radiation physiology and effects - university of...

95
Radiation Physiology and Effects ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Radiation Physiology and Effects Sources and types of space radiation Effects of radiation Shielding approaches 1 © 2011 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Upload: trinhnhi

Post on 09-Dec-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

Radiation Physiology and EffectsENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Radiation Physiology and Effects• Sources and types of space radiation• Effects of radiation• Shielding approaches

1

© 2011 David L. Akin - All rights reservedhttp://spacecraft.ssl.umd.edu

Radiation Physiology and EffectsENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

The Origin of a Class X1 Solar Flare

2

Radiation Physiology and EffectsENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

The Earth’s Magnetic Field

Ref: V. L. Pisacane and R. C. Moore, Fundamentals of Space Systems Oxford University Press, 1994

3

Radiation Physiology and EffectsENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

The Van Allen Radiation Belts

Ref: V. L. Pisacane and R. C. Moore, Fundamentals of Space Systems Oxford University Press, 1994

4

Radiation Physiology and EffectsENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Cross-section of Van Allen Radiation Belts

Ref: V. L. Pisacane and R. C. Moore, Fundamentals of Space Systems Oxford University Press, 1994

5

Radiation Physiology and EffectsENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Electron Flux in Low Earth Orbit

Ref: V. L. Pisacane and R. C. Moore, Fundamentals of Space Systems Oxford University Press, 1994

6

Radiation Physiology and EffectsENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Heavy Ion Flux

Ref: Neville J. Barter, ed., TRW Space Data, TRW Space and Electronics Group, 1999

Background Solar Flare

7

Radiation Physiology and EffectsENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Radiation Units• Dose D= absorbed radiation

• Dose equivalent H= effective absorbed radiation

• LET = Linear Energy Transfer <KeV/µ m>

8

1 Gray = 1Joule

kg= 100 rad = 10, 000

ergs

gm

1 Sievert = 1Joule

kg= 100 rem = 10, 000

ergs

gm

H = DQ rem = RBE × rad

Radiation Physiology and EffectsENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Radiation Quality Factor

9

Radiation QX-rays 1

5 MeV γ-rays 0.51 MeV γ-rays 0.7

200 KeV γ-rays 1.0Electrons 1.0Protons 2-10

Neutrons 2-10α-particles 10-20

GCR 20+

Radiation Physiology and EffectsENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Radiation in Free Space

10

Radiation Physiology and EffectsENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Radiation Dose vs. Orbital Altitude

Ref: Neville J. Barter, ed., TRW Space Data, TRW Space and Electronics Group, 1999

300 mil (7.6 mm) Al shielding

11

Radiation Physiology and EffectsENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Dosage Rates from Oct/Nov 2003 SPE

12

Radiation Physiology and EffectsENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

SPEs in Solar Cycles 19, 20, and 21

13

Radiation Physiology and EffectsENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

GCR Constituent Species

14

Radiation Physiology and EffectsENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Solar Max/Min GCR Proton Flux Ratio

15

Radiation Physiology and EffectsENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Radiation Damage to DNA

16

Radiation Physiology and EffectsENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Symptomology of Acute Radiation Exposure• “Radiation sickness”: headache, dizziness, malaise,

nausea, vomiting, diarrhea, lowered RBC and WBC counts, irritability, insomnia

• 50 rem (0.5 Sv)– Mild symptoms, mostly on first day– ~100% survival

• 100-200 rem (1-2 Sv)– Increase in severity and duration– 70% incidence of vomiting at 200 rem– 25%-35% drop in blood cell production– Mild bleeding, fever, and infection in 4-5 weeks

17

Radiation Physiology and EffectsENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Symptomology of Acute Radiation Exposure• 200-350 rem (2-3.5 Sv)

– Earlier and more severe symptoms– Moderate bleeding, fever, infection, and diarrhea at 4-5

weeks• 350-550 rem (3.5-5.5 Sv)

– Severe symptoms– Severe and prolonged vomiting - electrolyte imbalances– 50-90% mortality from damage to hematopoietic system if

untreated

18

Radiation Physiology and EffectsENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Symptomology of Acute Radiation Exposure• 550-750 rem (5.5-7.5 Sv)

– Severe vomiting and nausea on first day– Total destruction of blood-forming organs– Untreated survival time 2-3 weeks

• 750-1000 rem (7.5-10 Sv)– Survival time ~2 weeks– Severe nausea and vomiting over first three days– 75% prostrate by end of first week

• 1000-2000 rem (10-20 Sv)– Severe nausea and vomiting in 30 minutes

• 4500 rem (45 Sv)– Survival time as short as 32 hrs - 100% in one week

19

Radiation Physiology and EffectsENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Long-Term Effects of Radiation Exposure• Radiation carcinogenesis

– Function of exposure, dosage, LET of radiation

• Radiation mutagenesis– Mutations in offspring– Mouse experiments show doubling in mutation rate at

15-30 rad (acute), 100 rad (chronic) exposures

• Radiation-induced cataracts– Observed correlation at 200 rad (acute), 550 rad (chronic)– Evidence of low onset (25 rad) at high LET

20

Radiation Physiology and EffectsENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Radiation Carcinogenesis• Manifestations

– Myelocytic leukemia– Cancer of breast, lung, thyroid, and bowel

• Latency in atomic bomb survivors– Leukemia: mean 14 yrs, range 5-20 years– All other cancers: mean 25 years

• Overall marginal cancer risk– 70-165 deaths/million people/rem/year– 100,000 people exposed to 10 rem (acute) -> 800

additional deaths (20,000 natural cancer deaths) - 4%

21

Radiation Physiology and EffectsENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

NASA Radiation Dose Limits

22

Radiation Physiology and EffectsENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Density of Common Shielding Materials

23

0

2

4

6

8

10

12

Polyethyle

neWate

rGr/E

p

Acrylic

s

AluminumLea

d

Radiation Physiology and EffectsENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Comparative Thickness of Shields (Al=1)

24

0

1

2

3

Polyethyle

neWate

rGr/E

p

Acrylic

s

AluminumLea

d

Radiation Physiology and EffectsENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Comparative Mass for Shielding (Al=1)

25

0

1

2

3

4

5

Polyeth

ylene

Water

Gr/Ep

Acrylics

Aluminu

mLe

ad

Radiation Physiology and EffectsENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Effective Dose Based on Shielding

