quantum’mechanics’for’bio2 materials’cmt.dur.ac.uk/sjc/biomaths/lecture1.pdf · aims’...

23
Quantum Mechanics for Bio materials M.Sc. Course in BioMathema7cs Prof. Stewart Clark Department of Physics Office 145 [email protected]

Upload: others

Post on 21-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Quantum’Mechanics’for’Bio2 materials’cmt.dur.ac.uk/sjc/BioMaths/Lecture1.pdf · Aims’ To’ provide’ the’ students’ with’ a working’ knowledge’ of’ modeling’

Quantum  Mechanics  for  Bio-­‐materials  

M.Sc.  Course  in  BioMathema7cs  

Prof.  Stewart  Clark  Department  of  Physics  

Office  145  [email protected]  

Page 2: Quantum’Mechanics’for’Bio2 materials’cmt.dur.ac.uk/sjc/BioMaths/Lecture1.pdf · Aims’ To’ provide’ the’ students’ with’ a working’ knowledge’ of’ modeling’

Aims  

To   provide   the   students   with   a   working  knowledge   of   modeling   biomaterials   at   the  atomic   level   using   first   principles   electronic  structure   techniques.   The   course   will   be   a  mixture   of   lectures   on   the   theory   and  methods   of   modeling   materials   from   an  electronic   structure   point   of   view   leading   to  prac7cal,   computa7onal   sessions   where   the  techniques  will  be  put  into  prac7ce.  

Page 3: Quantum’Mechanics’for’Bio2 materials’cmt.dur.ac.uk/sjc/BioMaths/Lecture1.pdf · Aims’ To’ provide’ the’ students’ with’ a working’ knowledge’ of’ modeling’

Contents  

•  (Very  brief!)  Introduc7on  to  quantum  mechanics  

•  The  many-­‐par7cle  (electron)  problem  – How  we  solve  it  – Density  func7onal  theory  –  Bloch’s  Theorem  

–  Basis  Sets  –  Varia7onal  Method  

•  Prac7cal  examples  applied  (computa7onal)  applied  to  bio-­‐molecules  

Page 4: Quantum’Mechanics’for’Bio2 materials’cmt.dur.ac.uk/sjc/BioMaths/Lecture1.pdf · Aims’ To’ provide’ the’ students’ with’ a working’ knowledge’ of’ modeling’

Background  Reading  

•  If  you  are  not  familiar  with  quantum  mechanics,  then  you’ll  need  some  background  reading  

•  Please  get  any  book  from  the  library  with  a  7tle  like  “Introduc7on  to  quantum  mechanics”  form  the  library  

•  Read  the  chapters  on  understanding  and  solving  the  Schrodinger  equa7on  for  simple  cases  

Page 5: Quantum’Mechanics’for’Bio2 materials’cmt.dur.ac.uk/sjc/BioMaths/Lecture1.pdf · Aims’ To’ provide’ the’ students’ with’ a working’ knowledge’ of’ modeling’

Some  assump7ons  about  you  

•  You’ve  limited  experience  about  the  physics  of  quantum  mechanics  

•  You  can  do  mathema7cs!  •  You  have  some  interest  an  understanding  about  basic  molecular  biology  (e.g.  you  know  what  amino  acids  are)  

•  You  have  a  basic  knowledge  of  chemistry  (molecules  are  made  of  atoms,  atoms  are  made  of  protons,  neutrons  and  electrons)  

•  You  know  that  electrons  are  important:  they  determine  the  proper7es  of  ma[er  

Page 6: Quantum’Mechanics’for’Bio2 materials’cmt.dur.ac.uk/sjc/BioMaths/Lecture1.pdf · Aims’ To’ provide’ the’ students’ with’ a working’ knowledge’ of’ modeling’

Quantum  Mechanics  

•  What  is  quantum  mechanics?  

