quantum mechanics and umbral calculus - iopscience

16
Journal of Physics: Conference Series OPEN ACCESS Quantum mechanics and umbral calculus To cite this article: J E López-Sendino et al 2008 J. Phys.: Conf. Ser. 128 012056 View the article online for updates and enhancements. You may also like Direct Observations of Different Sunspot Waves Influenced by Umbral Flashes Aishawnnya Sharma, G. R. Gupta, Durgesh Tripathi et al. - The Magnetic Response of the Solar Atmosphere to Umbral Flashes S. J. Houston, D. B. Jess, A. Asensio Ramos et al. - Solar ALMA Observations: Constraining the Chromosphere above Sunspots Maria A. Loukitcheva, Kazumasa Iwai, Sami K. Solanki et al. - Recent citations Generalized Appell bases M. Maldonado et al - Discrete coulomb potential J. E. López-Sendino et al - This content was downloaded from IP address 116.220.181.205 on 25/11/2021 at 00:28

Upload: others

Post on 09-Feb-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Journal of Physics Conference Series

OPEN ACCESS

Quantum mechanics and umbral calculusTo cite this article J E Loacutepez-Sendino et al 2008 J Phys Conf Ser 128 012056

View the article online for updates and enhancements

You may also likeDirect Observations of Different SunspotWaves Influenced by Umbral FlashesAishawnnya Sharma G R GuptaDurgesh Tripathi et al

-

The Magnetic Response of the SolarAtmosphere to Umbral FlashesS J Houston D B Jess A AsensioRamos et al

-

Solar ALMA Observations Constrainingthe Chromosphere above SunspotsMaria A Loukitcheva Kazumasa IwaiSami K Solanki et al

-

Recent citationsGeneralized Appell basesM Maldonado et al

-

Discrete coulomb potentialJ E Loacutepez-Sendino et al

-

This content was downloaded from IP address 116220181205 on 25112021 at 0028

Quantum mechanics and umbral calculus

J E Lopez-Sendino J Negro M A del Olmo and E Salgado

Departamento de Fısica Teorica Universidad de Valladolid E-47011 Valladolid Spain

E-mail jelsmetodosfamcieuvaes jnegroftauvaes olmoftauvaes

Abstract In this paper we present the first steps for obtaining a discrete Quantum Mechanicsmaking use of the Umbral Calculus The idea is to discretize the continuous Schrodingerequation substituting the continuous derivatives by discrete ones and the space-time continuousvariables by well determined operators that verify some Umbral Calculus conditions In thisway we assure that some properties of integrability and symmetries of the continuous equationare preserved and also the solutions of the continuous case can be recovered discretized in asimple way The case of the Schrodinger equation with a potential depending only in the spacevariable is discussed

1 Introduction

In the last years the interest in physics for discrete space-time theories has increased mainly inrelation with quantum gravity [1] In a scenario where the physical space-time may be discrete(ie there is a fundamental length in the space-time ndashlet σ be the fundamental space lengthand τ the fundamental time length ndash that could be related with Planckrsquos constant) continuoustheories would only be approximations to the reality Hence it seems interesting the study ofdiscrete physical theories such that in the limit of σ going to zero we recover the well known andestablished continuous physical theories One way to do that is to discretize continuous physicaltheories in particular quantum theories It is obvious that after discretization some propertieswill be conserved and other ones will disappear A detailed study about when how and whythis happens would be pertinent and very interesting This is the aim of this work to studyhow to discretize a physical theory in such a way that properties related with symmetries in thecontinuous case can be preserved in the process and so to analyse the behaviour of quantummechanics after discretization

The Umbral Calculus is the mathematical tool that we will use to discretize QuantumMechanics It has been used recently to provide discrete representations of canonical com-mutation relations (ie [partx x] = 1) in order to discretize linear differential equations [2]ndash[9] insuch a way that the continuous point symmetries are preserved the most cases

In this paper we will consider a fixed lattice and use the umbral correspondence to obtaindiscrete solutions maintaining certain commutation relations [9]

The history of the Umbral Calculus goes back to the 17th century Taylor Newton BarrowVandermonde etc [10] found some theorems and expressions relating powers with polynomialsHowever in the second half of the 19th century through Sylvester Cayley and Blissard [11]ndash[13]appeared the terms lsquoumbraersquo (shadow in Latin) and lsquoUmbral Calculusrsquo for the first timein relation with a set of lsquomagicrsquo rules of lowering and raising indices Some mathematicaldevelopments like the theory of Sheffer polynomials (called Appell polynomials or more generally

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

ccopy 2008 IOP Publishing Ltd 1

polynomials of type zero) [14]ndash[17] and the theory of abstract linear operators by Pincherle [15]converged to Umbral Calculus Finally in the second half of the 20th century Rota Roman andcollaborators [18]ndash[23] developed the Umbral Calculus as a linear algebra of operators Thusthey formulated the theory of the umbral algebra and its dual in the space of formal series Alarge bibliography about Umbral Calculus and its applications can be found in Ref [24]

About recent results we can mention that new methods in Umbral Calculus have beenintroduced for computation of series by integration [25] Also Ref [26]ndash[30] study the symmetriesof nonlinear difference equations or multidimensional ones related with Quantum Mechanics