26

Francis A. Cucinotta, Myung-Hee Y. Kim, and Lei Ren, Managing Lunar and Mars Mission Radiation Risks Part I: Cancer Risks, Uncertainties, and Shielding Effectiveness NASA/TP-2005-213164, July, 2005

Radiation Physiology and EffectsENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Shielding Materials Effect on GCR

27

–, Human Integration Design Handbook, NASA SP-2010-3407, Jan. 2010

Radiation Physiology and EffectsENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Lunar Regolith Shielding for SPE

28

–, Human Integration Design Handbook, NASA SP-2010-3407, Jan. 2010

Radiation Physiology and EffectsENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Mars Regolith Shielding Effectiveness

29

–, Human Integration Design Handbook, NASA SP-2010-3407, Jan. 2010

Radiation Physiology and EffectsENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Radiation Exposure Induced Deaths

30

Francis A. Cucinotta, Myung-Hee Y. Kim, and Lei Ren, Managing Lunar and Mars Mission Radiation Risks Part I: Cancer Risks, Uncertainties, and Shielding Effectiveness NASA/TP-2005-213164, July, 2005

Na#onal  Aeronau#cs  and  Space  Administra#on    

1  

 What’s  New  in  Space  Radia#on  

 Research  for  Explora#on?    

Francis  A.  Cucino.a  

NASA,  Lyndon  B.  Johnson  Space  Center      

Presented  to  Future  In-­‐Space  Opera#ons  (FISO)  May  18,  2011  

 

2  

The  Space  RadiaBon  Problem  

 Space  radia#on  is  comprised  of  high-­‐energy  protons  and  heavy  ions  (HZE’s)  and  secondary  protons,  neutrons,  and  heavy  ions  produced  in  shielding  –  Unique  damage  to  

biomolecules,  cells,  and  Bssues  occurs  from  HZE  ions  

–  No  human  data  to  esBmate  risk  –  Expt.  models  must  be  applied  

or  developed  to  esBmate  cancer,  and  other  risks  

–  Shielding  has  excessive  costs  and  will  not  eliminate  galacBc  cosmic  rays  (GCR)  

Single  HZE  ions  in  cells  And  DNA  breaks  

Single  HZE  ions  in  photo-­‐emulsions  Leaving  visible  images  

Na#onal  Aeronau#cs  and  Space  Administra#on  

Na#onal  Aeronau#cs  and  Space  Administra#on    

3  

ExecuBve  Summary  

•  EsBmaBng  space  radiaBon  risks  carries  large  uncertainBes  that  preclude  seUng  exposure  limits  and  evaluaBng  many  miBgaBon  measures  

•  NASA  needs  to  close  the  knowledge  gap  on  a  broad-­‐range  of  biological  quesBons  before  radiaBon  protecBon  goals  can  be  met  for  exploraBon  

•  The  Human  Research  Program  (HRP),  Space  RadiaBon  Program  Element  (SRP)  led  by  JSC  is  commi.ed  to  solving  the  space  radiaBon  problem  for  exploraBon  

Na#onal  Aeronau#cs  and  Space  Administra#on    

Space  RadiaBon  Environments  

•  Galac#c  cosmic  rays  (GCR)  penetra#ng  protons  and  heavy  nuclei  -­‐  a  biological  science  challenge  –  shielding  is  not  effec#ve  –  large  biological  uncertain#es  limits  ability  

to  evaluate  risks  and  effec#veness  of  mi#ga#ons  

 •  Solar  Par#cle  Events  (SPE)  largely  medium  

energy  protons  –  a  shielding,    opera#onal,  and  risk  assessment  challenge  –  shielding  is  effec#ve;  op#miza#on  needed  

to  reduce  weight  –  improved  understanding  of  radiobiology  

needed  to  perform  op#miza#on  –  accurate  event  alert  and  responses  is  

essen#al  for  crew  safety  

4  

GCR  a  conAnuum  of  ionizing  radiaAon  types  

Solar  parAcle  events  and  the  11-­‐yr  solar  cycle  

GCR Charge Number0 5 10 15 20 25 30

% C

ontr

ibut

ion

0.001

0.01

0.1

1

10

100Fluence (F)Dose = F x LETDose Eq = Dose x QF

Na#onal  Aeronau#cs  and  Space  Administra#on    

5  

Space  Safety  Requirements  

•  Congress  has  chartered  the  Na#onal  Council  on  Radia#on  Protec#on  (NCRP)  to  guide  Federal  agencies  on  radia#on  limits  and  procedures  

–  NCRP  guides  NASA  on  astronaut  dose  limits  

•  Crew  safety  –  limit  of  3%  fatal  cancer  risk    –  prevent  radia#on  sickness  during  mission  –  new  explora#on  requirements  limit  brain  

and  heart  disease  risks  from  space  radia#on  

• Mission  and  Vehicle  Requirements  –   shielding,  dosimetry,  and  

countermeasures  • NASA  programs  must  follow  the  ALARA  principle  to  ensure  astronauts  do  not  approach  dose  limits  

Cell  fusion  caused  by  radiaAon  

Fe+TGFβ  

γ

TGFβ  

Fe

γ  +TGFβ  

Sham  

Space  RadiaAon  in  breast  cancer  formaAon  

Na#onal  Aeronau#cs  and  Space  Administra#on    

6  

Categories  of  RadiaBon  Risk  

Four  categories  of  risk  of  concern  to  NASA:    

–  Carcinogenesis  (morbidity  and  mortality  risk)  

–  Acute  and  Late  Central  Nervous  System  (CNS)  risks  

   immediate  or  late  func#onal  changes    

–  Chronic  &  Degenera>ve  Tissue  Risks  

 cataracts,  heart-­‐disease,  etc.  

