quantum spin liquids in simple model systems - mesoscopic and

39
Quantum Spin Liquids in Simple Model Systems Hong Yao Hong Yao Stanford University & Tsinghua University HongChen Jiang, Hong Yao, and L. Balents, arXiv: 1112:2241. Hong Yao and Steve Kivelson, Phys. Rev. Lett. 108, 247206 (2012). Collaborators: HongChen Jiang (KITP, UCSB), Leon Balents (KITP, UCSB), and Steve Kivelson (Stanford University) 06/20/2012 Landau Institute for Theoretical Physics, Russia

Upload: others

Post on 09-Feb-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Quantum spin liquids in simple model systems - Mesoscopic and

Quantum Spin Liquids in Simple Model Systemsp q p y

Hong YaoHong YaoStanford University & Tsinghua University

Hong‐Chen Jiang, Hong Yao, and L. Balents, arXiv: 1112:2241.Hong Yao and Steve Kivelson, Phys. Rev. Lett. 108, 247206 (2012).g y ( )

Collaborators:  Hong‐Chen Jiang (KITP, UCSB), Leon Balents (KITP, UCSB), and Steve Kivelson (Stanford University)

06/20/2012Landau Institute for Theoretical Physics, Russia

Page 2: Quantum spin liquids in simple model systems - Mesoscopic and

OutlineOutline

• Introduction and Motivations• DMRG study of the S = 1/2 AFM square J1‐J2 model

‐ Neither magnetic order  nor VBS orderf l l l‐ finite topological entanglement entropy

• Possible experimental realization of the J1‐J2 model• Generalized quantum dimer models

‐ Exact spin liquid ground states‐ Low energy effective theory and correlations

• Conclusions

Page 3: Quantum spin liquids in simple model systems - Mesoscopic and

OutlineOutline

• Introduction and Motivations• DMRG study of the S = 1/2 AFM square J1‐J2 model

‐ Neither magnetic order  nor VBS orderf l l l‐ finite topological entanglement entropy

• Possible experimental realization of the J1‐J2 model• Generalized quantum dimer models

‐ Exact spin liquid ground states‐ Low energy effective theory and correlations

• Conclusions

Page 4: Quantum spin liquids in simple model systems - Mesoscopic and

States of States of MatterMatter• Condensed matter physics: 

‐ Discover, characterize, and classify states of ʺmatterʺ., , y• Conventional states of matter: 

Broken symmetry principle (thanks to Landau):Broken symmetry principle (thanks to Landau):‐ Local order parameters‐ Ginzburg‐Landau description of phase transitionsGinzburg Landau description of phase transitions

Page 5: Quantum spin liquids in simple model systems - Mesoscopic and

Exotic states of Exotic states of ʺmatterʺmatterʺ̋• Exotic phases beyond broken symmetry principle: 

‐ Fractional quantum Hall states (Laughlin, 1983)Fractional quantum Hall states (Laughlin, 1983)

Quasi‐particles carry fractional charge (and statistics)‐ Quantum spin liquids (elusive one) (Anderson, 1973)Quantum spin liquids (elusive one) (Anderson, 1973)

Spin‐charge separations

• New principles for exotic phases:New principles for exotic phases: ‐ Topological order: e.g. ground state degeneracy depending on topology of manifold (Wen, 1989)epe i g o opo ogy o a i o ( , )

‐ Long‐range entanglement for gapped states: universal    correction to the usual area law of entanglement entropy. g py(Levin & Wen, 2006;  Preskill & Kitaev, 2006)

Page 6: Quantum spin liquids in simple model systems - Mesoscopic and

Conventional ordersConventional orders in magnetsin magnets

Magnetic Long Range Order Non‐Magnetic Long Range Order

Conventional orders Conventional orders in magnetsin magnets

g g g g g g

Anti‐ferromagnetic order Valence bond solid order

Page 7: Quantum spin liquids in simple model systems - Mesoscopic and

Spin liquid ground states of magnetsSpin liquid ground states of magnets

• The first 2D spin liquid wave function: resonating

Spin liquid ground states of magnetsSpin liquid ground states of magnets

• The first 2D spin liquid wave function: resonating valence bond (RVB) (Anderson 1973)

YRVB= + + ▪▪▪

‐ No magnetic order no translational symmetry breakingNo magnetic order, no translational symmetry breaking.For one electron per site, band theory would predict a metal instead of an insulator.

