equations.  Another  way  to  understand  radioactive  decay  is  to  understand  how  to  describe  the  process  in  the  form  of  an  equation.  Writing  and  balancing  an  equation  for  radioactive  decay  is  different  than  writing  and  balancing  an  equation  for  a  chemical  reaction.  In  addition  to  writing  the  symbols  for  various  chemical  elements,  the  protons,  neutrons,  and  electrons  associated  with  that  element  or  isotope  are  also  included  in  the  equation.    

 

 

Page 31: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1  

            31    

The  accepted  way  of  denoting  the  atomic  number  (i.e.,  protons  or  p)  and  mass  number  (i.e.,  protons  plus  neutrons  or  p  +  n)  of  Uranium  is  shown  below:    

##

MassAtomic   U238

92 or      ! + #! $    

As  we  discussed  before,  alpha  decay  occurs  when  a  particle  with  two  protons  and  two  neutrons  is  emitted.  This  alpha  particle  is  identical  to  a  helium  nucleus  or  42#$.  As  shown  below,  the  original  element’s  (E1)  mass  decreases  by  four,  and  it’s  atomic  number  decreases  by  two.  This  results  in  a  new  element  (E2)  and  a  helium  nucleus.    

! + #! $1 →(! + #) − 4!-2 $2 +42./  

Now  let’s  look  at  a  real-­‐world  example  of  alpha  decay,  such  as  Radium-­‐226.  When  Radium-­‐226  decays,  the  resulting  products  are  Radon-­‐222  and  an  alpha  particle  (or  He).  Notice  in  the  equation  below,  that  the  same  number  of  protons  and  neutrons  exist  on  both  sides  of  the  equation,  resulting  in  a  balanced  equation.  

22688 $% →

22286 $(+ 4

2+,  In  beta  decay,  an  unstable  neutron  turns  into  a  proton  and  an  electron.  This  results  in  a  gained  proton,  while  a  neutron  is  lost.  The  beta  particle  is  actually  the  newly  formed  electron  being  emitted  from  the  nucleus.  This  decay  process  results  in  a  new  atomic  number  (i.e.,  from  gaining  a  new  electron),  while  the  mass  actually  stays  the  same  (i.e.,  a  neutron  was  turned  into  a  proton).      

! + #! $1 →(! + 1) + (#-1)! + 1 $2 + 0-1-  

Another  example  of  beta  decay  is  when  Cesium  decays  to  Barium,  resulting  in  the  emission  of  an  electron.  This  reaction  is  shown  below.  Notice  once  again,  the  equation  is  balanced  and  the  number  of  protons  and  neutrons  on  the  left  equals  the  number  on  the  right.    

13755 %& →

13756 *++ 0

-1/  The  last  type  of  decay  we  discussed,  gamma  decay,  is  very  different  from  alpha  and  beta  decay.  In  gamma  decay,  the  number  of  protons  and  neutrons  does  not  change  and  it  is  not  possible  to  show  the  decay  process  in  the  form  of  an  equation.  Essentially,  the  protons  and  neutrons  reconfigure  themselves  within  the  nucleus,  and  release  high  levels  of  energy  in  the  form  of  electromagnetic  rays  or  gamma  rays.  

 

 

Page 32: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1        

32    

Application:  Balancing  Radioactive  Equations  

Balance  the  following  reactions,  identify  product  X,  and  determine  what  type  of  decay  occurs.      

A)   21482 %& →21483 *++-. = 012ℎ4567489:*6;456748    

B)   23892 % → (+ 4

2+,- = /01ℎ34,536789,:34,536    

C)    2411$% → (+ 0-1,- = /01ℎ%3,4%5678,9%3,4%5              

D)    5226$% →5227)* +,- = /01ℎ34%536*78%934%536            

E)     23290 %ℎ →22888 *++-. = 012ℎ+345+67894:+345+6    

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Extensions:  Distribute  suggested  readings  about  beneficial  uses  of  radiation,  Marie  Curie,  and  Mars  travel.    