–  Acute  Radia>on  Risks  –  sickness  or  death  

Differences  in  biological  damage  of  heavy  nuclei  in  space  with  x-­‐rays,  limits  Earth-­‐based  data  on  health  effects  for  space  applicaBons  

–  New  knowledge  on  risks  must  be  obtained  

Lens  changes  in  cataracts  

First  experiments  for  leukemia  inducAon  with  GCR  

cataracts  

Na#onal  Aeronau#cs  and  Space  Administra#on    

Space  RadiaBon  Health  Risks  •  NASA  limits  acceptable  levels  of  risks  of  astronauts  to  a  3%  Risk  of  

Exposure  Induced  Death  (REID)  from  cancer  –  PEL  requirement  to  be  below  95%  Confidence  Interval  (C.I.)  for  cancer  

risk  protects  against  uncertain#es  in  risk  projec#on  models  –  Es#mates  of  number  of  days  to  be  within  a  95%  C.I.  are  used  to  assess:  

•  Safe  mission  lengths    •  Crew  selec#on  criteria  such  as  Age,  Gender  and  Prior  Exposure  •  Mi#ga#ons  such  as  Shielding  or  Biological  Countermeasure  Requirements  

 

•  Non-­‐cancer  risks  are  not  well  defined  –  Poten#al  for  late  non-­‐cancer  mortality  risks  (Heart  and  CNS)  on  long-­‐

term  explora#on  missions  confounds  assessments  of  Acceptable  Risk,  which  includes  only  cancer  at  this  #me  

–  Addi#onally,  the  NCRP  recommends  that  limits  for  non-­‐cancer  morbidity  risks  be  based  on  avoiding  any  clinically  significant  effect  

•  Research  in  cells  and  murine  models  are  not  conclusive  regarding  clinical  significance  of  space  radia#on  exposure  to  the  astronaut's  CNS  

•  Need  appropriate  animal  model  to  assess  clinical  significance  

7  

•  Re#nal  flashes  observed  by  astronauts  suggests  single  heavy  nuclei  can  disrupt  brain  func#on.  ―  Central  nervous  system  (CNS)  damage  by  

x-­‐rays  is  not  observed  except  at  very  high  doses  

•  In-­‐flight  cogni#ve  changes  and  late  effects  similar  to  Alzheimer’s  disease  are  a  concern  for  GCR.    

•  NASA  research  in  cells  and  mouse/rat  models  has  increased  concern  for  CNS  Risks  –  Over  90  CNS  journal  publicaBons  

supported  by  NASA  since  2000  –  Studies  have  quanBfied  rate  of  neuronal  

degeneraBon,  oxidaBve  stress,  apoptosis,  inflammaBon,  and  changes  in  dopamine  funcBon  related  to  late  CNS  risks  

–  CogniBve  tests  in  rats/mice  show  detriments  at  doses  as  low  as  10  mGy  (1  rad)    

•  Large  hurdle  remains  to  establish  significance  in  humans  

0

50

100

150

200

250

300

350

No.

Dcx

-pos

itive

Cel

ls

0 Gy 1 Gy 2 Gy 3 Gy

ReducBon  in  number  of  neurons  (neurodegeneraBon)  for  increasing  Iron  doses  in  mouse  hippocampus  

CNS  Risks  from  GalacBc  Cosmic  Rays  (GCR)      

Oxidative Stress (Lipid peroxidation:4Oxidative Stress (Lipid peroxidation:4--Hydroxynonenal) is Increased in Hydroxynonenal) is Increased in Mouse Hippocampus 9 Months After 2 GyMouse Hippocampus 9 Months After 2 Gy of of 5656Fe Fe IrradiationIrradiation

ControlControl Iron irradiatedIron irradiated

Na#onal  Aeronau#cs  and  Space  Administra#on    

RadiaBon  and  Non-­‐Cancer  Effects  

•  Early  Acute  risks  are  very  unlikely:  –  Low  or  modest  dose-­‐rates  for  SPE’s  

insufficient  for  risk  of  early  death  –  SPE  doses  are  greatly  reduced  by  #ssue  or  

vehicle  shielding    •  Radia#on  induced  Late  Non-­‐Cancer  risks  are  

well  known  at  high  doses  and  recently  a  concern  at  doses  below  1  Sv  (100  rem)  –  Significant  Heart  disease  in  Japanese  

Survivors  and  several  pa#ent  and  Reactor  Worker  Studies  

–  Dose  threshold  is  possible  making  risk  unlikely  for  ISS  Missions(<0.2  Sv)  ;  however  a  concern  for  Mars  or  lunar  missions  due  to  higher  GCR  and  SPE  dose  

–  Qualita#ve  differences  between  GCR  and  gamma-­‐rays  are  a  major  concern  

9  

Control Iron Nuclei Vasculature  Damage  by  GCR  

NASA  Space  RadiaBon  Laboratory  •   A  $34-­‐million  facility,  is  located  at  DOE’s  Brookhaven  Na#onal  Laboratory  is  managed  by  NASA’s  Johnson  Space  Center.  It  is  one  of  the  few  places  in  the  world  that  can  simulate  heavy  ions  in  space.    •   New  joint  DoE-­‐NASA  Electron  beam  injector  source  (EBIS)  for  2009  increases  space  simula#on  capability  •   $9  M  Annual  opera#ons  cost  

Beam  port  

RFQ     Linac  

EBIS  SC  solenoid    

Dipoles  –  preparing  

EBIS  Construc#on  

NaBonal  AeronauBcs  and  Space  AdministraBon  

11  

Major  Sources  of  Uncertainty  Na#onal  Aeronau#cs  and  Space  Administra#on  

•  Radia#on  quality  effects  on  biological  damage    – Qualita#ve  and  quan#ta#ve  differences  between  space  radia#on  compared  to  x-­‐rays  or  gamma-­‐rays    

•  Dependence  of  risk  on  dose-­‐rates  in  space  – Biology  of  repair,  cell  &  #ssue  regula#on  

•  Predic#ng  solar  events  – Temporal  and  size  predic#ons  

•  Extrapola#on  from  experimental  data  to  humans  

•  Individual  radia#on-­‐sensi#vity  – Gene#c,  dietary  and  “healthy  worker”  effects  

Durante  &  Cucinora,  Nature  Rev.  Cancer  (2008)  

(%) Fatal Cancer Risk0 3 6 9 12 15

Probab

ility

0.000

0.003

0.006

0.009

0.012

0.015

Distribution aluminumDistribution polyethyleneDistribution Liq. Hydrogen (H2) E(alum) = 0.87 Sv E(poly) = 0.77 SvE(H2) = 0.43 SvR(alum) = 3.2 [1.0,10.5] (%)R(poly) = 2.9 [0.94, 9.2] (%)R(H2) = 1.6 [0.52, 5.1] (%)

Cucinora  et  al  Radiat  Meas  (2006)  

12  

Space  Radia#on  Shielding  is  Well  Understood  

Radia#on  Shielding  Materials  

August  1972  SPE  and  GCR  Solar  Min  

Shielding Depth, g/cm20 5 10 15 20 25 30 35

Dose

Equ

ivalen

t, rem

/yr1

10

100

1000

10000GCR L. HydrogenGCR PolyethyleneGCR GraphiteGCR AluminumGCR RegolithSPE GraphiteSPE RegolithSPE L. Hydrogen

•  NASA  has  invested  in  shielding  technologies  for  many  years  and  understanding  is  nearly  complete    