‐ fractionalized excitations (spinon = charge 0 but spin‐1/2)  

Page 8: Quantum spin liquids in simple model systems - Mesoscopic and

Important motivations to study Important motivations to study spin liquids in 2D?spin liquids in 2D?• New states of matter: 

‐ fractionalized excitations e g spin‐charge separation

p yp y p qp q

‐ fractionalized excitations, e.g.  spin‐charge separation in two and higher dimensionsspinon = charge‐0, spin‐1/2; holon = charge‐e, spin‐0p g p g p

• Possible routes to high temperature superconductivity‐ RVB picture for high Tc superconductivity in cuprates.

(Anderson, 1987;  Kivelson, Rokhsar, and Sethna, 1987; Lee, Nagaosa, and Wen, RMP 2003)Nagaosa, and Wen, RMP 2003)               

Page 9: Quantum spin liquids in simple model systems - Mesoscopic and

RVB theory for highRVB theory for high‐‐TTcc superconductivity?superconductivity?

• Reality: the undoped cuprates are AFM Mott insulators instead of quantum spin liquidsinsulators, instead of quantum spin liquids. 

• Possible phase diagram: f

QSL

AFM SCWhat is f?  Frustration or fantasy 

doping

W i it thi bl b l ki f ibl i li idWe revisit this problem by looking for possible spin liquids on the square lattice as a function of frustration.  

Page 10: Quantum spin liquids in simple model systems - Mesoscopic and

One candidate material for spin liquids: dmit‐131

• Organic insulator: EtMe3Sb[Pd(dmit)2]2‐ No magnetic order down to sub‐Kelvin even though J ~ 250K.

‐ Thermal conductivity kxx~T :  infinite violation of Wiedmann‐y xxFranz law:  spinon Fermi surface? (Yamashita et al, Science 2010)

Page 11: Quantum spin liquids in simple model systems - Mesoscopic and

Theoretical search for Theoretical search for quantum spin quantum spin liquidsliquids

• DMRG study of Kagome anti‐ferromagnet:(H‐C. Jiang et al, PRL 2009; Yan, Huse & White, Science 2011)(H C. Jiang et al, PRL 2009; Yan, Huse & White, Science 2011)A short‐range RVB‐like spin liquid ground state.

• Examples of Exactly solvable models with spin liquid ground states: Proof of Principle‐ Quantum dimer model and generalizations (Rokhsar and Kivelson, 1988;  Moessner and Sondhi, 2001; Yao and Kivelson, 2011)‐ Toric code model (Kitaev, 2003)( )‐ Kitaev model and generalizations (Kitaev, 2006; H. Yao and Kivelson, 2007;  V. Chua, H. Yao, & G. Fiete, 2011; Tikhonov, Feigelman, and Kitaev, 2011; many others)i ae , 0 ; a y o e s)

Page 12: Quantum spin liquids in simple model systems - Mesoscopic and

OutlineOutline

• Introduction and Motivations• DMRG study of the S = 1/2 AFM square J1‐J2 model

‐ Neither magnetic order  nor VBS orderf l l l‐ finite topological entanglement entropy

• Possible experimental realization of the J1‐J2 model• Generalized quantum dimer models

‐ Exact spin liquid ground states‐ Low energy effective theory and correlations

• Conclusions

Page 13: Quantum spin liquids in simple model systems - Mesoscopic and

SpinSpin‐‐1/2 AF Heisenberg J1/2 AF Heisenberg J11‐‐JJ22 ModelModel

jiji SSJSSJH 21

pp / g J/ g J11 JJ22

ij

jij

j

Strong Frustrations J2/J1 ~ 1/2

Relevance to Cuprate, Fe‐based superconductors

J2 << J1 : Neel AFM order J2 >> J1 > 0: Stripe AFM order

k=(,0) k=(0,)e.g. Cuprate e.g. Fe‐based superconductor

k=(,)