Have  students  view  the  Khan  Academy’s  video  “Types  of  Decay”  available  at:  http://bit.ly/S9Rmav      

Students  can  calculate  their  personal  annual  radiation  dose  by  completing  the  “Annual  Radiation  Dose  Worksheet”  or  visiting:  http://bit.ly/PMU9w4    

 

 

Page 33: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1  

            33    

Comprehension  2  –  Guiding  Questions    

1. Does  radioactive  decay  proceed  at  the  same  rate  for  every  radioactive  isotope?  How  do  nuclear  scientists  determine  how  long  it  takes  for  a  radioactive  isotope  to  decay?  Why  is  the  rate  of  decay  important?          

2. Will  a  radioactive  element  with  a  relatively  short  half-­‐life  emit  more  or  less  radiation  than  a  radioactive  element  with  a  relatively  long  half-­‐life?  

         

3. When  comparing  alpha  and  beta  radiation  to  gamma  radiation,  what  is  the  basic  difference?    

     

4. When  balancing  radioactive  chemical  equations,  how  is  alpha  decay  different  from  beta  decay?    

   

 

5. When  balancing  radioactive  chemical  equations,  how  is  alpha  decay  the  same  as  beta  decay?    

     

6. What  are  the  biological  hazards  associated  with  alpha  and  beta  particles,  and  gamma  rays  respectively?                              

Page 34: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1        

34    

 

Comprehension  2  –  Guiding  Questions  Teacher  Key    

1. Does  radioactive  decay  proceed  at  the  same  rate  for  every  radioactive  isotope?  How  do  nuclear  scientists  determine  how  long  it  takes  for  a  radioactive  isotope  to  decay?  Why  is  the  rate  of  decay  important?  Each  radioactive  isotope  decays  at  its  own  signature  rate,  known  as  the  half-­‐life.  The  rate  of  decay  is  important  because  it  determines  how  and  when  a  radioactive  isotope  will  emit  radiation.        

2. Will  a  radioactive  element  with  a  relatively  short  half-­‐life  emit  more  or  less  radiation  than  a  radioactive  element  with  a  relatively  long  half-­‐life?  

 Elements  with  a  short  half-­‐life  rapidly  emit  their  radiation  more  intensely  over  a  short  period  of  time,  while  those  with  a  long  half-­‐life  emit  their  radiation  very  slowly.  

 

3. When  comparing  alpha  and  beta  radiation  to  gamma  radiation,  what  is  the  basic  difference?    

Alpha  and  beta  decay  both  involve  the  emission  of  a  particle,  where  as  gamma  decay  does  not.    

4. When  balancing  radioactive  chemical  equations,  how  is  alpha  decay  different  from  beta  decay?    

Alpha  decay  must  be  balanced  based  on  the  emission  of  helium  nucleus  (2  protons  and  2  neutrons).  Beta  decay  involves  the  emission  of  an  electron.  

 

5. When  balancing  radioactive  chemical  equations,  how  is  alpha  decay  the  same  as  beta  decay?    

The  number  of  particles  present  must  be  taken  into  consideration  for  both.    

6. What  are  the  biological  hazards  associated  with  alpha  and  beta  particles,  and  gamma  rays  respectively?  

 

Alpha  particles  can  be  stopped  by  one  to  two  inches  in  air,  a  thin  sheet  of  paper,  or  the  skin.  Outside  of  the  human  body,  alpha  particles  are  not  considered  a  hazard  because  they  are  stopped  by  the  skin.  However,  when  alpha  particles  are  inhaled  or  swallowed,  they  interact  with  live  tissues  and  cells,  thus  causing  internal  tissue  and  cell  damage.      

Beta  particles  can  travel  farther  than  alpha  particles  (~  10  feet  in  air)  and  can  penetrate  past  the  most  outer  (dead)  layer  of  skin.  Since  beta  particles  can  cause  damage  to  the  skin,  they  are  considered  both  an  internal  and  external  hazard.  Solid  materials  such  as  clothing  or  a  thin  layer  of  metal  or  plastic  can  stop  these  particles  and  the  effects  of  damaging  radiation.    