–  Over  1,000  research  publicaBons  since  1980  

–  Solar  events  can  be  shielded  –  GCR  requires  enormous  mass  to  shield  

because  of  high  energies  and  secondary  radiaBon    

•  Highly  accurate  predic#ve  codes  exist  with  +15%  errors  for  organ  exposure  projec#ons  

–  Transport  codes  –  Environmental  models  –  Op#mal  materials    –  Topology  Design  methods  

•  Knowledge  missing  is  accurate  understanding  of  radiobiology  for  Exposure  to  Risk    conversion  

Confidence Levels for Career Risks on ISSEXAMPLE: 45-yr.-Old Males; GCR and trapped proton exposures

Solar Max

Days on ISS0

(%) C

onfid

ence

tobe

bel

ow c

aree

r lim

it

100Current Uncertainties With Uncertainty Reduction

50

60

70

80

90

250 500 750 1000 250 500 750 1000Days on ISS

Solar Max

Solar MinSolar Min

SAFE ZONE

Value  Of  Uncertainty  Reduc#on  Research:    Cost  of  research  to  reduce  uncertain#es  much  less  than  cost  of  shielding  in  space  or  reducing  mission  length  

Na#onal  Aeronau#cs  and  Space  Administra#on    

What’s  New  in  Space  RadiaBon  Research?  

•  New  Epidemiology  data  suggests  much  weaker  age  dependence  on  radia#on  cancer  risks  –  Number  1  Trade  variable  (Astronaut  age)  is  negated  

•  Probabilis#c  risk  assessments  replace  “rads  and  rem”  –  New  Quality  factors  and  uncertainty  assessments  

•  Galac#c  cosmic  rays  (GCR)  are  much  higher  concern  than  Solar  par#cle  events  –  Shielding  plays  only  a  small  role  for  GCR    

•  New  health  risks  of  concern  from  radia#on  –  Heart  disease,  and  Central  nervous  system  (CNS)  risks  

•  Risks  es#mated  to  be  much  smaller  for  “Never-­‐smokers”  

14  

Roles  of  Select  Commi.ees  and  RadiaBon  ProjecBon  Councils  

•  Select  expert  panels  from  the  Na#onal  Academy  of  Sciences  (NAS)  and  United  Na#ons  (UN)  update  human  radio-­‐epidemiology  based  es#mates  of  radia#on  cancer  risks  each  decade  

•  These  reports  form  the  basis  for  revised  radia#on  protec#on  standards  and  policy  as  recommended  by  the  US  Na#onal  Council  on  Radia#on  Protec#on  and  Measurements  (NCRP)  and  Interna#onal  Commission  on  Radiological  Protec#on  (ICRP)    

•  The  most  recent  reports  from  NAS  (BEIR  VII)  and  the  UN  (UNSCEAR  2006)  make  important  changes  to  the  descrip#on  of  the  age  dependence  of  cancer  risks,  and  cancer  risks  at  low  dose-­‐rates  –  BEIR  VII:  Linear  dose  response  with  no  age  at  exposure  dependence  above  age  30-­‐yr  –  UNSCEAR  model  shows  similar  age  dependence  for  cancer  incidence  

•  These  changes  will  increase  risk  projec#ons  if  accepted  by  NASA  

15  

Na#onal  Aeronau#cs  and  Space  Administra#on  

Na#onal  Aeronau#cs  and  Space  Administra#on    

16  

NASA  2010  Cancer  ProjecBon  Model  

•  NASA  is  developing  new  approaches  to  radia#on  risk  assessment:  –  Probabilis#c  risk  assessment  framework  

–  Tissue  specific  es#mates  •  Research  focus  is  on  uncertainty  

reduc#on  –  Smaller  tolerances  are  needed  as  risk  increases,  with  <50%  uncertainty      required  for  Mars  mission  

•  NASA  2010  Model    –  Updates  to  Low  LET  Risk  coefficients  –  Risks  for  Never-­‐Smokers    –  Track  Structure  and  Fluence  based  approach  to  radia#on  quality  factors  

•  Leukemia  Q  lower  than  Solid  cancer  Q  

Na#onal  Aeronau#cs  and  Space  Administra#on    

GCR  doses  on  Mars  

Na#onal  Aeronau#cs  and  Space  Administra#on    

RadiaBon  Risks  for  Never-­‐Smokers  •  More  than  90%  of  Astronauts  are  never-­‐

smokers  and  remainder  are  former  smokers  

•  Smoking  effects  on  Risk  projec#ons:  –  Epidemiology  data  confounded  by  possible  

radia#on-­‐smoking  interac#ons,  and  errors  documen#ng    tobacco  use  

–  Average  U.S.  Popula#on  used    by  NCRP  Reports  98  and  132  

•  NASA  Model  projects  a  20  to  40-­‐%  risk  reduc#on  for  never-­‐smokers  compared  to  U.S.  Ave.    –  Larger  decreases  are  possible  if  more  

were  known  on  Risk  Transfer  models  –  Balance  between  Small  Cell  and  Non-­‐Small  

Cell  Lung  Cancer  a  cri#cal  ques#on  including  high  LET  effects  

17  

Thun  et  al.,  PLoS  Med  (2008)  

Lung  cancer  in  Unexposed  

CDC  EsBmates  of  Smoking  A.ributable  Cancers  

RelaBve  Risk  to  Never-­‐smokers  (NS) RR  for  NS  to  U.S.  Avg

Males Current  smokers Former  smokers

Never-­‐smokers RR(NS/U.S.)

Esophagus 6.76 4.46 1 0.27 Stomach 1.96 1.47 1 0.71 Bladder 3.27 2.09 1 0.50

Oral  Cavity 10.89 3.4 1 0.23 Lung* 23.26 8.7 1 0.11 Females Current  smokers Former  

smokers Never-­‐smokers RR(NS/U.S.)

Esophagus 7.75 2.79 1 0.35 Stomach 1.36 1.32 1 0.85 Bladder 2.22 1.89 1 0.65

Oral  Cavity 5.08 2.29 1 0.46 Lung* 12.69 4.53 1 0.23

Na#onal  Aeronau#cs  and  Space  Administra#on    

*Other  cancers  being  considered  Colon,  leukemia,  and  liver  

Point  EsBmates:  Risk  of  Exposure  Induced  Death  (REID)  

19  

Na#onal  Aeronau#cs  and  Space  Administra#on    %RE

ID  per  Sv  

Fatal lung cancer risks per Sv (per 100 rem) Transfer model impact much larger change than >100 cm of GCR shielding– the 100 Billion Dollar question?  