Page 14: Quantum spin liquids in simple model systems - Mesoscopic and

Phase diagram: Classical levelPhase diagram: Classical level

jiji SSJSSJH 21

a e iag a a i a e ea e iag a a i a e e

ij

jiij

ji SSJSSJH 21

0 ∞

Neel AFM: k=( ) Stripe AFM: k=(0 )/( 0)

J2/J1J2/J1=0.5

First order phase transition Neel AFM: k () Stripe AFM: k (0,)/(,0)in classical level

Page 15: Quantum spin liquids in simple model systems - Mesoscopic and

Phase diagram: Quantum level (spin 1/2)Phase diagram: Quantum level (spin 1/2)

jiji SSJSSJH 21

a e iag a Qua u e e ( pi / )a e iag a Qua u e e ( pi / )

ij

jiij

ji SSJSSJH 21

0 ∞

J /JJ /J 0 5 J /J 0 5 J2/J1J2/J1<0.5

Ph t iti i

J2/J1>0.5

Neel AFM: k=( ) Stripe AFM: k=(0 )/( 0)Phase transition inquantum level

Neel AFM: k () Stripe AFM: k (0,)/(,0)

Page 16: Quantum spin liquids in simple model systems - Mesoscopic and

Earlier Studies of S=1/2 Square Earlier Studies of S=1/2 Square JJ11‐‐JJ22 ModelModel

Projected BCS mean‐field state 

Ea ie u ie o / qua eEa ie u ie o / qua e JJ11 JJ22 o eo e

Spin‐wave calculationZ2 Spin liquid

X.‐G. Wen, PRL 1991 Likely Spin Liquid at [0.38, 0.51]

P. Chandra, and B. Doucot, PRB 1988

Large‐N calculation Valence bond solid(Dimer order)

ED in a subset of  short‐range VB 

singlet  l l b d l d d Valence bond solid(Dimer order)

N. Read, and S. Sachdev, PRL 1989

Series expansion

Plaquette valence bond solid orderM. Mambrini, A. Lauchli et. al.,  PRB 2006

Columnar dimer order [0.34,0.61]M. P. Gelfand, R. R. P. Singh, D. A. Huse, PRB 1989

PEPS (D=3) simulation Columnar dimer order [0.5,0.7]

V M F V t t d J I Ci PRB 2009

Exact diagonalization (ED) on4x4 Spin liquid (Short‐range RVB)

V. Murg, F. Verstraete, and J. I. Cirac, PRB 2009

ED on larger cluster N=20,32,36,40p q ( g )F. Figueirido, S. Kivelson, et al.,  PRB 1989 Gapped quantum paramagnetic 

phase J. Richter, J. Schulenburg, PRB 2010

Page 17: Quantum spin liquids in simple model systems - Mesoscopic and

Earlier Studies of S=1/2 Square Earlier Studies of S=1/2 Square JJ11‐‐JJ22 ModelModel

ij

jiij

ji SSJSSJH 21

Ea ie u ie o / qua eEa ie u ie o / qua e JJ11 JJ22 o eo e

ijij

0 J2/J10 J2/J1

N l AFM k ( ) St i AFM k Neel AFM: k=() Stripe AFM: k=

There exists an intermediate magnetically disordered phase

Two candidate ground states for the intermediate phase:

There exists an intermediate magnetically disordered phase

‐ Quantum spin liquid (Spin‐wave calculation, ED with N=4x4, Projected BCS)

‐ VBS (Large‐N, Series expansion, PEPS, ED  in subset of SR‐VB)

To get reliable ground states, we perform DMRG simulations on ladders with large circumference.