Page 7: Quantum’Mechanics’for’Bio2 materials’cmt.dur.ac.uk/sjc/BioMaths/Lecture1.pdf · Aims’ To’ provide’ the’ students’ with’ a working’ knowledge’ of’ modeling’

The  origins  of  quantum  mechanics  

•  At  the  end  of  the  19th  century  it  was  thought  that  physics  was  more  or  less  “solved”  

•  There  were  just  a  few  minor  issues  to  clear  up  

•  Here’s  one  –  the  solar  and  atomic  spectra:  

Page 8: Quantum’Mechanics’for’Bio2 materials’cmt.dur.ac.uk/sjc/BioMaths/Lecture1.pdf · Aims’ To’ provide’ the’ students’ with’ a working’ knowledge’ of’ modeling’

“Black  body  radia7on”  compared  to  the  solar  spectrum  

A  significant  number  of  gaps  in  the  spectrum  which  cannot  be  explained  using  classical  physics  

Page 9: Quantum’Mechanics’for’Bio2 materials’cmt.dur.ac.uk/sjc/BioMaths/Lecture1.pdf · Aims’ To’ provide’ the’ students’ with’ a working’ knowledge’ of’ modeling’

Apparent  Pa[ern  

•  There’s  a  regularity  to  the  spectrum  •  The  wave-­‐numbers  (1/wavelength  or  number  of  waves  per  metre)  

•  This  is  an  experimental  observa7on  

k ∝ 1na2 −

1nb2

⎝ ⎜

⎠ ⎟

Page 10: Quantum’Mechanics’for’Bio2 materials’cmt.dur.ac.uk/sjc/BioMaths/Lecture1.pdf · Aims’ To’ provide’ the’ students’ with’ a working’ knowledge’ of’ modeling’

Bohr  Model  of  the  Atom  

•  Nucleus  in  the  centre  surrounded  by  electrons  in  “orbits”  

Page 11: Quantum’Mechanics’for’Bio2 materials’cmt.dur.ac.uk/sjc/BioMaths/Lecture1.pdf · Aims’ To’ provide’ the’ students’ with’ a working’ knowledge’ of’ modeling’

Analysis  of  Model  

•  Electrosta7c  (Coulomb)  force  

•  balances  centripetal  (rota7onal)  force  

•  i.e.  the  system  is  in  equilibrium  when  

FC =14πε 0

Ze2

r2

FR =mv 2

r

FC = FR

Page 12: Quantum’Mechanics’for’Bio2 materials’cmt.dur.ac.uk/sjc/BioMaths/Lecture1.pdf · Aims’ To’ provide’ the’ students’ with’ a working’ knowledge’ of’ modeling’

Quan7sa7on  

•  Bohr’s  postulate  of  the  atom  takes  the  form  •  “The  angular  momentum  of  the  electrons  is  quan7sed”  

•  This  means  that  the  angular  momentum,  L,  can  only  take  discrete  mul7ples  of  a  fundamental  quan7ty    

•  where  n  is  an  integer  and  ħ  is  Plank’s  constant  

L = n = mvr

Page 13: Quantum’Mechanics’for’Bio2 materials’cmt.dur.ac.uk/sjc/BioMaths/Lecture1.pdf · Aims’ To’ provide’ the’ students’ with’ a working’ knowledge’ of’ modeling’

Solve  for  v  and  r  

•  We  have  

•  giving  

14πε 0

Ze2

r2=mv 2

rmvr = n

v =Ze2

4πε 0n

r =4πε 0

2n2

Zme2

Page 14: Quantum’Mechanics’for’Bio2 materials’cmt.dur.ac.uk/sjc/BioMaths/Lecture1.pdf · Aims’ To’ provide’ the’ students’ with’ a working’ knowledge’ of’ modeling’

Examine  energy  

•  Kine7c  energy:  

•  Poten7al  Energy:  

T =12mv 2 =

m22

Ze2

4πε 0

⎝ ⎜

⎠ ⎟

21n2

V = −14πε 0

Ze2

r= −

m2

Ze2

4πε 0

⎝ ⎜

⎠ ⎟

21n2

Page 15: Quantum’Mechanics’for’Bio2 materials’cmt.dur.ac.uk/sjc/BioMaths/Lecture1.pdf · Aims’ To’ provide’ the’ students’ with’ a working’ knowledge’ of’ modeling’

Total  Energy  

•  The  allowed  values  obtained  by  Bohr  for  the  total  energy  (T+V)  is  thus  

•  The  energy  levels  of  the  atom  are  an  infinite  number  of  discrete  values  

•  Differences  between  two  levels  give  allowed  discrete  jumps  

•  We  get  the  gaps  in  the  solar/atomic  spectra!  