% REID, Females % REID, Males Age at Exposure 35, y 45, y 55, y 35, y 45, y 55, y

Model Type Model rates Average U.S. Population, 2005 Additive BEIR VII 1.20 1.20 1.18 0.65 0.66 0.66

UNSCEAR 1.28 1.27 1.22 0.71 0.71 0.69 RERF 1.33 1.34 1.32 0.72 0.73 0.73

Multiplicative BEIR VII 2.88 2.74 2.38 0.95 0.92 0.83 UNSCEAR 3.56 3.50 3.23 1.17 1.17 1.11 RERF 3.71 4.16 4.21 1.13 1.30 1.37

Mixture BEIR VII 2.04 1.97 2.78 0.80 0.79 0.74 UNSCEAR 2.43 2.39 2.23 0.94 0.94 0.89 RERF 2.53 2.77 2.78 0.92 1.02 1.05

Never-smokers Multiplicative BEIR VII 0.44 0.41 0.37 0.15 0.15 0.14

UNSCEAR 0.57 0.57 0.54 0.15 0.15 0.14 RERF 0.55 0.61 0.66 0.14 0.15 0.16

Mixture BEIR VII 0.85 0.84 0.81 0.40 0.40 0.38 UNSCEAR 0.96 0.95 0.91 0.46 0.45 0.42 RERF 0.98 1.01 1.02 0.46 0.47 0.45

Generalized Multiplicative

RERF, Generalized Multiplicative for never-smokers

0.39 0.47 0.53 0.16 0.17 0.20

 Na#onal  Aeronau#cs  and  Space  Administra#on    

“Safe”  days  in  Space:  UncertainBes  esBmated  using  subjecBve  PDFs  propagated  using  Monte-­‐Carlo  techniques  

%REID for Males and 95% CI %REID for Females and 95% CI aE, y Avg. U.S. Never-Smokers Decrease

(%) Avg. U.S. Never-Smokers Decrease

(%) 30 2.26 [0.76, 8.11] 1.79 [0.60, 6.42] 21 3.58 [1.15, 12.9] 2.52 [0.81, 9.06] 30

40 2.10 [0.71, 7.33] 1.63 [0.55, 5.69] 22 3.23 [1.03, 11.5] 2.18 [0.70, 7.66] 33

50 1.93 [0.65, 6.75] 1.46 [0.49, 5.11] 24 2.89 [0.88, 10.2] 1.89 [0.60, 6.70] 34

aE, y NASA 2005 NASA 2010 Avg. U.S.

NASA 2010 Never-Smokers

Males 35 158 140 (186) 180 (239) 45 207 150 (200) 198 (263) 55 302 169 (218) 229 (297)

Females 35 129 88 (120) 130 (172) 45 173 97 (129) 150 (196) 55 259 113 (149) 177 (231)

%REID  predic#ons  and  95%  CI  for  never-­‐smokers  and  average  U.S.  popula#on  for  1-­‐year  in  deep  space  at  solar  minimum  with  20  g/cm2  aluminum  shielding:  

Maximum  Days  in  Deep  Space  with  95%  Confidence  to  be  below  Limits  (alterna#ve  quality  factor  errors  in  parenthesis):  

Na#onal  Aeronau#cs  and  Space  Administra#on    

Solar  Min  and  Max  Comparison  with  Proposed  NASA  Quality  Factor  (Q)  and  Tissue  Weights  (Wt)  vs  ICRP  Quality  Factor  Defini#on  

22  

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120

E,  mSv

x,  g/cm2

Effective  dose  for  Male  behind  Shielding

Annual  GCR  at  Solar  Minimum

Aluminum

Polyethylene

E(NASA  Q)E(ICRP2007  Q/Wt)

Annual  GCR  at  Solar  MaximumAluminum

Polyethylene

E(NASA  Q) E(ICRP2007  Q/Wt)

Shielding  Materials  play  lirle  role  for  GCR  

23  

Material  E (Sv)  

Solar Minimum  SPE + Solar

Maximum  

10 g/cm2  

Liquid H2   0.40   0.19  Liquid CH4   0.50   0.30  Polyethylene   0.52   0.33  Water   0.53   0.35  Epoxy   0.53   0.36  Aluminum   0.57   0.43  

20 g/cm2  

Liquid H2   0.36   0.16  Liquid CH4   0.45   0.22  Polyethylene   0.47   0.24  Water   0.48   0.25  Epoxy   0.49   0.26  Aluminum   0.53   0.30  

40 g/cm2  

Liquid H2   0.31   0.15  Liquid CH4   0.43   0.21  Polyethylene   0.46   0.23  Water   0.46   0.23  Epoxy   0.48   0.24  Aluminum   0.51   0.26  

Annual effective dose. Solar max calculations include 1972 Solar Particle Event.

 Na#onal  Aeronau#cs  and  Space  Administra#on    

24  

Solar  ParBcle  Event  (SPE)  Risks  

NaBonal  AeronauBcs  and  Space  AdministraBon  

Research  studies  show  that  risks  of  acute  death  from  large  SPEs  has  been  over-­‐esBmated  in  the  past:  – Proper  evalua#on  of  dose-­‐rates,  #ssue  shielding,  and  proton  biological  effec#veness  show  risk  is  very  small  

SPE  risk  remain  important  for  lunar  EVA      – Radia#on  sickness  if  unprotected  >  2  hour  EVA  – Cancer  risk  is  priority  for  both  EVA  and  IVA  

Proper  resource  management  through  research:  – Probabilis#c  risk  assessment  tools  for  Lunar  and  Mars  Architecture  studies  – Op#mize  shielding  requirements  by  improved  understanding  of  proton  radiobiology  &  shielding  design  tools  

– ESMD  and  SMD  collabora#ons  on  research  to  improve  SPE  alert,  monitoring  and  forecas#ng  

– Biological  countermeasure  development  for  proton  cancer,  and  Acute  radia#on  syndromes  (if  needed)  

Na#onal  Aeronau#cs  and  Space  Administra#on    

25  

SPE  ProbabilisBc  Risk  Assessment  

•  Using  detailed  data  base  of  all  SPE’s  in  space  age  (1955-­‐current)  and  historical  data  on  Ice-­‐core  nitrate  samples  (15th-­‐century  to  current),  SRP  has  developed  a  probabilis#c  model  of  SPE  occurrence,  size,  and  frequency  –  Hazard  rate  model  using  Survival  

analysis  –  Non-­‐uniform  Poisson  process  

provides  high  quality  fit  of  all  SPE  data  

•  Probabilis#c  model  supports  shielding  design  and  resource  management  goals  for  Explora#on  missions  

