quantum optical methods in classical optics: optical realizations of quantum systems

23
ICO-21 2008 Quantum optical methods in classical optics: Optical realizations of quantum systems Héctor Moya-Cessa Instituto Nacional de Astrofísica, Optica y Electrónica Tonantzintla, Pue

Upload: mardi

Post on 15-Jan-2016

37 views

Category:

Documents


0 download

DESCRIPTION

Quantum optical methods in classical optics: Optical realizations of quantum systems Héctor Moya-Cessa Instituto Nacional de Astrofísica, Optica y Electrónica Tonantzintla, Pue MEX X ICO. Talk will cover. Optical ralization of a quantum invariant - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Quantum optical methods in classical optics: Optical realizations of quantum systems

ICO-21 2008

Quantum optical methods in classical optics: Optical realizations of quantum systems

Héctor Moya-Cessa

Instituto Nacional de Astrofísica, Optica y ElectrónicaTonantzintla, Pue

MEXXICO

Page 2: Quantum optical methods in classical optics: Optical realizations of quantum systems

ICO-21 2008

Talk will cover

• Optical ralization of a quantum invariant

• Optical realization of a quantum beam splitter

• Wigner function to evaluate some divergent series

Page 3: Quantum optical methods in classical optics: Optical realizations of quantum systems

ICO-21 2008

2

21( ) ,

2

qI q q

2 ( ) 0q t q

2 3( ) 1/t

Time dependent harmonic oscillator (classical)

Ermakov-Lewis Invariant

Ermakov equation Lewis, PRL (1967).

Optical ralization of a quantum invariant

M. Fernández Guasti (Metropolitan University of Mexico)S. Chávez Cerda (INAOE)V. Arrizon (INAOE)

Page 4: Quantum optical methods in classical optics: Optical realizations of quantum systems

ICO-21 2008

2

2ˆ1ˆ ˆ ˆ( )2

qI p q

Squeezing & displacement

2ln ˆˆ ˆ ˆ ˆ( )22ˆ ˆi qi qp pq

S e D e

Translates into QM as

H. Moya-Cessa and M. Fernández Guasti PHYSICS LETTERS A 311, 1 (2003).

G is an invariant provided its derivative is zero

| ˆ |i Ht

2 22ˆ ˆˆ ( )

2 2

p qH t

ˆ ˆ ˆ| | |SD T

Page 5: Quantum optical methods in classical optics: Optical realizations of quantum systems

ICO-21 2008

2 2

0 0 2

† †

ˆ ˆ| 1 1ˆ| , ( ) ( )

( ) 2 2

ˆ ˆ ˆ ˆˆ, ,

2 2

p qi H H t n

t t

q ip q ipa a n a a

Time dependence multiplies only one operator

2 22ˆ ˆˆ ( )

2 2

p qH t

ˆ ˆ ˆ| | |SD T

1ˆ( ) ( )

2| ( ) | (0)i n t dt

t e

Page 6: Quantum optical methods in classical optics: Optical realizations of quantum systems

ICO-21 2008

1ˆ ˆ| ( ) exp ( ) ( ) | (0)2

t i dt t I T

1ˆ| exp ( ) ( ) | (0)

2i dt t n

ˆ| (0) (0) | (0)

ˆ| (0) (0) | (0) | (0)

T

T

Page 7: Quantum optical methods in classical optics: Optical realizations of quantum systems

ICO-21 2008

cos[ ( , ) ]A B

A B tA B A B

2ln ˆˆ ˆ ˆ ˆ( )22ˆ ˆi qi qp pq

S e D e

Page 8: Quantum optical methods in classical optics: Optical realizations of quantum systems

ICO-21 2008

Praxial wave equation

Suponemos ahora dos medios GRIN pegados

GRaded INdex referring to an optical material with refractive index in the form of a parabolic curve, decreasing from the center towards the cladding.