Gamma  rays  have  no  mass  and  can  travel  farther  distances  than  alpha  and  beta  particles,  reaching  distances  up  to  thousands  of  yards  in  air.  Gamma  rays  can  pass  through  human  tissue  and  can  only  be  stopped  by  dense  materials  such  as  lead,  cement,  or  steel.    The  ionizing  radiation  produced  from  alpha,  beta,  or  gamma  decay  can  be  especially  harmful  because  it  can  change  the  chemical  makeup  of  many  things,  including  the  chemistry  of  the  human  body  and  other  living  organisms.    

Page 35: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Clean  Air  and  Healthy  Homes:  Radon  Lesson  1      

35    

 

Retrieved  from:  http://www.nrc.gov/reading-­‐rm/basic-­‐ref/teachers/average-­‐dose-­‐worksheet.pdf    

Annual  Radiation  Dose  Worksheet  

Page 36: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Clean  Air  and  Healthy  Homes:  Radon  Lesson  1      

36    

‘What  is  Radioactivity?’  Evaluation  Questions    

For  questions  1-­‐5,  write  the  letter  of  the  best  answer  in  the  space  before  the  question.    1. ____  Radiation  and  radioactivity  are  synonymous  terms.          

 A.  true          B.  false  

2. ____  U-­‐238  and  U-­‐234  are  examples  of  _____.  

  A.  allotropes          B.  complementary  ions          C.  progeny          D.  isotopes  

3. ____  Which  of  the  following  would  represent  the  penetrating  power  of  alpha,  beta,  and  gamma  radiation  ranked  from  highest  penetrating  power  to  the  lowest?  

    A.  alpha,  beta,  gamma      B.  beta,  gamma,  alpha      C.  gamma,  beta,  alpha      D.  none  of  the  above  

4. ____  Which  of  the  above  mentioned  types  of  radiation  does  not  involve  the  emission  of  a  particle?  

  A.  alpha          B.  beta          C.  gamma          D.  none  of  the  above  

5. ____  The  vapor  trail  produced  by  alpha  radiation  is  longer  than  that  produced  by  beta  radiation.  

  A.  true          B.  false  

6. Using  the  blank  graph  below,  draw  a  radioactive  decay  curve,  be  sure  to  label  both  axes,  then  use  your  decay  curve  to  answer  questions  7-­‐12  below.  

 

 

Page 37: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1  

            37    

 

 

                           

7. What  radioactive  isotope  does  your  decay  curve  describe?  

 

 

 

8. Using  the  radioactive  decay  curve,  what  percentage  of  your  radioactive  isotope  exists  after  three  half  lives?  

 

 

9. Carbon  14  has  a  half-­‐life  of  5,730  years.  If  you  have  a  .01  gram  sample  of  carbon  14,  what  is  the  mass  of  carbon  14  remaining  after  two  half-­‐lives?  

 

 

 

10. The  element  Osmium-­‐182  has  a  half-­‐life  of  21.5  hours.  How  much  time  would  have  elapsed  if  a  10.0  g  sample  of  Os-­‐182  decays  so  that  a  1.8  g  sample  remains?  

 

 

 

 

Page 38: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1    

38    

11. In  a  galaxy  far,  far  away  there  exists  a  material  known  as  Confusium-­‐406,  Cn-­‐406.  Over  a  24.0  day  period,  128.0  g  of  Cn-­‐406  will  decay  so  that  5.12  g  of  the  original  material  remains.  What  is  the  half-­‐life  of  Cn-­‐406?  

 

 

 

 

Use  the  half-­‐life  equation  ! " = !$ %&

()*/,  to  answer  questions  12-­‐17:  

12. At  time  zero,  there  are  10.0  grams  of  Tungsten-­‐187.  If  the  half-­‐life  is  23.9  hours,  how  much  W-­‐187  will  be  present  at  the  end  of  two  days?  