•  Department  of  Defense  model  es#mates  various  acute  risks  

0

20

40

60

80

100

120

140

160

2/1/54 2/1/58 2/1/62 2/1/66 2/1/70 2/1/74 2/1/78 2/1/82 2/1/86 2/1/90 2/1/94 2/1/98 2/1/02 2/1/06

Date

λ (t)

SPE  Hazard  Rate  in  Space  Era  

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000

Time, d

P ModelSample

Non-­‐Uniform  Poisson  Process    

Na#onal  Aeronau#cs  and  Space  Administra#on    

Acceptable  Risk  Levels  for  ExploraBon  Missions  

•  The  NASA  Standard  of  3%  Risk  of  Exposure  Induced  Death  was  set  in  1989  by  NASA  Administrator  with  OSHA  Concurrence  under  Code  of  Federal  Regula#on  (CFR  1960)  

•  NASA  has  set  an  iden#cal  acceptable  risk  level  for  Explora#on  missions  under  the  OCHMO’s  2006  Permissible  Exposure  Limits  (PEL)  –  OSHA  concurrences  on  NASA  Health  policy  in  Spaceflight  dropped  in  

2004  ayer  discussion  with  OCHMO  •  The  NCRP  recommenda#on  of  3%  Limit  based  on  3  ra#onales:  

–  Comparison  of  fatality  rates  in  less-­‐safe  Industries  made  in  1989  –  Comparison  to  risk  limits  for  ground-­‐based  workers  –  Recogni#on  of  other  spaceflight  risks  

•  Fatality  rates  in  less-­‐safe  industries  have  improved  more  than  2-­‐fold  since  1989  and  therefore  no  longer  valid  basis;  however  other  2  ra#onale  from  NCRP  in  1989  are  s#ll  valid  

26  

Na#onal  Aeronau#cs  and  Space  Administra#on    

Acceptable  Levels  of  Risk  -­‐  conBnued  •  A  discussion  of  higher  or  lower  Acceptable  Risk  Levels  would  

consider  –  Over  arching  Ethical  and  Safety  standards  at  NASA  and  in  the  U.S.  –  Benefits  to  Human-­‐kind  from  Explora#on  missions  –  Emerging  informa#on  on  possible  radia#on  mortality  risks  from  non-­‐

cancer  diseases,  notably  Heart  (Stroke  and  Coronary  Heart  Disease)  and  Central  Nervous  System  risks  

–  The  resul#ng  burden  for  morbidity  risks  including  cancer,  cataracts,  aging,  and  other  diseases  that  entail  pain,  suffering,  and  economic  impacts  

•  Radia#on  cancer  incidence  probability  approximately  Two  #mes  higher  than  cancer  death  probability  

–  Improvements  in  other  areas  of  safety  at  NASA,  other  government  agencies  and  work  places  since  1989  

–  Balance  between  other  space  flight  risks  and  space  radia#on  risks  •  NCRP  Recommenda#on  is  the  high  risk  nature  of  space  missions  precludes  allowing  an  

overly  large  radia#on  risk  to  Astronauts  –  Impacts  on  finding  solu#ons  through  research  programs  and  mission  

design  architectures  that  result  from  Acceptable  Risk  Standards  

27  

Na#onal  Aeronau#cs  and  Space  Administra#on    

28  

3% Risk (REID)

6% Risk (REID)

95% CL 90% CL 95% CL 90% CL Age, y Males 35 140 184 290 361 45 150 196 311 392 55 169 219 349 439 Age, y Females 35 88 116 187 232 45 97 128 206 255 55 113 146 234 293

Number  of  Days  in  Deep  Space  At  Solar  minimum  with  a    95%  or  90%  CL    to  be  below  3%  or  6%  Risk  of  Cancer  Death  from  Space  Radia#on  (Avg  US  pop)  

3%  and  6%  Cancer  Mortality  Risks    at  90%  to  95%  Confidence  Levels  (CL)  (Solar  Min  at  20  g/cm2  Aluminum)  

Page No. 1 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

Lora Bailey 10/31/2012

Engineering Directorate NASA Johnson Space Center

This package is for Deep Space Habitat Project

Pre-decisional Use Only

Future In-Space Operations (FISO) Telecon Colloquium

Deep Space Habitat Project

Radiation Studies for a

Long Duration Deep Space Transit Habitat

Page No. 3 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

Presentation Purpose and Background

The purpose of this presentation is to show data and conclusions from radiation analysis conducted of Deep Space Habitat Project architectures

A new charter was initiated for the AES Deep Space Habitat Project at the beginning of FY2012 (October 2011)

Initiate development effort for a deep space transit habitat that would be manned for a minimum of 365 consecutive days, without crew changeout or provisioning resupply during that period Focus on the most pressing engineering challenges for a 1-year vehicle Include a launch packaging option that could utilize ELVs (in addition to SLS)

The Human Exploration Architecture roadmap showed the first deep space facility launching in 2019, to be manned by 2021

(* reference illustration below from D. Craig HEA charts dated January 3rd, 2012.)

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021+

L2 Gateway Deployment L2 Gateway ISS Testing and Research L2 Test Flight OFT-1

?

Page No. 5 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

*MSFC study/ ISS-Derived Deep Space Facility

*

D. Smitherman, et al, 12/2011.

Hab/Lab Module

Tunnel/Airlock

MPLM (Multi-Purpose Logistics Module)

This transit habitat consists of three basic elements:

1. an ISS Hab/Lab Module

2. a Tunnel/Airlock

3. an ISS MPLM

Orion

General Propulsion Module

Page No. 6 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

*MSFC study/ ISS-Derived Deep Space Facility

*Reference chart

Configurations based

Smitherman, et al, 12/2011.