Page 9: Quantum optical methods in classical optics: Optical realizations of quantum systems

ICO-21 2008

2 2 2 2 2 2 21 1 1 1( , ) ( , ) ( ),k x y k x y x y z L

2 2 2 2 2 2 22 2 2 2( , ) ( , ) ( ),k x y k x y x y z L

Page 10: Quantum optical methods in classical optics: Optical realizations of quantum systems

ICO-21 2008

2 2 22 2 2 ( )( )( )

2 2yxp z yp z xE

i g z Ez

,x y

d dp i p i

dx dy

22 1 0

22 0

22 1 0

22 0

21 022 0

( )

( )

( )

z zz

z z

z zz

z z

z zg z

z z

Units such that =1

Page 11: Quantum optical methods in classical optics: Optical realizations of quantum systems

ICO-21 2008

2 2 22 2 2 ( )( )

2 2yxp z yp z x

iz

( )i g z dzE e

w w wT S D

2ln( ) 22 , ,

www w

w

i wi wp p w

w wS e D e w x y

22 3

2( ) 1/ , ,w

w w

df z f

dz

Page 12: Quantum optical methods in classical optics: Optical realizations of quantum systems

ICO-21 2008

x yT T

1 2( 0) ( ) ( )z G x G y

1 22 2

1 22 2

1 1( ) exp ( ) ( ) exp ( ) ( )

( ) 2 ( ) 2

1 1exp ( ) ( ) exp ( ) ( )

( ) 2 ( ) 2

x y

x y

x x y y

x x y y

dz dzz T i N G x T i N G y

z z

dz dzi I T G x i I T G y

z z

Page 13: Quantum optical methods in classical optics: Optical realizations of quantum systems

ICO-21 2008

2

21

( ) ( ) , ( ) ( )2 !

x

n n x n nn

u x H x e N u x nu xn

2

2

21

0

( )exp

2( ) ( )

!

n

nn

x

G x e u xn

Arfken

Page 14: Quantum optical methods in classical optics: Optical realizations of quantum systems

ICO-21 2008

Optical realization of a quantum beam splitter

R. Mar Sarao (INAOE)

Page 15: Quantum optical methods in classical optics: Optical realizations of quantum systems

ICO-21 2008

Splitting in a 50:50 beam splitter

R.A. Campos, B.E.A. Saleh, and M. C. Teich, Phys. Rev. A 40, 1371 (1989).

Page 16: Quantum optical methods in classical optics: Optical realizations of quantum systems

ICO-21 2008

Page 17: Quantum optical methods in classical optics: Optical realizations of quantum systems

ICO-21 2008

Again paraxial wave equation

Consider the copropagation of two beams, probe and signal, in a Kerr medium. The probe beam produces the index of refraction

If the probe beam has a Gaussian profile, Is astigmatic and slightly tilted,a term xy is produced

S. Chávez-Cerda, J.R.Moya-Cessa, and H. Moya-Cessa, J. of the Opt. Soc. of Am. B 24, 404-407 (2007).

Page 18: Quantum optical methods in classical optics: Optical realizations of quantum systems

ICO-21 2008

1 1 2 0 0 2( ) ( ) ( ) ( ) ( ) ( )u x u y u x u y u x u y

† †, , , ,2 2q q

q q q q q

q ip q ipa a n a a q x y

Page 19: Quantum optical methods in classical optics: Optical realizations of quantum systems

ICO-21 2008

0

1( ) ( 1) | ( ) ( ) |n

n

W n D D n

Wigner function as a tool to evaluate divergente series

Roberto de Jesús León (INAOE)E. Martí Panameño (Puebla University)

H. Moya-Cessa and P.L. Knight, Phys. Rev. A 48, 2479-2481 (1993).

Glauber displacement operator† *

( ) a aD e

Page 20: Quantum optical methods in classical optics: Optical realizations of quantum systems

ICO-21 2008

Abel: "Divergent series are on the whole devil's work, and it is a shame that one dares to found any proof on them. One can get out of them what one wants if one uses them, and it is they which have made so much unhappiness and so many paradoxes. Can one think of anything more appalling than to say that

where m is a positive number. Here's something to laugh at, friends."

Page 21: Quantum optical methods in classical optics: Optical realizations of quantum systems

ICO-21 2008

Page 22: Quantum optical methods in classical optics: Optical realizations of quantum systems

ICO-21 2008

Page 23: Quantum optical methods in classical optics: Optical realizations of quantum systems

ICO-21 2008

Conclusions

• It was shown the optical realization of the Lewis-Ermakov invariant and of the “quantum” beam splitter

• The Wigner function was used to evaluate some divergent series.