This paper is organised as follows In the next section we introduce the basic conceptsof Umbral Calculus in terms of the theory of linear operators In section 3 we show themain facts relative to the discretization of the (continuous) Quantum Mechanics The mostusual representations for the discrete derivative operator (right left and symmetric discretederivatives) are analysed in section 4 In order to see how the above umbral correspondenceswork we present in section 5 their action on some non-polynomial functions the exponential andthe trigonometric functions The next section is devoted to present the basis for constructinga discrete Quantum Mechanics founded on the Umbral Calculus Thus we present an umbralversion of the Schrodinger equation for some potentials Finally some conclusions close thepaper

2 Introduction to Umbral Calculus

This introductory exposition of the modern theory of the Umbral Calculus developed mainlyby Rota and Roman follows mainly Ref [23] The umbral algebra L is the algebra of linearoperators acting on the algebra F of formal power series in a variable or acting on the algebraof real or complex polynomials in a variable P The elements of F are of the form

f(x) =infinsum

n=0

anxn an isin F

and those of P are

pn(x) =n

sum

i=0

aixi ai isin F n isin N

being F a field of characteristic zero (in our case it will be identified with the real numbers Rbut it could be for example the complex numbers)

The linear operators of L called shift operator T and coordinate operator X act on theelements of F or P as follows

Tσ middot p(x) = p(x+ σ)

X middot p(x) = x p(x)(1)

All the results of this work can be extended to separable equations of any number of variablesFor non separable equations the method is the same but the results may be quite different

An operator O isin L is said shift invariant if and only if commutes with the shift operatorie

[OTσ] = OTσ minus TσO = 0 forall σ isin F

The so-called delta operators ∆ are those operators of L such as

∆ middot x = c 6= 0 c isin F

[∆ Tσ] = ∆Tσ minus Tσ∆ = 0 forall σ isin F(2)

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

2

where c isin F is any fixed constant It is easy to prove that

∆ middot a = 0 forall a isin F

For every delta operator ∆ there is a series of basic polynomials p0(x) p1(x) p2(x) pn(x)of P verifying

p0(x) = 1

pn(0) = 0 forall n gt 0

∆ middot pn(x) = n pnminus1(x)

(3)

We see that ∆ acts as a lowering (index) operator on its associated polynomial A very importantfact of the theory is that each pair ∆ pn(x) defines a unique realization or representation ofthe umbral algebra There is a bijective correspondence J between basic series of polynomialsand their ∆ operators Hence J may be defined with only one element of the pair

The commutator of an operator O with the coordinate operator X

Oprime = [OX] = OX minusXO (4)

is called the Pincherle derivative of OGiven a delta operator ∆ we can find an associated operator ξ such that

[∆ ξ] = 1 (5)

This operator ξ is not shift invariant and together with ∆ and 1 close the Heisenberg-Weylalgebra or in other words expression (5) is a Heisenberg-like relation between ∆ and itsconjugate ξ It is worthy to note that ξ is associated with the corresponding basic series ofthe operator ∆ by

ξn middot 1 = pn(x)

Although only in a determined correspondence ξn middot 1 coincides with the Pockhammer symbolx(n) from now on we will use the following notation

ξn middot 1 = pn(x) equiv x(n) (6)

which is easy to prove taking into account that

[∆ ξn] = n ξnminus1

Obviously there is only one way to define ξ if its associated polynomial series obeys all therelations (3) Given an operator ∆ its associated operator ξ must be

ξ = Xβ

where βminus1 is the first Pincherle derivative of ∆ It is easy to demonstrate that βminus1 is invertibleand β is shift invariant

Let ∆1 and ∆2 be two delta operators with associated ξ-operators ξ1 and ξ2 respectively Amap R L rarr L is called an umbral correspondence if

R ξn1 rarr ξn

2 foralln isin N

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

3

The umbral correspondence also induces a correspondence R between two delta operatorsSummarising the following diagram is commutative

ξn1

Rlarrrarr ξn2

J l J l∆1

Rlarrrarr ∆2

J l J lξn1 middot 1 = x

(n)1

Rharr ξn2 middot 1 = x

(n)2

From the above diagram one easily sees that there is a triplet ∆ ξ pn(x) that defines a uniquerepresentation of the umbral algebra Moreover through J we can go in a bijective way fromone element to another of the triplet in such a way that only one of these elements is necessaryand sufficient to define the umbral representation The bijective application R bring us from aumbral representation to another one

3 Umbral correspondence and discretized quantum mechanics

As we mentioned before the main goal of this work is the application of the umbralcorrespondence to discretize Quantum Mechanics In fact the 1-dimensional QuantumMechanics is an umbral realization via the identification

∆ = partx ξ = X pn(x) = xn

Since we are interested in the discretization of Quantum Mechanics we will use the umbralcorrespondence to relate the triplet (partx X x

n) with another one defined on the lattice fieldFσ = x isin R |x = mσ m isin Z with lattice parameter σ isin R

Let us start defining a general difference operator ∆ as a delta operator such that in thelimit when σ goes to zero becomes the differential operator partx Supposing that ∆ is a lineardifference operator then it will have a polynomial dependence on the shift operator T ie