Habitation capability: 4 crewmembers

45.5 mtons

Page No. 7 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

Existing ground ISS Assets*

Page 7

Raffaello MPLM FM2 at KSC SSPF

Node 1 STA at KSC SSPF

US Hab shell at MSFC Building 4755

* -Derived DSH

N1-STA, MPLM, and Hab modules

Page No. 8 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

SE&I Architectural/Galactic Cosmic Radiation Analysis

Page No. 9 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

Addressing GCR

Focus on GCR:

It can be viewed as the sound barrier we must break through to achieve real space exploration

Without addressing this challenge, we cannot conduct space travel and exploration for durations beyond our ~180-day limit, using architectures that employ reasonable risk-reduction methods

What we can do:

Embark on pursuing a best-effort solution that implements a smart architecture (beginning with use of current ISS elements), incorporates little/no additional dead mass shielding, and meets requirements in the middle as best possible

Page No. 12 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

Radiation Primer, continued

SPE GCR

Occasional, infrequent events occurring most often during solar cycle maximum (~11-year cycles)

Monitoring of SPE radiation events is performed, and can be reported in a timely manner to the crew to seek shelter in a specified area containing shielding for short periods if deemed necessary

High flux but lower energy and are only for brief periods

Occurs all day every day, varying in flux with solar cycle (lower GCR levels occur during solar maximum)

Is omni-directional in addition to being continuous, so having a small designated area as a temporary shelter that contains shielding is not a solution option (also, outside LEO, magnetic field not present to help protect against GCR)

Moderate flux but much higher energy -- all day, every day

Definition comparison

Page No. 13 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

Radiation Primer, continued

SPE GCR

Shielding Effectiveness Comparison

SPE radiation is effectively curtailed by shielding. GCR radiation does not respond very favorably to shielding. Shielding has much less effectiveness against GCR.

~7% reduction ~50% reduction

Shielding is not conducive for

protecting against GCR.

, One-year dose , One-year dose for an idealized spherical model/shield for an idealized spherical model/shield

Page No. 14 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

*

in one year

Effect of Solar Cycle on GCR Exposure

Page No. 15 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

Permissible Exposure Limits (PEL), Stochastic Effects, and Risk of Exposure-

Induced Death (REID)

- Predictive analysis results showing crew lifetime radiation exposure limit data and goals

Page No. 16 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

*Permissible Exposure Limits Stochastic Effects

Risk of Exposure Induced Death (REID)

due to cancer is limited to

level

Cancer incidence is reported as well

and is usually ~1.5x higher than mortality

*Reference: Edward Semones charts, 12/13/2011

Pre-Decisional, Internal Use Only

150mSv

SRAG recommends 150 mSv as crew lifetime exposure limit goal

Page No. 17 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  *Projected Average Years of Life Lost per Death for an Exposure-induced Cancer for

Exposure Limit to 3% REID

Astronaut exposures have not exceeded the REID limit estimate and thus they have lower

years of life-loss

*Reference: Edward Semones charts, 12/13/2011

Pre-Decisional, For Internal Use Only

Page No. 18 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

*Mission Doses

*Reference: Edward Semones charts, 12/13/2011

Pre-Decisional, For Internal Use Only

Page No. 19 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

Analysis results of an ISS-derived architecture exposed to 365-days of GCR at EML1

Page No. 21 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

The DSH ISS-derived concept is an in-line architecture that was analyzed for GCR protection performance at EML1/L2 for 365 consecutive days of exposure

module models, resulted in a range of internal dosage from 394 to 456 mSv

ISS-Derived, GCR Analysis Example

*

al, 12/2011.

Initial DSH Architecture/Point of Departure: *MSFC study/ ISS-Derived Deep Space Facility

Radiation Analysis Model of Similar ISS Elements

Lab + A/L tunnel + MPLM

Crewlock + Lab + Node

Page No. 22 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

Risk of Exposure-Induced Death

Males about 47 years old or older are in range Females about 57 years old or older are in range Recall: design target GCR exposure of 150 mSv Effective Dose --- these dose values are 2 3 times higher

Far away from arriving at 150 mSv

Multiply these doses by 500+ days divided by 365 days for a short trip to Mars these radiation

space travel meeting the 3%REID at 95%CL at solar minimum levels For illustration purposes only, not representative

of formal exploration limits

*Analysis Reference: Janet Barzilla charts, 04/30/2012, Pre-Decisional

Notionally, this suggests that for a typical ISS structure exposure to 1 year at EML1:

*

Page No. 23 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

Monolithic shield sizing for GCR: Aluminum, Polyethylene, water, liquid hydrogen

Page No. 25 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

Shielding mass (g/cm2)

Shielding mass (kg)

Shielding launch cost ($50,000/kg)

Shielding launch cost ($5,000/kg)

1000 1.49 x 106 $9.7 x1010 $9.7 x109

500 7.4 x105 $1.9 x1010 $1.9 x109

100 1.5 x105 $9.6 x109 $9.6 x108

50 7.5 x104 $4.8 x109 $ 4.8 x108

10 1.5 x104 $9.6 x108 $9.6 x107

Shielding a small portion of the vehicle total habitable volume, say a cylinder 7 meters long and 5 meters in diameter (A = 149 m2; V = 137 m3) possibly feasible if launch costs and shielding mass requirements are low enough

Once again - The numbers used in the calculations are only estimates for the purpose of working the sample problem and do not represent any official NASA design or planning data

*Reference: Dr. S. Koontz charts, 01/31/2012

Pre-Decisional, For Internal Use Only

Approximated shielding estimate for an ISS Lab Module

Page No. 26 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

* Physical thickness corresponding to areal densities

Areal density g/cm2

Aluminum Density = 2.7 g/cm3

Polyethylene or Water Density = 1.0 g/cm3

Liquid Hydrogen Density = 0.07 g/cm3

Boiling point = 20.28o K

1000 370 cm (146 in) 1,000 cm (394 in) 14, 285 cm (5624 in)

500 185 cm (72.8 in) 500 cm (197 in) 7,142 cm (2812 in)

100 37 cm (14.5 in) 100 cm (39.4 in) 1, 428 cm (562 in)

50 19 cm (7.5 in) 50 cm (20 in) 714 cm (281 in)

10 3.7 cm (1.5 in) 10 cm (4 in) 142 cm (56 in)

Thickness in cm = (areal density in g/cm2)/(density in g/cm3) *Reference: Dr. S. Koontz charts, 01/31/2012

Pre-Decisional, For Internal Use Only

Page No. 27 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

Radiation Remarks

Although SPE shielding in the form of a specific storm shelter area will be incorporated into the DSH, we would not expect to generically use dead mass shielding as a primary go-forward solution for GCR

Continued architecture pathfinding study by investigating and conducting

DSH SE&I Study, continued

Page No. 28 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

Analysis results of architecture exposed to 365-days of GCR at EML1

Page No. 29 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

Hub and Spoke Architecture Hub and Spoke: centralized which possesses an internal layout where most of the crew activity takes place most of the time

Surround the core/hub with major structural elements that contain logistics, equipment, trash, prop, etc

Node in center, depicted here as surrounded radially by three MPLMs and an Airlock

Orion

FGB

Page No. 30 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

The hopeful expectation would be that GCR analysis of the surrounded architecture would show a measurable shielding mass increase above the in-

so as to provide GCR reduction that is substantive enough to consider it as a smart architecture IF that much volume would be deemed necessary for the transit duration/application being considered.

