radial build definition for solid breeder system laila el-guebaly fusion technology institute...

18
Radial Build Definition for Solid Breeder System Laila El-Guebaly Fusion Technology Institute University of Wisconsin - Madison With input from: S. Malang (Germany) and R. Raffray (UCSD) ARIES-CS Project Meeting June 16 - 17, 2004 UW - Madison

Post on 15-Jan-2016

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Radial Build Definition for Solid Breeder System Laila El-Guebaly Fusion Technology Institute University of Wisconsin - Madison With input from: S. Malang

Radial Build Definition for Solid Breeder System

Radial Build Definition for Solid Breeder System

Laila El-GuebalyFusion Technology Institute

University of Wisconsin - Madison

With input from:S. Malang (Germany) and R. Raffray (UCSD)

ARIES-CS Project MeetingJune 16 - 17, 2004

UW - Madison

Page 2: Radial Build Definition for Solid Breeder System Laila El-Guebaly Fusion Technology Institute University of Wisconsin - Madison With input from: S. Malang

2

Breeder Multiplier Structure FW/Blanket Shield VVCoolant Coolant Coolant

ARIES-CS:Internal VV:

Flibe Be FS Flibe Flibe H2O

LiPb – SiC LiPb LiPb H2O

LiPb* – FS He/LiPb He H2O

Li4SiO4 Be FS He He H2O

External VV:LiPb* – FS He/LiPb He or H2O He

Li – FS He/Li He He

SPPS:External VV:

Li – V Li Li He

Breeding Blanket Concepts

new

_________________________* With or without SiC inserts.

Page 3: Radial Build Definition for Solid Breeder System Laila El-Guebaly Fusion Technology Institute University of Wisconsin - Madison With input from: S. Malang

3

Breeder Lithium Ortho-silicate (Li4SiO4)Coolant HeStructure ODS FSNeutron Multiplier Be

• Based on well developed EU SB design, Malang’s recommendations include:– Alternate layers of Be and SB– Cooling channels between adjacent layers– Adjust thickness of Be and SB layers to meet thermal hydraulic constraints and

temperature limits– Adjust thickness of front Be & SB layers to allow high (~ 4.5 MW/m2)– 8 mm minimum thickness of SB layer (for filling reasons)– Single size Be and SB pebbles (60% Be/SB, 40% void/He)– Optimize Be:SB ratio and Li enrichment to achieve highest breeding with thinnest

blanket possible– Use high enrichment toward back– Adjust blanket thickness to meet breeding requirement and protect shield

• Main findings:– Peak n wall loading should not exceed 4.5 MW/m2

– Be:SB ratio of 2:1 is near optimum for breeding– 65 cm thick blanket breeds sufficient T and overprotects shield.

Solid Breeder Blanket Option: Guidelines and Constraints

Page 4: Radial Build Definition for Solid Breeder System Laila El-Guebaly Fusion Technology Institute University of Wisconsin - Madison With input from: S. Malang

4

All solid breeder blankets must employ beryllium multiplier to meet breeding requirement (overall TBR ≥ 1.1)

T-M Plot

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1.1 1.2 1.3

Trit

ium

Bre

edin

g R

atio

Neutron Energy Multiplication

Li4SiO

4

Li

Li2O

FLiBe

Li2TiO

3

Li17

Pb83

- nat

Li2ZrO

3LiAlO2

Li17

Pb83

- 90%Li6

Thick Blanket, No Structure, No MultiplierNatural Li unless Indicated

Page 5: Radial Build Definition for Solid Breeder System Laila El-Guebaly Fusion Technology Institute University of Wisconsin - Madison With input from: S. Malang

5

• 4.5 MW/m2 peak neutron wall loading (3 MW/m2 used for other concepts).• 5 cm SOL and 2 cm minimum VV-magnet gap.• 2 cm thick inner coil case.• 31 cm thick winding packs-I/II.• 1.1 overall TBR for 3 FP configuration based on 92% uniform-blanket coverage

fraction, 8% shield-only zones, 5 cm thick divertor plates/baffles covering 15% of FW area.