∆ =1

ksum

n=minusj

anTn (7)

where N isin N an isin R and σ isin R is the lattice parameter Imposing condition (2a) ie ∆ middotx = 1since condition (2b) is trivially verified we get

sumkn=minusj an = 0

sumkn=minusj nan = N

(8)

These conditions (8) guarantee that in the limit when σ goes to zero ∆ goes to partx as it is easyto prove

Recalling that the pair of Quantum Mechanics operators (partxX) verifies the Heisenbergrelation

[partxX] = 1

we call discrete position operator to a non-shift invariant operator ξ such that with the differenceoperator ∆ verifies a similar Heisenberg relation ie

[∆ ξ] = 1

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

4

The umbral correspondence allows us to relate continuous linear equations h and theirsolutions f if they can be developed in power series with umbral discrete versions h and f respectively as follows

h (partnxf(x) xs) = 0 larrrarr h

(

∆nf(ξ) ξs)

middot 1 = 0 n s isin N

f(x) =

infinsum

n=0

fnxn larrrarr f(ξ) middot 1 =

infinsum

n=0

fnx(n)

(9)

This is the main result of Umbral Calculus that we will exploit here for ours purposesUmbral Calculus allows us not only to discretize continuous differential equations obtainingdiscrete equations but also to get solutions of these equations if their continuous counterpartsare polynomial solutions or may be developed in power series which converge after thecorrespondence Note however that with the umbral correspondence we obtain an operatorwhich must be applied to 1 to get a difference equation or its solution

For the particular case of a symmetric difference operator ie a difference operator ∆σ suchthat

∆σ middot f(x) = minus∆minusσ middot f(x)

we have that the general expression (7) reduces to

∆σ =1

jsum

n=1

an(T n minus Tminusn) (10)

4 Differential operators for discretized quantum mechanics

In the following we will use some particular expressions (or representations) for the differentialoperator ∆ all of them of low (first and second) order on the shift operator T Let us considerthe two possible representations for ∆ of first order the right discrete derivative ∆+ and theleft discrete derivative ∆minus and the (only) symmetric discrete derivative of second order ∆s

The right-correspondence is determined by the couple of operators (∆+ ξ+) given by

∆+ =1

σ(T minus 1) β+ = Tminus1

and the left-correspondence (∆minus ξminus) by

∆minus =1

σ(1minus Tminus1) βminus = T

Note that both are connected by the change σ harr minusσ

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

5

The basic polynomial series of the right-correspondence is related with the Pochhammersymbols Its explicit expression is

(Xβ+)n middot 1 = x(n)+ = x(xminus σ)(xminus 2σ) (xminus (nminus 1)σ)

=prodnminus1

i=0 (xminus iσ) = σnprodnminus1

i=0 (mminus i)

=

(minusσ)n(minusm+ nminus 1)

(minusmminus 1)if m lt 0

0 if

m ge 0m lt n

σn m

(mminus n)if

m ge 0m ge n

(11)

where x = mσ with m isin Z This series of polynomials has some interesting properties First of

all we can see that the n-th order zero of xn splits into n first order zeros of x(n)+ at the right of

the origin If the right-correspondence is applied to a Taylor power series then for the positivepoints of the domain it will be truncated and therefore will converge but not for the negativeones and therefore could diverge

The left-correspondence ∆minus ξminus is nearly similar to the right one The basic sequence isrelated with the rising factorial (instead of the falling factorial of the previous case) and it ismirror symmetric respect to the y-axis to the right-correspondence in fact the negative pointsof a Taylor series discretized in this way always converge

According to the formula (10) there is only one symmetric representation of second order onT (S-representation) determined by the pair ∆s ξs where

∆s =1

2σ(T minus Tminus1) βs = 2(T + Tminus1)minus1

and its basic sequence is

(Xβs)n middot 1 = x(n)

s = x[xminus (nminus 2)σ][x minus (n minus 4)σ] [x+ (n minus 4)σ][x + (nminus 2)σ]

= x

nminus2prod

i=0

[x+ (2iminus (nminus 2))σ] = σnm

nminus2prod

i=0

[m+ 2iminus (nminus 2)]

=

(sign(m)σ)n|m|(|m|+ nminus 2)

(|m| minus n)if n le |m|

0 if

n gt |m|p(nminusm) = +1

(minus1)1

2(nminus|m|minus1)(sign(m)σ)nm

times(|m|+ nminus 2)(n minus |m| minus 2)if

n gt |m|p(nminusm) = minus1

(12)

where p(n) = (minus1)n is the parity function and the double factorial is defined as n = n(nminus 2)with n = 1 when n is 0 or 1

The behaviour of this basic sequence is much more complicated than those of the right andleft-correspondences The zero at the origin of order n of the continuous power function ofdegree n splits into n simple zeros after discretization These zeros appear at the points x = mσwith the conditions

p(nminusm) = +1 n gt |m| (13)

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

6

Thus applying the S-correspondence to a Taylor series we find that at the points obeying theconditions (13) there is a cut-off in the series and hence the sums will always converge in casethe function has a well defined parity