En = −m22

Ze2

4πε 0

⎝ ⎜

⎠ ⎟

21n2

Page 16: Quantum’Mechanics’for’Bio2 materials’cmt.dur.ac.uk/sjc/BioMaths/Lecture1.pdf · Aims’ To’ provide’ the’ students’ with’ a working’ knowledge’ of’ modeling’

Planck’s  Constant    

•  Planck's  constant  ħ=  2π x  6.626068  ×  10-­‐34  m2  kg  /  s  

•  Energy  and  angular  frequency  

•  Angular  momentum  

E = ω

L = n

Page 17: Quantum’Mechanics’for’Bio2 materials’cmt.dur.ac.uk/sjc/BioMaths/Lecture1.pdf · Aims’ To’ provide’ the’ students’ with’ a working’ knowledge’ of’ modeling’

Another  odd  fact  

•  Double-­‐slit  experiment  

Classical  Par7cles   Waves  

Page 18: Quantum’Mechanics’for’Bio2 materials’cmt.dur.ac.uk/sjc/BioMaths/Lecture1.pdf · Aims’ To’ provide’ the’ students’ with’ a working’ knowledge’ of’ modeling’

Wave-­‐par7cle  duality  

Electrons  

Page 19: Quantum’Mechanics’for’Bio2 materials’cmt.dur.ac.uk/sjc/BioMaths/Lecture1.pdf · Aims’ To’ provide’ the’ students’ with’ a working’ knowledge’ of’ modeling’

Electrons  behave  as  waves  and  par7cles  

•  While  in  transit  electrons  have  wave-­‐like  proper7es  

•  Electrons  have  par7cle-­‐like  proper7es  on  detec7on  

•  Classical  theory  of  waves,  the  intensity  is  the  square  amplitude  of  the  wave  

•  If  a  wave  has  amplitude,  Ψ,  then  intensity,  P,  is  given  by  

•  At  posi7on  (x,y,z)  and  7me  t  

P x,y,z,t( ) = Ψ x,y,z,t( )2

Page 20: Quantum’Mechanics’for’Bio2 materials’cmt.dur.ac.uk/sjc/BioMaths/Lecture1.pdf · Aims’ To’ provide’ the’ students’ with’ a working’ knowledge’ of’ modeling’

Quantum  Mechanical  Wavefunc7on  

•  By  analogy  with  classical  waves  introduce  the  wavefunc7on  Ψ(x,y,z,t)  

•  Plays  the  role  of  a  probability  amplitude  •  The  probability  of  finding  a  par7cle  at  posi7on  (x,y,z)  and  7me,  t,  is  propor7onal  to  |Ψ|2  

•  In  double-­‐slit  experiment,  let  ΨA  be  the  wavefunc7on  at  a  par7cular  point  on  the  screen  corresponding  to  waves  spreading  from  slit  A  

•  Let  ΨB  be  the  same  for  slit  B  

Page 21: Quantum’Mechanics’for’Bio2 materials’cmt.dur.ac.uk/sjc/BioMaths/Lecture1.pdf · Aims’ To’ provide’ the’ students’ with’ a working’ knowledge’ of’ modeling’

Superposi7on  

•  If  one  slit  only  is  open  then  

•  If  both  slits  are  open  then  we  get  

•  Note,  the  amplitudes  are  added,  not  the  intensi7es  (probabili7es)  

PA = ΨA2

PB = ΨB2

Ψ =ΨA +ΨB

P ∝ ΨA +ΨB2

Page 22: Quantum’Mechanics’for’Bio2 materials’cmt.dur.ac.uk/sjc/BioMaths/Lecture1.pdf · Aims’ To’ provide’ the’ students’ with’ a working’ knowledge’ of’ modeling’

Linear  combina7on  

•  Let  

•  Then  

•  where  the  3rd  term  which  gives  the  contribu7on  to  the  interference  

ΨA = ΨA eiαA

ΨB = ΨB eiαB

Ψ = cAΨA + cBΨB

Ψ2

= cAΨA2

+ cBΨB2

+ 2ℜ cAcB* ΨA ΨB e

i αA −αB( ){ }

Page 23: Quantum’Mechanics’for’Bio2 materials’cmt.dur.ac.uk/sjc/BioMaths/Lecture1.pdf · Aims’ To’ provide’ the’ students’ with’ a working’ knowledge’ of’ modeling’

Interpreta7on  of  result  

•  Emphasize,  unlike  classical  waves  Ψ(x,y,z,t)  is  an  abstract  quan7ty  

•  Its  interpreta7on  is  sta7s7cal  in  nature  •  The  intensity  (square  amplitude)  is  a  probability  func7on  

•  Therefore  we  can  “normalise”  Ψ  such  that  

•  We  will  return  to  this  point  soon  

Ψ*Ψdxdydz =1∫∫∫