Page 18: Quantum spin liquids in simple model systems - Mesoscopic and

DMRG Study of S=1/2 Square JDMRG Study of S=1/2 Square J11‐‐JJ22 ModelModelu y o / qua e Ju y o / qua e J11 JJ22 o eo e

jiji SSJSSJH 21

Cylinder BCs up to L =12

ij

jiij

ji SSJSSJH 21

Cylinder BCs, up to Ly=12

Keep m>6000, error<10‐7

Fi d ti L /L 2 ith i i Fixed ratio Lx/Ly=2, with minimum 

finite‐size effect,White et al., PRL (2007)

d Measurement restricted

to central‐half of the systemLL4

xL4

xL

Lyyy

x LLLL

2

Page 19: Quantum spin liquids in simple model systems - Mesoscopic and

Detect magnetic orders in the Detect magnetic orders in the S=1/2 Square JS=1/2 Square J11‐‐JJ22 ModelModele e ag e i o e i ee e ag e i o e i e / qua e J/ qua e J11 JJ22 o eo e

Neel AFM Stripe AFM

J2/J1k= k=

Static structure factor Staggered magnetization

Fitting function

Page 20: Quantum spin liquids in simple model systems - Mesoscopic and

Magnetic Order ParameterMagnetic Order Parameterag e i O e a a e eag e i O e a a e eNeel  AFM order

Non‐zero for J2<0.41

At J2=0, ms(k0,∞)=0.304

Close to QMC result ms=0.307,Sandvik, PRB, 1997

Stripe  AFM order1/L

p

Non‐zero for J2>0.62

1/L

Page 21: Quantum spin liquids in simple model systems - Mesoscopic and

Spin Singlet and Triplet GapSpin Singlet and Triplet Gappi i g e a ip e appi i g e a ip e ap

Spin triplet gap

Zero for magnetic order phase

Non‐zero in the intermediate phasep

At J2=0.5, ΔT ≈ 0.1

Spin singlet gap1/L

p g g p

Zero for magnetic ordered phase

Non‐zero in the intermediate phase Non zero in the intermediate phase

At J2=0.5, ΔS ≈ 0.05

1/L

Page 22: Quantum spin liquids in simple model systems - Mesoscopic and

Phase diagram of S=1/2 Square Phase diagram of S=1/2 Square JJ11‐‐JJ22 ModelModela e iag a o / qua ea e iag a o / qua e JJ11 JJ22 o eo e

N l AFM S i AFMN i h

J /J

Neel AFM Stripe AFM

0 41 0 62

Non‐magnetic phase

J2/J10.41 0.62

Neel AFM: k= Stripe AFM: k=( Neel AFM: k= Stripe AFM: k (

Page 23: Quantum spin liquids in simple model systems - Mesoscopic and

VBS oVBS order rder pparameterarameteroo ee ppa a e ea a e e

Dimer operator on bond (i, i+) (=x/y): Dimer structure factor:

Dimer order parameter: ( ,0), (0, )x y k k

Dimer order parameter vanishes in all region gof 0 < J2 < 1

1/L

Page 24: Quantum spin liquids in simple model systems - Mesoscopic and

Phase diagram of S=1/2 Square JPhase diagram of S=1/2 Square J11‐‐JJ22 ModelModela e iag a o / qua e Ja e iag a o / qua e J11 JJ22 o eo e

J /JJ2/J1Neel AFM Stripe AFM

0.41 0.62

Neel AFM: k= Stripe AFM: k=

Intermediate phase

1)No magnetic order

2)Fully gapped to all excitations

3)No dimer VBS order

Most likely it is a gapped quantum spin liquidMost likely, it is a gapped quantum spin liquid.

Any positive evidence?

Page 25: Quantum spin liquids in simple model systems - Mesoscopic and

Hallmark of topological order: topological entanglement entropyHallmark of topological order: topological entanglement entropy

1) Partitions A and B with smooth boundary A

B

2) Obtain reduced density matrix:

trA B B

3) Compute Von Neumann entropy:

[ log( )]A AS tr

Gapped phase: ( ) +S l a l

[ g( )]A A

pp p ( )S l a l 1)               :topologically trivial state  = 0

Levin and Wen, PRL 2006; 

2)               :topologically ordered state  0

Kitaev and Preskill, PRL 2006

Page 26: Quantum spin liquids in simple model systems - Mesoscopic and

NonNon‐‐zero topological entanglement entropyzero topological entanglement entropyoo e o opo ogi a e a g e e e opye o opo ogi a e a g e e e opy