In the following diagram we display the basis elements (ξn∆ x(n)) of the three usualrepresentations

Right representation Left representation Symmetric representation

ξn+ =

(

XTminus1)n Rlarrrarr ξn

minus = (XT )nRlarrrarr ξn

s =(

2X(

T + Tminus1)minus1

)n

J l J l J l

∆+ =1

σ(T minus 1)

Rlarrrarr ∆minus =1

σ

(

1minus Tminus1) Rlarrrarr ∆s =

1

(

T minus Tminus1)

J l J l J l

x(n)+ =

nminus1prod

i=0

(xminus iσ)Rlarrrarr x

(n)minus =

nminus1prod

i=0

(x+ iσ)Rlarrrarrx(n)

s = x

nminus2prod

i=0

(x+ (2i minus n+ 2)σ)

ccedil

ccedil

ccedil

ccedil

ccedil ccedil ccedil

ccedil

ccedil

ccedil

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute aacute aacute

aacute

aacute

-4 -2 2 4

-20

-10

10

20

(a) Some powers for the position in the S-correspondence

ccedil

ccedil

ccedil

ccedilccedil ccedil

ccedil

ccedil

ccedil

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute aacute aacute

aacute

aacute

-4 -3 -2 -1 1 2 3

-20

-10

10

20

(b) Some powers for the position in the left-correspondence

ccedil

ccedil

ccedil

ccedilccedil ccedil

ccedil

ccedil

ccedil

ccedil

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute aacute aacute

aacute

aacute

-2 2 4

-20

-10

10

20

(c) Some powers for the position in the right-correspondence

Figure 1 Represented in dashed line the continuous powers and in dots the powers for the discrete positionwith red circles for x

2 and blue squares for x3 The number of zeros is equal to the power n for the right and the

left cases

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

7

5 The discretized exponential function and the trigonometric functions

We start with the exponential function which in some sense is the simplest case The continuousexponential function as it is well known is defined through the following differential equation

d

dxyk = kyk yk(0) = 1 k isin R

and its power expansion series around the origin is

yk(x)) = ekx =infinsum

n=0

(kx)n

n

As we mentioned before the umbral correspondence gives rise to the same function eitherby solving the discrete difference equation obtained by applying the umbral correspondence tothe continuous differential equation or by applying the umbral correspondence to its solutionsas long as their power series converge Hence we have to calculate

expU (k x) =infin

sum

n=0

kn

nξn middot 1 (14)

If we use the right-correspondence (11) the umbral-exponential (14) becomes

exp+(k σm) =

msum

n=0

(kσ)nm

n(mminus n)if m gt 0

infinsum

n=0

(minuskσ)n(minusm+ nminus 1)

n(minusmminus 1)if m lt 0

= (1 + kσ)m

For the left-correspondence we get

expminus(k σm) =

infinsum

n=0

(kσ)n(m+ nminus 1)

n(mminus 1)if m gt 0

minusmsum

n=0

(minuskσ)n(minusm)

n(minusmminus n)if m lt 0

= (1minus kσ)minusm

In Fig 2(a) it is displayed the continuous exponential function together with its discrete versionby the right-correspondence It is worthy to note that if in the continuous case we found thatexp(k x) = exp((minusk)(minusx)) now in the discrete case we have that exp+(k x) = expminus(minuskminusx)

Another possibility is to apply the S-correspondence (12) So we obtain

exps(kmσ) =infin

sum

n=0

(kσ)n

nm

nminus2prod

i=0

(m+ 2iminus (nminus 2)) =(

kσ +radic

(kσ)2 + 1)m

These discrete exponentials only converge when the continuous variable k obeys (kσ)2 lt 1for all the three correspondences studied in the previous sections

Also we can easily study the trigonometric functions (as well as the hyperbolic functions)taking into account their expressions in terms of the exponential functions In this way we canobtain the discrete trigonometric functions from the discrete exponential function We displayin Fig 2(b) the sine function

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

8

We can see that the symmetric discrete trigonometric functions maintain the periodicbehaviour of the continuous ones However the period λs is different to the continuous functionλ = 2πk We find it easier in the case of the sine function through sins(k lσ) = sins(k 0σ)We have fixed λ = lσ with l isin Z but it can be generalized without problems to l isin R

sins(k lσ) =1

2i

(

(

radic

1minus (kσ)2 + ikσ)l

minus(

radic

1minus (kσ)2 minus ikσ)l

)

= 0 = sins(k 0σ)

rArr(

radic

1minus (kσ)2 + ikσ)l

=(

radic

1minus (kσ)2 minus ikσ)l

to solve this identity we define

radic

1minus (kσ)2 + ikσ = reiθ rArr

θ = arctan

(

kσradic1minus(kσ)2

)

r = 1

and this guide us to the solution

sin(θl) = 0rArr θn =nπ

lrArr kn =

1

σsin

l

As there are two zeros in each period of the function we can find the relation between thenumber of waves and the wave length We have added an superscript to remark that theserelations are different for each representation then

ks =1

σsin

(

l

)

λs =2πσ

arcsin(ksσ) (15)