 

 

 

 

13. The  half-­‐life  of  Hydrogen-­‐3,  also  known  as  tritium,  is  12.26  years?  How  much  time  will  be  required  for  a  sample  of  tritium  to  lose  75%  of  its  radioactivity?    

 

 

 

 

   

14. The  bristle  cone  pine,  found  in  the  White  Mountains  of  California,  is  the  oldest  living  thing  on  earth  and  they  are  unusual  in  that  their  cones  are  blue.  Some  samples  of  these  blue  cones  dating  back  10,000  years  have  been  identified.  Suppose  you  have  a  sample  from  such  a  cone  that  presently  contains  5.00  g  of  Carbon-­‐14,  half-­‐life=5730  yrs.  Determine  the  amount  of  C-­‐14  that  was  present  in  the  cone  sample  10,000  years  ago.  

 

 

 

 

Page 39: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1  

            39    

 

15. In  the  equation  above,  what  kind  of  decay  particle  is  produced?    

 

 

 

 

16. What  kind  of  radioactive  decay  produces  a  helium  nucleus?  

 

 

 

17. For  the  decay  chart  of  uranium  238  to  lead  206,  provide  2  examples  of  transition  to  a  different  element  that  produce  beta  particles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 40: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1    

40    

‘What  is  Radioactivity?’  Evaluation  Questions:  Teacher  Key  

 

For  questions  1-­‐5,  write  the  letter  of  the  best  answer  in  the  space  before  the  question.    1. ____  Radiation  and  radioactivity  are  synonymous  terms.          

 A.  true          B.  false  

2. ____  U-­‐238  and  U-­‐234  are  examples  of  _____.  

  A.  allotropes          B.  complementary  ions          C.  progeny          D.  isotopes  

3. ____  Which  of  the  following  would  represent  the  penetrating  power  of  alpha,  beta,  and  gamma  radiation  ranked  from  highest  penetrating  power  to  the  lowest?  

    A.  alpha,  beta,  gamma      B.  beta,  gamma,  alpha      C.  gamma,  beta,  alpha      D.  none  of  the  above  

4. ____  Which  of  the  above  mentioned  types  of  radiation  does  not  involve  the  emission  of  a  particle?  

  A.  alpha          B.  beta          C.  gamma          D.  none  of  the  above  

5. ____  The  vapor  trail  produced  by  alpha  radiation  is  longer  than  that  produced  by  beta  radiation.  

  A.  true          B.  false  

6. Using  the  blank  graph  below,  draw  a  radioactive  decay  curve,  be  sure  to  label  both  axes,  then  use  your  decay  curve  to  answer  questions  7-­‐12  below.  

 

Page 41: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1  

            41    

 

                           

7. What  radioactive  isotope  does  your  decay  curve  describe?  

The  graph  from  question  1  is  not  specific  for  any  single  radioactive  isotope  because  it  does  not  consider  the  length  of  a  half-­‐life.  All  radioactive  isotopes  will  have  the  same  percentage  of  material  remaining  at  the  end  of  each  half-­‐life.  

 

8. Using  the  radioactive  decay  curve,  what  percentage  of  your  radioactive  isotope  exists  after  three  half  lives?  

  There  would  be  approximately  17%  of  the  original  material  remaining  after  three  half-­‐lives.  

 

9. Carbon  14  has  a  half-­‐life  of  5,730  years.  If  you  have  a  .01  gram  sample  of  carbon  14,  what  is  the  mass  of  carbon  14  remaining  after  two  half-­‐lives?  

According  to  the  graph  in  question  1,  there  would  be  25%  of  the  original  material  remaining  after  two  half-­‐lives:  grams  C  =  0.01  g  x  0.25  =  0.0025  g  C.    

 

10. The  element  Osmium-­‐182  has  a  half-­‐life  of  21.5  hours.  How  much  time  would  have  elapsed  if  a  10.0  g  sample  of  Os-­‐182  decays  so  that  a  1.8  g  sample  remains?  

 

According  to  the  graph,  18%  of  the  material  remaining  represents  approximately  2.5  half-­‐lives.  