Von Neumann entropy

A B( )y yS L a L

l=Ly

± γ ±

For J2/J1=0.5, γ  ±, close to –ln(2)= 0.69, clearly J2/J1 , γ , o e o ( ) , y

suggesting that such a phase is a Z2 quantum spin liquid

Page 27: Quantum spin liquids in simple model systems - Mesoscopic and

Phase diagram of S=1/2 Square Phase diagram of S=1/2 Square JJ11‐‐JJ22 AFM ModelAFM ModelPhase diagram of S 1/2 SquarePhase diagram of S 1/2 Square JJ11 JJ22 AFMModelAFMModel

J /JJ2/J1Neel AFM Stripe AFM

0.41 0.62

Neel AFM: k=() Stripe AFM: k=()

Page 28: Quantum spin liquids in simple model systems - Mesoscopic and

OutlineOutline

• Introduction and Motivations• DMRG study of the S = 1/2 AFM square J1‐J2 model

‐ Neither magnetic order  nor VBS orderf l l l‐ finite topological entanglement entropy

• Possible experimental realization of the J1‐J2 model• Generalized quantum dimer models

‐ Exact spin liquid ground states‐ Low energy effective theory and correlations

• Conclusions

Page 29: Quantum spin liquids in simple model systems - Mesoscopic and

SpinSpin‐‐1/2 Quasi1/2 Quasi‐‐2D materials2D materials

• Many spin‐1/2 Mott insulator materials with effe ti e J J i te a tio

pp

effective J1‐J2 interactions: ‐ Cuprates, J2/J1 ≈ 0.1:  J2 is too weakLi VOSiO Li VOSiO J /J ≈ 1 0 10 0: J dominates‐ Li2VOSiO4, Li2VOSiO4, J2/J1 ≈ 1.0 ~ 10.0:  J2 dominates ‐ VOMoO4, J2/J1 ≈ 1.0:  J2 dominates

Li2VOSiO4 VOMoO4

Page 30: Quantum spin liquids in simple model systems - Mesoscopic and

PPressure effect in spinressure effect in spin‐‐1/2 1/2 QuasiQuasi‐‐2D materials2D materialspp

Page 31: Quantum spin liquids in simple model systems - Mesoscopic and

First principle study of First principle study of pressure effect in Lipressure effect in Li22VOSiOVOSiO44

P(GPa) J2/J10 7 10410 ‐7.1041 50 12.9575 100 2.1647 150 1.5521 200 1.4624 210 1.4662 220 1.4735 230 1.4849 250 1 5051250 1.5051 

1) It’s still Mott insulator with ~2eV band gap when the1) It s still Mott insulator with ~2eV band gap when the hydrostatic pressure is applied.2) When the pressure reaches 150 GPa, the J2/J1 ratio stops decreasing, while J1 and J2 still increase. 

P. C. Chen, P. Z. Tang, H. Yao, W. H. Duan, unpublished

Page 32: Quantum spin liquids in simple model systems - Mesoscopic and

OutlineOutline

• Introduction and Motivations• DMRG study of the S = 1/2 AFM square J1‐J2 model

‐ Neither magnetic order  nor VBS orderf l l l‐ finite topological entanglement entropy

• Possible experimental realization of the J1‐J2 model• Caricature of spin liquids from quantum dimermodels‐ Exact spin liquid ground states‐ Low energy effective theory and correlations

• Conclusions

Page 33: Quantum spin liquids in simple model systems - Mesoscopic and

RVBRVB Quantum Quantum dimerdimer modelmodel

• RVB states with short‐range valence bonds

YRVB= + + ▪▪▪

• But, no known microscopic models for gapped RVB , p g ppground states on the square lattice. 