It is easy to demonstrate the periodic behaviour of the symmetric trigonometric functions infact introducing (15) into de symmetric sinus

sins(ksmσ) = sin

(

m2π

l

)

For the right and left correspondences the trigonometric functions are not periodic Howeverthe extremums of the functions and the intersection points with the abscissa axis appearperiodically and then we can define a wave function through this property With a similarcomputation than in the symmetric case we find

k+ =1

σtan

(

l

)

λ+ =2πσ

arctan(k+σ) (16)

The wave length is bigger in the right and left discretizations and smaller in thesymmetric discretization than in the continuous trigonometric functions Also in thesethree correspondences the trigonometric functions have a minimum period it appears in theconvergence limit when kσ = 1 For the right and the left discretizations we have λ+

min = 8σin fact it is a 8 point wave and for the symmetric one λs

min = 4σ in fact it is a 4 point waveWe set λ = lσ and without loss of generality we fix l integer Then it is easy to calculate the

change in the amplitude in the right and left correspondences through (16)

sin+(k+mσ) =1

2i

(

(1 + ik+σ)m minus (1minus ik+σ)m)

= cosminusm

(

l

)

sin

(

m2π

l

)

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

9

andsin+(kmσ)An(l) = sin+(k (m + nl)σ)

Hence the non periodic part is then the multiplicative factor

An(l) =

(

secl

(

l

))n

(17)

This is also true for the cosine function and for any l isin R Although we have a wave lengthλ = lσ for the trigonometric functions in the right and left representations we can see that theyare not periodic

ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedilccedil ccedil ccedil

ccedil ccedilccedil ccedil

ccedilccedilccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

oacute oacute oacute oacute oacute oacute oacute oacute oacute oacuteoacute oacute oacute

oacute oacuteoacute oacute

oacute oacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

-2 -1 1 2

5

10

15

ccedil ccedil ccedil ccedil ccedilccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

oacute oacute oacute oacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

-25 -20 -15 -10 -05

02

04

06

08

10

(a) Exponential function with σ = 02

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

-20 -10 10 20

-2

-1

1

(b) Sinus function with σ = 03

Figure 2 We represent here the continuous functions with a black solid line and the discrete ones with redtriangles the right correspondences and with blue circles the symmetric ones

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

10

It is important to note that all the properties that obey the exponential and the trigonometricfunctions are maintained after the discretization with an exception any property that includestwo or more different constants k because they give similar effects than a different lattice spacingσ nor a different x like in the continuous case Thus for example

expU (kmσ) expU (k nσ) = expU (k (m + n)σ)

expU (kmσ) expU(kprimemσ) 6= expU (k + kprimemσ)

6 Umbral Schrodinger equation

Let us go to discretize the Schrodinger equation with a potential V (x) We will profit the wellknown fact that if the potential is independent of the time then the continuous Schrodingerequation is separable Thus from the Schrodinger equation

i~parttφ(x t) = minus ~2

2mpart2

xφ(x t) + V (x)φ(x t)

and considering φ(x t) = ψ(x)ϕ(t) we obtain two uncoupled ordinary differential equations

minus ~2

2mpart2

xψ(x) + V (x)ψ(x) = Eψ(x)

i~parttϕ(t) = Eϕ(t)

that we can rewrite with natural units as

part2xψ(x) + V (x)ψ(x) = Eψ(x)

minusiparttϕ(t) = Eϕ(t)(18)

The solution of the equation (18b) is

ϕ(t) = CeiEt (19)

61 Constant potential

In relation with the first equation of (18) the simplest case appears when the potential isconstant (V (x) = V0) The solution is

ψ(x) = Aeikx +Beminusikx if E gt V0

ψ(x) = Aekx +Beminuskx if E lt V0(20)

with k =radic

|E minus V0| Therefore the solution φ(x t) is a linear combination of trigonometric orexponential functions and hence their discretizations have been studied in section 5

The energy for a fixed momentum k is the same than in the continuous case for anydiscretization as we can see

Hψ =(

minus∆2 + V0

)

infinsum

n=0

(ik)n

n(A+ (minus1)nB) ξn =

=(

k2 + V0

)

infinsum

n=0

(ik)n

n(A+ (minus1)nB) ξn =

(

k2 + V0

)

ψ

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

11

In spite of this result the relation between the momentum and the wave length λ = lσ is differentin the discrete case

k =2π

λ kplusmn =

1

σtan

(

l

)

ks =1

σsin

(

l

)

Then the phase velocity changes although the group velocity is the same as in the continuouscase and for this reason the relation between the energy and the velocity

Let be t = nτ where n isin Z the discrete time and τ the fundamental time length Followingthe limits of convergence of the discrete exponentials we find two upper limits for the energyone in relation with the temporal part of the wave function (19) and the other one in relationwith the spatial part of the wave function (20)

Emaxt=

~

τ Emaxl

=~

2

2mσ2 (21)

In fact we have to take the minor of them in each situation Taking σ asymp lP lanck = 162 10minus35mand τ asymp tP lanck = 539 10minus44s we find values of the maximum energy for the time wave Emaxt

and for the spatial wave for a proton Ep+maxland an electron Eeminusmaxl

Emaxtasymp EP lanck = 122 1028eV Emaxl

= 138 1020 1

meV

Ep+maxl= 794 1046eV Eeminusmaxl

= 146 1050eV

Remark that these are non-relativistic effects We can study also the change in the amplitudefor the right and left correspondences The factor of expansion or contraction is