   -­‐    -­‐  

Page 42: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1    

42    

11. In  a  galaxy  far,  far  away  there  exists  a  material  known  as  Confusium-­‐406,  Cn-­‐406.  Over  a  24.0  day  period,  128.0  g  of  Cn-­‐406  will  decay  so  that  5.12  g  of  the  original  material  remains.  What  is  the  half-­‐life  of  Cn-­‐406?  

 

According  to  the  graph,  4.00%  of  the  original  material  remaining  represents  approximately  4.7  half-­‐lives.  

 

Use  the  half-­‐life  equation  ! " = !$ %&

()*/,  to  answer  questions  12-­‐17:  

 

12. At  time  zero,  there  are  10.0  grams  of  Tungsten-­‐187.  If  the  half-­‐life  is  23.9  hours,  how  much  W-­‐187  will  be  present  at  the  end  of  two  days?  

 

 

13. The  half-­‐life  of  Hydrogen-­‐3,  also  known  as  tritium,  is  12.26  years?  How  much  time  will  be  required  for  a  sample  of  tritium  to  lose  75%  of  its  radioactivity?    

 

 

 

   

14. The  bristle  cone  pine,  found  in  the  White  Mountains  of  California,  is  the  oldest  living  thing  on  earth  and  they  are  unusual  in  that  their  cones  are  blue.  Some  samples  of  these  blue  cones  dating  back  10,000  years  have  been  identified.  Suppose  you  have  a  sample  from  such  a  cone  that  presently  contains  5.00  g  of  Carbon-­‐14,  half-­‐life=5730  yrs.  Determine  the  amount  of  C-­‐14  that  was  present  in  the  cone  sample  10,000  years  ago.  

 

 -­‐    -­‐  

Page 43: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1  

            43    

 

   

   

15. In  the  equation  below,  what  kind  of  decay  particle  is  produced?    

 

Beta  decay  is  represented  in  the  equation  above  where  a  neutron  from  carbon  is  converted  into  a  proton  and  an  electron,   ,  or  beta  particle.  

 

16. What  kind  of  radioactive  decay  produces  a  helium  nucleus?  

Alpha  decay  produces  a  helium  nucleus  as  part  of  the  radioactive  decay  process  as  in  the  radioactive  decay  of  radium-­‐226:      

 

 

17. For  the  decay  chart  of  uranium  238  to  lead  206,  provide  2  examples  of  transition  to  a  different  element  that  produce  beta  particles.  

During  the  radioactive  decay  of  U-­‐238  to  Pb-­‐206,  beta  particles,  electrons  -­‐   ,  are  produced  when  

thorium-­‐234  decays  to  protactinium-­‐234  and  when  proctactinium-­‐234  decays  to  uranium-­‐234.  

 

Page 44: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1    

44    

Radon Lesson 1: Specific Learning Objectives and Standards Specific  Learning  Objectives  Upon  completion  of  this  lesson,  students  will  be  able  to:  

• define  terms  related  to  radioactivity  and  radioactive  decay.  

• describe  the  process  of  radioactive  decay.  

• draw  the  basic  structure  of  a  commonly  known  atom  

• calculate  the  half-­‐life  of  elements.  

• summarize  what  makes  atomic  nuclei  unstable  and    recognize  how  unstable  nuclei  react.  

• identify  common  sources  of  radiation,  both  natural  and  manmade.  

• explain  the  difference  between  ionizing  radiation  and  penetrating  radiation.  

• identify  potential  biological  hazards  related  to  alpha  and  beta  particles  and  gamma  rays.  

• explain  the  differences  between  how  alpha  and  beta  particles,  and  gamma  rays  act  in  the  environment  and  in  the  human  body.  

• balance  radioactive  reactions.    

   

NEXT  GENERATION  SCIENCE  STANDARDS  Students  who  demonstrate  understanding  can:    

HS-­‐PS1-­‐8      Develop  models  to  illustrate  the  changes  in  the  composition  of  the  nucleus  of  the  atom  and  the  energy  released  during  the  processes  of  fission,  fusion,  and  radioactive  decay.  