<

this in-line architecture <g/cm2 this surrounded architecture

Comparison

Page No. 31 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

was analyzed for GCR protection performance

Three examined inside the center Node showed a range of dosage from ~385 to 435 mSv for the surrounded architecture This is essentially very little change from the ISS-derived results which were a range from ~394 to 456 mSv for the in-line architecture

Hub and Spoke Architecture Concept Radiation Analysis Model of

Aluminum Weight-smeared Nodes

Real ISS Node model in center, 3 dose locations evaluated inside

Page No. 32 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

Results Interpretation/Discussion Effective GCR Shielding

~40mSv reduction

About a doubling of the effective shielding thickness was successfully achieved using the surrounded architecture concept. However, the corresponding crew radiation dose reduction is only by about 10%, due to the Node shielding alone being somewhere along the knee of this curve, thus placing the additional shielding provided on the flatter part of this curve.

Node by itself, ~430 mSv

Prior to this analysis, ~15 g/cm2 was expected as an approx equivalent

shielding provided by an ISS module, but the Node is actually showing

closer to ~30 g/cm2

Page No. 33 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

The Hub-and-Spoke/Surrounded architecture shows a slight favorable GCR reduction over the in-line, but not by a significant amount

The general intent was/should be to aspire for a vehicle architecture that provides below ~400 mSv of dose in a best effort possible

much lower/better than ~360 mSv out at 100 g/cm2, so getting as low as ~385 mSv is reasonable from just the vehicle architectural arrangement alone

for crew, which includes the additional protective effects of crew/human tissue and geometry in the analysis

If the Node 2 by itself (or any other module), offers an inherit shielding such as was shown of approximately 30 g/cm2, then the additional GCR protection

of a surrounded architecture will be limited to values along the flat part of the curve ie, it already possesses an efficient amount of shielding that buys you the most bang for the buck, and beyond that, the shielding weight penalty buys you far less GCR protection

Page No. 37 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

Back - up

Page No. 38 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

Radiation Primer, continued SPE GCR

Images  from  National  Council  on  Radiation  Protection  (NCRP)  Report  No.  153  (2006)  

Combined  hydrogen,  helium,  oxygen  and  iron  energy  spectra  for  two  large  SPEs.  The  solid  curves  are  fits  to  a  stochastic  particle  acceleration  model  (adapted  from  Mazur  et  al.,  1992).  

Calculated  differential  energy  spectra  of  hydrogen,  helium,  oxygen  and  iron  for  the  1976  to  1977  solar  minimum  and  the  1989  to  1990  solar  maximum.  

Energy and Flux comparison

Higher Flux, Lower Energy Lower Flux, Much Higher Energy

Page No. 41 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

Radiation Primer, continued

DSH SE&I Results to Date

SPE GCR Shielding is not conducive for

protecting against GCR.

SPE radiation is effectively curtailed by shielding. Shielding has profoundly less affect against GCR; lifetime limit goal is well below.

250 mSv ~lifetime limit for 40*-yr female

400 mSv ~lifetime limit for 40*-yr male

* Effective dose lifetime ceiling/limit is lower below this age.

~15 g/cm2 is approx equivalent shielding provided

by an ordinary ISS module

, One-year dose , One-year dose for an idealized spherical shield for an idealized spherical shield

Page No. 42 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

Shielding Assessment Technology Software tool (Pro/Engineer + Fishbowl

tool kit) Ray Tracing technology

Evenly distributed rays (up to 1 million rays) are created to start from dose point and end outside the vehicle.

Each Ray records distance and respective density of the parts it passes

Areal mass density is calculated.

Areal mass density is used in transport code that evaluates particle flux at dose point.

Dose point

Page No. 43 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

Ray Tracing (Dose Points)

locations of dose points inside MTV that were used in ray tracing

Page No. 44 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

Hot Spots Detection Capabilities

Every ray is color coded according to the areal density value-Shielding- it provides.

Only one dose point at a time-multiple colors

Single dose point Color Coding

Page No. 45 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

Every ray that provides less than 10 g/cm2 shows up as a red pixel

on the MTV surface.

Multiple dose points-single color

Hot Spots Detection Capabilities

Multiple dose point Hotspot detection

Page No. 46 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

Hot Spots Detection Capability

Initial design

Initial Design: Hotspots are shown on sides of habitat.

Page No. 47 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

*ALARA As Low As Reasonably Achievable

The ALARA principle is a legal requirement intended to ensure astronaut safety. An important function of ALARA is to ensure that astronauts do not approach radiation limits and that such

in view of the large uncertainties in cancer and other risk projection models. Mission programs and terrestrial occupational procedures resulting in radiation exposures to astronauts are required to find cost-effective approaches to implement ALARA.

Challenges: Uncertainties in biological response to the high-LET component of GCR make ALARA difficult to implement. ALARA is more easily performed for reducing SPE exposure using shielding and limiting exposures during EVAs

*Reference: Edward Semones charts, 12/13/2011

Pre-Decisional, For Internal Use Only

Page No. 48 Lora Bailey/10/31/2012

Johnson  Space  Center-­  Houston,  Texas  

*Our Guidelines: NASA-STD-3001

4.2.2.2 Space Permissible Exposure Limits (SPEL) - Quantifiable limit of exposure to a space flight factor over a given length of time (e.g., lifetime radiation exposure). Physical/chemical agent measured. 4.2.10 Space Permissible Exposure Limit for Space Flight Radiation Exposure Standard

4.2.10.1 Planned career exposure for radiation shall not exceed 3 percent risk of exposure induced death (REID) for fatal cancer. 4.2.10.2 NASA shall assure that this risk limit is not exceeded at a 95 percent confidence level using a statistical assessment of the uncertainties in the risk projection calculations to limit the cumulative effective dose (in units of Sievert) received by an astronaut throughout his or her career. 4.2.10.3 Exploration Class Mission radiation exposure limits shall be defined by NASA based on National Council on Radiation Protection (NCRP) recommendations. 4.2.10.4 Planned radiation dose shall not exceed short-term limits as defined in table 4 in Appendix F supporting material for the radiation standard. 4.2.10.5 In- achievable (ALARA) principle.

*Reference: Janet Barzilla charts, 04/30/2012

Pre-Decisional, For Internal Use Only