An(l) =

(

secl

(

l

))n

≃(

1 +2π2

l

)n

where l is the number of points into the wave length and n is the number of wave lengths alongthe wave For the temporal part of the wave function of a particle which travel into the LEPthat is during 910minus5s with an energy of 1991014eV we find that the factor is An(l) sim 10105

Forthe spatial part of the same particle an electron the factor is of order An(l) sim 3 These factorsgrow a lot with the energy or the mass of the particle As at this energy the relativistic effectsare important and we are using now non relativistic quantum mechanics it is comprehensibleto find these too big numbers

62 Infinite potential well

A little more complicated is the infinite potential well although it is very similar to a constantpotential it reduces the space to a finite region and due to this fact new differences will appearbetween the continuous and the discrete case The potential is

V (x) =

0 if x isin [0 L]

infin if x isin [0 L]

The wave functions must obey the boundary conditions ψ(0) = ψ(L) = 0 which lead to acountable number of solutions

ψn(x) = sin(

nπx

L

)

k =nπ

L n isin Z

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

12

in the same way we apply the boundary conditions to all our discretizations We can find thequantum rule for both the right and left correspondences following the computation of (15) So

k+n =

1

σtanπ

n

M

where L = Mσ Therefore there are only M2 possible states instead of the infinite states ofthe continuous case with a degeneration relative to the parity The energy is En = k2

n and it isbounded at n = (M minus 1)2 So the maximum energy is

E+max =

~2

2mσ2tan2

(

π

[

M minus 1

2M

])

At n = M2 we find a non physical state of infinite energy and infinite wave function amplitudeWe can do a small computation finding that an electron in an infinite well of wide the Bohrradius (M sim 1027) will have a maximum state energy of E+

max sim 1077eV The maximum energygrows when increasing the number of pointsM and also when decreasing the mass of the particleBut the wave function as we saw previously has a convergence range that limits the numberof states to n isin (minusM4M4) because k lt 1σ Hence the maximum energy is much moresmaller

We have that the quantum rule for the S-correspondence is

ksn =

1

σsinπ

n

M

Again we have a finite number of states M2 rounding down with a degeneration relative to theparity also The energy is always bounded by ~(2mσ2) just as we found with the convergencecondition

Esn = (ks

n)2 =1

σ2sin2 π

n

M

In Figure 3 are drawn the energy levels and the wave functions of the ground state and thetwo first excited states for the continuous case and the three discretizations We can see thegreat fit of the symmetric one for the first excited states but remarking that as its number ofstates is finite M2 then upper these wave functions there are not more states The right andthe left ones have an asymmetry to the left and right directions of the space and then are muchmore different to the continuous wave functions

7 Conclusions

In this paper we have shown how to apply the techniques of the Umbral Calculus for thediscretization of equations preserving the point symmetries We can see the advantage of a toolthat may be used not only on the equations but also over their solutions Due to this fact wehave not to solve difference equations because we alternatively can sum series Moreover in themost difficult cases we can use numerical methods to get a solution

In the umbral discretization we can choose between infinite umbral representations Howeverstill in the simplest cases they present very different behaviours We can separate all of them intwo classes one preserving the parity of the equations and solutions (like the S-representation)and the other one that does not (like the right and left representations) From the point of view ofthe local symmetries in Ref ([2]ndash[9] [26]) it was proved that independently of the correspondencewe get the same discrete point symmetries

The study of the discrete Schrodinger equation together with other potentials (Coulombharmonic oscillator ) are in progress [31]ndash[32] and the results will be published elsewhere

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

13

02 04 06 08 10

1

2

3

4

5

6

oacuteoacuteoacuteoacuteoacuteoacute oacuteoacute oacute oacute

oacuteoacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacute oacute oacute oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacute oacute oacute

oacute

oacute

oacute

oacute

oacuteccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilaacute

aacuteaacuteaacuteaacute aacuteaacute aacute aacute aacute

aacuteaacuteaacuteaacuteaacuteaacuteaacute aacute aacute aacute aacute aacute aacute

aacute aacuteaacuteaacuteaacute aacuteaacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

1 2 3 4

4

5

6

7

8

oacuteoacuteoacuteoacuteoacuteoacuteoacute oacuteoacute oacute oacute oacute oacute oacute oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute oacute oacute oacute oacute oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilaacute

aacuteaacuteaacuteaacute aacuteaacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute

aacuteaacuteaacuteaacuteaacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

aacute aacuteaacute aacuteaacute aacuteaacute

1 2 3 4

10

15

20

30

35

oacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacute oacute

oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacuteccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilaacute aacute

aacute aacuteaacute aacuteaacute aacuteaacute aacuteaacute aacute aacute

aacute aacute aacute aacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

1 2 3 4

081012141618

Figure 3 Energy levels and wave functions of the infinite well The energy levels are in theleft ones in solid line for the continuous case and dashed for the discrete case the shorter redlines are the rightleft case energies and the longer blue lines are the symmetric case energiesWave functions are in the right in black solid line are for the continuous case blue circled pointsare for the S-correspondence red triangled ones for the right correspondence and green squaredones the left correspondence