• ≤ 1% nuclear heating in LT shield and/or VV.• Shield, VV, and magnet are lifetime components• Radiation limits to structural components:

– 3% burnup to SiC/SiC composites– 200 dpa to FS– 1 He appm @ VV.

• Radiation limits to MT S/C magnet (same fluence as for LT S/C):– 1019 n/cm2 fast n fluence– 5 mW/cm3 local nuclear heating*– 1011 rads dose to GFF polyimide– 6x10-3 dpa to Cu stabilizer– 50 kW total nuclear heating.

SB Radial Build has been Defined onSame Groundrules, Except for Peak

___________* Dec 03 ARIES meeting, Bromberg’s presentation, Page 20.

Page 6: Radial Build Definition for Solid Breeder System Laila El-Guebaly Fusion Technology Institute University of Wisconsin - Madison With input from: S. Malang

6

Upper Temperature Limit Controls Radial Thickness of Be and SB Layers

0

1

2

3

4

5

6

7

0 10 20 30 40 50

Lay

er T

hic

knes

s (c

m)

Nuclear Heating (W/cm3)

Be

SB

SB-IBe-I

High nuclear heating at front implies thin Be and SB layers

∆ Be = 2 √ (20 / q´´´) Be

∆ SB = 0.8 √ (50 / q´´´) SB

Page 7: Radial Build Definition for Solid Breeder System Laila El-Guebaly Fusion Technology Institute University of Wisconsin - Madison With input from: S. Malang

7

Li Enrichment Increases Heat Deposited in SB Layers

20

30

40

50

60

0 20 40 60 80

Nu

clea

r H

eati

ng

in

SB

Lay

er

(W/c

m3 )

Li Enrichment (% 6Li)

SB-I 0.9 cm Thick

SB-II1 cm Thick

Enrichment of individual layers adjusted to keep heating and upper temperature within limits

Page 8: Radial Build Definition for Solid Breeder System Laila El-Guebaly Fusion Technology Institute University of Wisconsin - Madison With input from: S. Malang

8

• 42.2 cm breeding zone contains many layers :10 SB Layers (0.9 - 2 cm thick, 20 - 90% enrichment) 6 Be Layers (2 - 5.4 cm thick)16 Cooling channels (0.6 cm thick)

32 Layers

65 cm Thick Blanket Satisfies Breeding Requirement

Pla

sma

FW

2.8

Bre

edin

g Z

one

(Li 4S

iO4/

Be/

FS

/He)

42.2

Su

pp

ort

Str

uct

ure

&

Man

ifo l

ds

20

65 cm Blanket||

Page 9: Radial Build Definition for Solid Breeder System Laila El-Guebaly Fusion Technology Institute University of Wisconsin - Madison With input from: S. Malang

9

Li enrichment has no impact on damage at shield

65 cm Thick Blanket Overprotects Shield

50

100

150

200

250

300

50 55 60 65 70

Dam

age

to S

hie

ld(d

pa

@ 4

0 F

PY

)

Blanket Thickness (cm)

Limit

4.5 MW/m2

Page 10: Radial Build Definition for Solid Breeder System Laila El-Guebaly Fusion Technology Institute University of Wisconsin - Madison With input from: S. Malang

10

Schematic of 65 cm Thick Blanket(4.5 MW/m2 peak)

Thickness (cm)

Coo

lin

g C

han

nel

5

2.8 cmFW

1 2.5

42.2 cm Breeding Zone|

52 2.2 3

| |20 cm Manifolds

& Support Structure

4

FS

.9 101.3

FS

Be

Be

BeB

e

Be

Be

CC

CC

CC

CC

CC

CC

CC

SB

- 2

0% L

i-6

CC

CC

CC

CC

CC

CC

CC

CC

SB

- 2

0% L

i -6

CC

FS

Ba c

k W

all

FS

Pla

te

He

Man

ifol

ds

11 1.1 1.4 5.4 1.8 2 2

|

0.6 cm Thick Cooling Channel (CC)