• To have a caricature of RVB states: (1) valence bond  dimer(2) dimer configurations are orthogonalg g(3) all possible dimer coverings consist complete Hilbert space. (4) write down a simple dimer Hamiltonian: quantum dimer

modelRohksar and Kivelson, PRL 1988

Page 34: Quantum spin liquids in simple model systems - Mesoscopic and

Quantum Quantum dimerdimer models on the square latticemodels on the square lattice

• Simplest RVB states: only NN valence bonds

qq

YRVB= + + ▪▪▪

• Quantum dimer model:Q

t: kinetic energy, V: potential energy

t=V is the RK point, an exactly solvable point:   0 =c

c C l VBS Pl tt VBS St d VBSColumnar VBS  Plaquette VBS  Staggered VBS 

V/t

1=RK: a critical pointRohksar and Kivelson, 1988

Page 35: Quantum spin liquids in simple model systems - Mesoscopic and

Generalized quantum Generalized quantum dimerdimer models models 

• RVB states with both NN and NNN valence bonds:

qq

YRVB= + + ▪▪▪

• Corresponding quantum dimer model:p g q

RK points: t = V tʹ = Vʹ tʹʹ = Vʹʹ any ( )

0 = dn c

c

c Exact ground state at RK points:RK points:  t = V, t  = V , t  = V , any 

H. Yao and Kivelson, 2012

Page 36: Quantum spin liquids in simple model systems - Mesoscopic and

Correlations of RK wave functionsCorrelations of RK wave functions( )

0 = dn c

c

c RK ground state wave functions:

Ground state correlators are equivalent to classical dimer model  Classical dimer model is solvable by the ʺPfaffianʺ method

tij=1, for <ij> tij=, for <<ij>>

0 0| [ ]exp( )( )( )jk j k jk j k lm l m

Z da SS it a a it a a it a a

jk jklm

† † †[ ]x y zS d d i i d d In the continuum limit:

† † †0 1 1 2 2[ ]x y z

y xS dxdy i i m g dxdy m0 = 2, g = 42

i i l t di d l ith l NN di original quantum dimer model with only NN dimersFree massless Dirac fermionsdimer correlations <D(0) D(r)> ~ 1/r2 a critical pointdimer correlations <D(0) D(r)>   1/r , a critical point. 

≠ 0: interacting fermions in 2+0 or 1+1 dimensions.  

Page 37: Quantum spin liquids in simple model systems - Mesoscopic and

Correlations of RK wave functionsCorrelations of RK wave functions

† † †[ ]x y zS d d d d In the continuum limit, y ‐> t: massive Thirring model 

† † †0 1 1 2 2[ ]x y z

t xS dxdt i i m g dxdt Bosonization:

2 20

1 1[ ( ) ( ) ] cos( 4 )2 F x t

F

S dxdt v mK v

1 /(2 ) is the Luttinger parameter1 /(2 )

gKg

The mass term is still relevant for finite g, indicating a gap.  

Exact Bethe Ansatz solution of the mass gap in interacting Exact Bethe‐Ansatz solution of the mass gap in interacting massive Thirring model: m = m0 exp(‐g/)

ll l l l ti h t d→ all local correlations are short‐ranged. 

Page 38: Quantum spin liquids in simple model systems - Mesoscopic and

Phase diagram of generalized quantum Phase diagram of generalized quantum dimerdimer modelmodelg g qg g q

RK points: a gapped quantum spin liquid

Gapped quantum spin liquid is impressible, i.e. stable against small perturbation in the Hamiltonian. 

Columnar VBS  Plaquette VBS  Staggered VBS 

V/tRVB liquid

1=RK

Stable gapped Z2 spin liquids on the square lattice is proved to 

Yao and Kivelson, 2012

g pp p q q pexist in models.  

,

Page 39: Quantum spin liquids in simple model systems - Mesoscopic and

ConclusionsConclusions

• DMRG study of the J1‐J2 model:h d l b d l d d‐ Neither magnetic order nor valence bond solid order

‐ Positives evidence of the spin liquid ground state:  fi i l i l lfinite topological entanglement entropy

• Possible experimental realizationsA l l h l l l /‐ Apply pressure to materials with relatively large J2/J1

• Caricature from generalized quantum dimer models‐ Exact Z2 quantum spin liquid on the square lattice

Thank you!