Acknowledgments

We thank to D Levi for stimulating interesting discussions and the Physics Dp of RomaTre Univ for their hospitality This work was partially supported by the Ministerio deEducacion y Ciencia of Spain (Projects FIS2005-03989 and by the Junta de Castilla y Leon(Project VA013C05) JLS thanks the Universidad de Valladolid and the Banco SantanderCentral Hispano by the PhD grant of the program ldquoAyudas de la Universidad de Valladolidcofinanciadas por el BSCHrdquo

References[1] Gibbs P 1995 The small scale structure of space-time a bibliographical review hep-th9506171[2] Dimakis A Muler-Hoissen F and Striker T 1996 Umbral calculus discretization and quantum mechanics on

a lattice J Phys A 29 6861[3] Levi D Vinet L and Winternitz P 1997 Lie group formalism for difference equations J Phys A 30 633[4] Levi D Negro J and del Olmo M A 2001 Discrete derivatives and symmetries of difference equations J Phys

A 34 2023[5] Levi D Negro J and del Olmo M A 2001 Lie symmetries of difference equations Czech J Phys 51 341[6] Senosiain M J 2002 Teorıa de las Ecuaciones Genericas Una Introduccion al Calculo Umbral Memoria de

Grado Universidad de Salamanca[7] Levi D Negro J and del Olmo M A 2004 Discrete q-derivatives and symmetries of q-difference equations J

Phys A 37 3459ndash3473[8] Levi D Tempesta P and Winternitz P 2004 Umbral calculus difference equations and the discrete Schrodinger

equation J Math Phys 45 4077[9] Salgado E 2004 Mecanica Cuantica Discreta Trabajo Fin de Carrera de Fısicas Univ de Valladolid

[10] Mullin R and Rota G C 1970 On the foundations of combinatorial theory III Theory of binomial enumeration(Graph theory and its applications) Ed B Harris (Academic Press) p 167-213

[11] Blissard J 1861 Theory of generic equations Quart J Pure Appl Math 4 279[12] Blissard J 1862 Theory of generic equations Quart J Pure Appl Math 5 58 184

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

14

[13] Bell E T 1938 The history of Blissardrsquos symbolic calculus with a sketch of the inventorrsquos life Amer MathMonthly 45 414

[14] Appell P 1880 Sur une classe de polynomes Ann Sci Ecole Norm Sup (2) 9 119[15] Pincherle S and Amaldi S 1901 Le Operazioni Distributive e le loro Applicazioni allrsquoAnalisi (Bologna N

Zanichelli)[16] Davis H T 1936 The Theory of Linear Operators (Bloomington Principia Press)[17] Sheffer I M 1939 Some properties of polynomial sets of type zero Duke Math J 5 590[18] Rota G C Kahaner D and Odlyzko A 1973 On the foundations of combinatorial theory VII Finite operator

calculus J Math Anal Appl 42 684[19] Rota G C 1975 Finite Operator Calculus (San Diego Academic)[20] Roman S M 1982 The theory of umbral calculus I J Math Anal Appl 87 58[21] Roman S M 1982 The theory of umbral calculus II J Math Anal Appl 89 290[22] Roman S M 1983 The theory of umbral calculus III J Math Anal Appl 95 528[23] Roman S M 1975 The Umbral Calculus (San Diego Academic)[24] Di Bucchianico A and Loeb D 2000 A selected survey of umbral calculus Electr J Combin DS3[25] Zachos C K 2007 Umbral deformations on discrete spacetime Preprint hep-th07102306[26] Levi D and Winternitz P 2005 Continuous symmetries of difference equations J Phys A 39 R1ndashR63[27] Levi D and Petrera M 2007 Continuous symmetries of the lattice potential KdV equation J Phys A 40

4141ndash4159[28] Levi D Tremblay S and Winternitz P 2007 Lie point symmetries of difference equations and lattices Preprint

math-ph07093112[29] Levi D Tremblay S and Winternitz P 2007 Lie symmetries of multidimensional difference equations Preprint

math-ph07093238[30] Hernandez Heredero R Levi D Petrera M and Scimiterna C 2007 Multiscale expansion on the lattice and

integrability of partial difference equations Preprint math-ph07105299[31] Lopez-Sendino J E Negro J del Olmo M A and Salgado E 2008 Discretizing quantum mechanics using

umbral calculus Preprint[32] Lopez-Sendino J E Negro J and del Olmo M A 2008 Discrete harmonic oscillator and umbral calculus

Preprint

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

15

Quantum mechanics and umbral calculus

J E Lopez-Sendino J Negro M A del Olmo and E Salgado

Departamento de Fısica Teorica Universidad de Valladolid E-47011 Valladolid Spain