SB

- 4

0% L

i-6

SB

- 8

0% L

i-6

SB

- 9

0% L

i-6

SB

- 9

0% L

i-6

SB

- 9

0% L

i-6

SB

- 9

0% L

i-6

SB

- 9

0% L

i -6

SB

- 9

0% L

i-6

2

Page 11: Radial Build Definition for Solid Breeder System Laila El-Guebaly Fusion Technology Institute University of Wisconsin - Madison With input from: S. Malang

11

Li4SiO4/Be/FS/He Radial Build(Water-Cooled Internal VV, 4.5 MW/m2 peak)

SO

L

Vac

uu

m V

esse

l

FS

Sh

ield

Ga p

Thickness(cm)

FW

Gap

+ T

h. I

nsu

lato

r

Win

din

g P

ack

Pla

sma

52.8 2 ≥ 238 312.226

≥ 155 cm| |

SO

L

Vac

uu

m V

esse

l

Su

pp

ort

Str

uct

ure

&

Man

ifol

ds

Ga p

Thickness(cm)

Gap

+ T

h. I

nsu

lato

r

Coi

l Cas

e &

In

sula

tor

Win

din

g P

ack

Pla

sma

52 242.2 312.226

| |C

oil C

ase

& I

nsu

lato

rmin = 129 cm

ShieldOnlyZones

Bre

edin

g Z

one

(Li 4S

iO4/

Be/

FS

/He)

42.2

20

WC

Sh

ield

-I

BlanketZones

Su

pp

ort

Str

uct

ure

& M

anif

o ld

s

201

Gap

FW

2.8

Boundary between WC-shields will be adjusted to meet design requirements

Ext

ern

al S

tru

ctu

reE

xter

nal

Str

uct

ure

18

18

WC

Sh

ield

-II

Gap

110

Page 12: Radial Build Definition for Solid Breeder System Laila El-Guebaly Fusion Technology Institute University of Wisconsin - Madison With input from: S. Malang

12

Component CompositionBlanket 10% Li4SiO4 (20- 90% enriched Li)

17% Be30% FS Structure43% He Coolant

HT FS/He Shield 15% FS Structure75% Borated Steel Filler10% He Coolant

HT WC/He Shield-I & Manifolds 30% FS Structure45% WC Filler25% He Coolant

LT WC Shield-II 15% FS Structure75% WC Filler10% He Coolant

Vacuum Vessel 27% FS Structure23% Borated Steel Filler50% H2O Coolant

Winding Pack I & II 12.7% MgB2 9.6% NbTi (BSSCO magnet is not available yet) 45.5% Cu 54.1% Cu

15.5% He @ 15 k 21.8% LHe @ 4 k17.3% 316-SS 5.5% 316-SS 9.0% GFF poly. 9.0% GFF poly.

Li4SiO4/Be/FS/He Composition

Page 13: Radial Build Definition for Solid Breeder System Laila El-Guebaly Fusion Technology Institute University of Wisconsin - Madison With input from: S. Malang

13

Volume Mass Unit Cost Blanket Cost(m3) (Tons) ($/kg) ($M)

Be 100 190 ~600 110SB 60 150 ~600 ? 90FS 190 1,470 70* 100

300 10 mills/kWh + Replacement Cost ~15-20 mills/kWh

• Expensive solid breeder blanket.

• For comparison, FS-based liquid breeder blankets cost ~ $50M (< 2 mills/kWh) and replacement cost is ~4 mills/kWh.

Preliminary Blanket Cost Estimate

_______________* Higher fabrication cost expected.

Page 14: Radial Build Definition for Solid Breeder System Laila El-Guebaly Fusion Technology Institute University of Wisconsin - Madison With input from: S. Malang

14

(m)ARIES-CS:

Internal VV: Blanket/Shield/VV/Gaps Plasma – Mid CoilFlibe/FS/Be 1.07 (min) 1.32 (min)

LiPb/SiC 1.15 1.40

LiPb/FS/He 1.24 1.49

Li4SiO4/Be/FS/He 1.30 (max) 1.55 (max)

External VV: Blanket/Shield/GapsLiPb/FS/He/B-H2O 1.28 1.53

LiPb/FS/He 1.60 1.85

Li/FS/He 1.79 (max) 2.04 (max)

SPPS*: External VV:

Li/V 1.20 1.96

–––––––––––––––––––––––– * 15 cm SOL, 36 cm half winding pack, 15 cm thick cryostat, and 8 cm wide shield-magnet gap.