HS-­‐PS1-­‐7      Use  mathematical  representations  to  support  the  claim  that  atoms,  and  therefore  mass,  are  conserved  during  a  chemical  reaction.  

HS-­‐LS3-­‐2      Make  and  defend  a  claim  based  on  evidence  that  inheritable  genetic  variations  may  result  from:  (1)  new  genetic  combinations  through  meiosis,  (2)  viable  errors  occurring  during  replication,  and/or  (3)  mutations  caused  by  environmental  factors.  

 

MONTANA  STATE  SCIENCE  STANDARDS  A  proficient  student  will  (upon  graduation):  

Science  Content  Standard  1:  Students,  through  the  inquiry  process,  demonstrate  the  ability  to  design,  conduct,  evaluate,  and  communicate  the  results  and  form  reasonable  conclusions  of  scientific  investigations.  

1.2    select  and  use  appropriate  tools  including  technology  to  make  measurements  (in  metric  units),  gather,  process  and  analyze  data  from  scientific  investigations  using  appropriate  mathematical  analysis,  error  analysis  and  graphical  representation.    

Science  Content  Standard  2:    Students,  through  the  inquiry  process,  demonstrate  knowledge  of  properties,  forms,  changes  and  interactions  of  physical  and  chemical  systems.  

Page 45: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1  

            45    

2.1    A  proficient  student  will  describe  the  structure  of  atoms,  including  knowledge  of  (a)  subatomic  particles  and  their  relative  masses,  charges  and  locations  within  the  atom,  (b)  the  electrical  forces  that  hold  the  atom  together,  (c)  fission  and  fusion,  and  (d)  radioactive  decay.  

 

ALASKA  STATE  SCIENCE  STANDARDS  SB3    Students  develop  an  understanding  of  the  interactions  between  matter  and  energy,  including  physical,  chemical,  and  nuclear  changes,  and  the  effects  of  these  interactions  on  physical  systems.  

(9)  SB3.3  The  student  demonstrates  an  understanding  of  the  interactions  between  matter  and  energy  and  the  effects  of  these  interactions  on  systems  by  recognizing  that  atoms  emit  and  absorb  electromagnetic  radiation.  

(10)  SB3.2  The  student  demonstrates  an  understanding  of  the  interactions  between  matter  and  energy  and  the  effects  of  these  interactions  on  systems  by  recognizing  that  radioactivity  is  a  result  of  the  decay  of  unstable  nuclei.  

SA1    Students  develop  an  understanding  of  the  processes  of  science  used  to  investigate  problems,  design  and  conduct  repeatable  scientific  investigations,  and  defend  scientific  arguments.  

(10)  SA1.1  The  student  demonstrates  an  understanding  of  the  processes  of  science  by  asking  questions,  predicting,  observing,  describing,  measuring,  classifying,  making  generalizations,  analyzing  data,  developing  models,  inferring,  and  communicating.    

 

IDAHO  STATE  STANDARDS  Chemistry:  

 

Goal  1.2:    Understand  Concepts  and  Processes  of  Evidence,  Models,  and  Explanation  11-­‐12.C.1.2.2   Create  and  interpret  graphs  of  data.  

Goal  1.6:    Understand  Scientific  Inquiry  and  Develop  Critical  Thinking  Skills  9-­‐10.B.1.6.3  Use  appropriate  technology  and  mathematics  to  make  investigations.  

Goal  1.8:    Understand  Technical  Communication  11-­‐12.C.1.8.2   Communicate  scientific  investigations  and  information  clearly.  

Goal  2.4:    Understand  the  Structure  of  Atoms  8-­‐9.PS.2.4.2  Explain  the  processes  of  fission  and  fusion.  

 Goal  5.3:    Understand  the  Importance  of  Natural  Resources  and  the  Need  to  Manage  and  Conserve  Them    

11-­‐12.C.5.3.1   Evaluate  the  role  of  chemistry  in  energy  and  environmental  issues.  