Nominal Radial Distance Varies Widely with Blanket Concept

(Blanket/Shield Dimensions for CAD Drawings)

new

Page 15: Radial Build Definition for Solid Breeder System Laila El-Guebaly Fusion Technology Institute University of Wisconsin - Madison With input from: S. Malang

15

min (m)ARIES-CS:

Internal VV: WC-Shield/VV Plasma – Mid CoilFlibe/FS/Be 0.86 (min) 1.11 (min)

LiPb/SiC 0.89 1.14

LiPb/FS/He 0.93 1.18

Li4SiO4/Be/FS/He 1.04 (max) 1.29 (max)

External VV: WC-ShieldLiPb/FS/He/B-H2O 0.87 1.12

LiPb/FS/He 0.93 1.18

Li/FS/He 0.91 1.16

SPPS: External VV:

Li/V – –

Minimum Radial Distance Varies within 18 cm with Blanket Concept

(min for Systems Code Analysis)

• Solid breeder blanket has largest min

• 18 cm difference in min translates into ~1.1 m change in R

new

Page 16: Radial Build Definition for Solid Breeder System Laila El-Guebaly Fusion Technology Institute University of Wisconsin - Madison With input from: S. Malang

16

Key Parameters for System Analysis(3 FP Configuration)

Flibe/FS/Be LiPb/SiC SB/FS/Be LiPb/FS Li/FS

min 1.11 1.14 1.29 1.18 1.16

TBR 1.1 1.1 1.1 1.1 1.1

Energy Multiplication (Mn) 1.2 1.1 1.3 1.15 1.13

Thermal Efficiency (th) 45% 55-60% 45% ~45% ~45%

FW Lifetime (FPY) 6.5 6 4.4 5 7

System Availability ~85% ~85% 85% ~85% ~85%

• Solid breeder blanket provides highest Mn.

• System analysis will assess impact of min, Mn and th on COE.

Page 17: Radial Build Definition for Solid Breeder System Laila El-Guebaly Fusion Technology Institute University of Wisconsin - Madison With input from: S. Malang

17

Conclusions

• Main features of SB blanket:– Peak n wall loading should not exceed 4.5 MW/m2

– Be:SB ratio of 2:1 is near optimum for breeding– 65 cm thick blanket breeds sufficient T and overprotects shield.

• Other features:+ Largest Mn Low COE– Largest min Large machine– Complex design (32 layers)– High fabrication cost High COE– Expensive blanket – High replacement cost.

• Design complexity should be assigned high weighting factor for blanket selection criteria.

• Recommendation: use liquid breeder particularly for stellarators to simplify design, reduce size, and lower cost.

Page 18: Radial Build Definition for Solid Breeder System Laila El-Guebaly Fusion Technology Institute University of Wisconsin - Madison With input from: S. Malang

18

Future Plan

• Initiate LOCA analysis for LiPb/FS blanket system.

• Document work and submit 4 TOFE papers:1- Benefits of Radial Build Minimization and Requirements Imposed on

ARIES Compact Stellarator Design L. El-Guebaly, R. Raffray, S. Malang, J. Lyon, L.P. Ku and the ARIES Team

2- Initial Activation Assessment for ARIES Compact Stellarator Power Plant L. El-Guebaly, P. Wilson, D. Paige and the ARIES Team

3- Evolution of Clearance Standards and Implications for Radwaste Management of Fusion Power Plants

L. El-Guebaly, P. Wilson, D. Paige and the ARIES Team

4- Views on Neutronics and Activation Issues Facing Thick Liquid-Protected IFE Chambers

L. El-Guebaly and the ARIES Team