 

Page 46: RADON: LESSON ONE What is Radioactivity?health.umt.edu/reach/documents/curriculum/radon-lesson-1.pdfRadonLesson1!! % % % % % 3%! ELABORATE:% Distribute&Lab&2:&“Pennicium,&Pennithium,&&&Pennium”&(p.&18K19)for&students&

Radon  Lesson  1    

46    

 

Resources  LESSON  1:  RADIOACTIVITY    Chemistry.  By  Raymond  Chang,  1984  (Second  Edition).  Random  House,  Inc.,  New  York,  NY.    Cloud  Chamber.  American  Nuclear  Society,  Michigan  Section,  Radiation  Resources  CD-­‐ROM  Index.  Available  online  at:  http://local.ans.org/mi/Teacher_CD/Activities/Cloud_Chamber.pdf      Designing  Effective  Projects:  What  Does  This  Graph  Tell  You?  Intel,  Designing  Effective  Projects:  Project-­‐Based  Units  to  Engage  Students.  Available  online  at:  http://educate.intel.com/en/ProjectDesign/UnitPlanIndex/WhatDoesThisGraphTellYou/graphing_trendlines.htm      General  Chemistry:  An  Active  Learning  Approach.  By  Mark  S.  Cracolice  and  Edward  I.  Peters,  2003.  Brooks/Cole  Publishing,  Pacific  Grove,  CA.    Lesson  Plans  -­‐  Unit  1:  Radiation.  The  United  States  Nuclear  Regulatory  Commission  (U.S.  NRC).  Available  online  at:  http://www.nrc.gov/reading-­‐rm/basic-­‐ref/teachers/unit1.html      Pennium-­‐123.  American  Nuclear  Society.  Michigan  Section,  Radiation  Resources  CD-­‐ROM  Index.  Science,  Society,  and  America's  Nuclear  Waste,  Teacher  Guide.  Available  online  at:  http://local.ans.org/mi/Teacher_CD/Activities/pennium-­‐halflife-­‐activity.pdf      Personal  Annual  Radiation  Dose  Calculator.  The  United  States  Nuclear  Regulatory  Commission  (U.S.  NRC).  Doses  in  Our  Daily  Lives.  Available  online  at:  http://www.nrc.gov/about-­‐nrc/radiation/around-­‐us/calculator.html        Radiation  Measurement  Units  -­‐  International  (SI)  System.  Table  available  at:  http://www.civildefensemuseum.com/southrad/conversion.html    Radiation  Measurement.  Idaho  State  University,  The  Radiation  Information  Network,  Page  9.  Available  online  at:  http://www.physics.isu.edu/radinf/measure.htm      Radiation  Risk.  Georgia  State  University,  Department  of  Physics  and  Astronomy,  HyperPhysics.  Available  online  at:  http://hyperphysics.phy-­‐astr.gsu.edu/hbase/Nuclear/radrisk.html      Radioactive  Decay  of  M&Ms.  US  Department  of  Energy.  Nuclear  Energy  Student  Zone,  Science  Projects.  Available  online  at:  http://www.ne.doe.gov/students/activities_mmDecay.html      The  Basics  of  Radiation  Science.  Department  of  Energy  (DOE).  Office  of  Health,  Safety  and  Security.  DOE  Openness:  Human  Radiation  Experiments:  Roadmap  to  the  Project,  ACHRE  Report.  Available  online  at:  http://www.hss.doe.gov/healthsafety/ohre/roadmap/achre/intro_9.html      The  Discovery  of  Radioactivity.  Nuclear  Science  Division  and  the  Contemporary  Physics  Education  Project  (CPEP).  Guide  to  the  Nuclear  Wall  Chart.  Available  online  at:  http://www.lbl.gov/abc/wallchart/chapters/03/4.html      Types  of  Decay.  Khan  Academy.  Chemistry,  Radioactive  Decay.  Available  online  at:  http://www.khanacademy.org/science/chemistry/radioactive-­‐decay