E-mail jelsmetodosfamcieuvaes jnegroftauvaes olmoftauvaes

Abstract In this paper we present the first steps for obtaining a discrete Quantum Mechanicsmaking use of the Umbral Calculus The idea is to discretize the continuous Schrodingerequation substituting the continuous derivatives by discrete ones and the space-time continuousvariables by well determined operators that verify some Umbral Calculus conditions In thisway we assure that some properties of integrability and symmetries of the continuous equationare preserved and also the solutions of the continuous case can be recovered discretized in asimple way The case of the Schrodinger equation with a potential depending only in the spacevariable is discussed

1 Introduction

In the last years the interest in physics for discrete space-time theories has increased mainly inrelation with quantum gravity [1] In a scenario where the physical space-time may be discrete(ie there is a fundamental length in the space-time ndashlet σ be the fundamental space lengthand τ the fundamental time length ndash that could be related with Planckrsquos constant) continuoustheories would only be approximations to the reality Hence it seems interesting the study ofdiscrete physical theories such that in the limit of σ going to zero we recover the well known andestablished continuous physical theories One way to do that is to discretize continuous physicaltheories in particular quantum theories It is obvious that after discretization some propertieswill be conserved and other ones will disappear A detailed study about when how and whythis happens would be pertinent and very interesting This is the aim of this work to studyhow to discretize a physical theory in such a way that properties related with symmetries in thecontinuous case can be preserved in the process and so to analyse the behaviour of quantummechanics after discretization

The Umbral Calculus is the mathematical tool that we will use to discretize QuantumMechanics It has been used recently to provide discrete representations of canonical com-mutation relations (ie [partx x] = 1) in order to discretize linear differential equations [2]ndash[9] insuch a way that the continuous point symmetries are preserved the most cases

In this paper we will consider a fixed lattice and use the umbral correspondence to obtaindiscrete solutions maintaining certain commutation relations [9]

The history of the Umbral Calculus goes back to the 17th century Taylor Newton BarrowVandermonde etc [10] found some theorems and expressions relating powers with polynomialsHowever in the second half of the 19th century through Sylvester Cayley and Blissard [11]ndash[13]appeared the terms lsquoumbraersquo (shadow in Latin) and lsquoUmbral Calculusrsquo for the first timein relation with a set of lsquomagicrsquo rules of lowering and raising indices Some mathematicaldevelopments like the theory of Sheffer polynomials (called Appell polynomials or more generally

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

ccopy 2008 IOP Publishing Ltd 1

polynomials of type zero) [14]ndash[17] and the theory of abstract linear operators by Pincherle [15]converged to Umbral Calculus Finally in the second half of the 20th century Rota Roman andcollaborators [18]ndash[23] developed the Umbral Calculus as a linear algebra of operators Thusthey formulated the theory of the umbral algebra and its dual in the space of formal series Alarge bibliography about Umbral Calculus and its applications can be found in Ref [24]

About recent results we can mention that new methods in Umbral Calculus have beenintroduced for computation of series by integration [25] Also Ref [26]ndash[30] study the symmetriesof nonlinear difference equations or multidimensional ones related with Quantum Mechanics

This paper is organised as follows In the next section we introduce the basic conceptsof Umbral Calculus in terms of the theory of linear operators In section 3 we show themain facts relative to the discretization of the (continuous) Quantum Mechanics The mostusual representations for the discrete derivative operator (right left and symmetric discretederivatives) are analysed in section 4 In order to see how the above umbral correspondenceswork we present in section 5 their action on some non-polynomial functions the exponential andthe trigonometric functions The next section is devoted to present the basis for constructinga discrete Quantum Mechanics founded on the Umbral Calculus Thus we present an umbralversion of the Schrodinger equation for some potentials Finally some conclusions close thepaper

2 Introduction to Umbral Calculus

This introductory exposition of the modern theory of the Umbral Calculus developed mainlyby Rota and Roman follows mainly Ref [23] The umbral algebra L is the algebra of linearoperators acting on the algebra F of formal power series in a variable or acting on the algebraof real or complex polynomials in a variable P The elements of F are of the form

f(x) =infinsum

n=0

anxn an isin F

and those of P are

pn(x) =n

sum

i=0

aixi ai isin F n isin N

being F a field of characteristic zero (in our case it will be identified with the real numbers Rbut it could be for example the complex numbers)

The linear operators of L called shift operator T and coordinate operator X act on theelements of F or P as follows

Tσ middot p(x) = p(x+ σ)

X middot p(x) = x p(x)(1)

All the results of this work can be extended to separable equations of any number of variablesFor non separable equations the method is the same but the results may be quite different

An operator O isin L is said shift invariant if and only if commutes with the shift operatorie

[OTσ] = OTσ minus TσO = 0 forall σ isin F

The so-called delta operators ∆ are those operators of L such as

∆ middot x = c 6= 0 c isin F

[∆ Tσ] = ∆Tσ minus Tσ∆ = 0 forall σ isin F(2)

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

2

where c isin F is any fixed constant It is easy to prove that

∆ middot a = 0 forall a isin F

For every delta operator ∆ there is a series of basic polynomials p0(x) p1(x) p2(x) pn(x)of P verifying

p0(x) = 1

pn(0) = 0 forall n gt 0

∆ middot pn(x) = n pnminus1(x)

(3)

We see that ∆ acts as a lowering (index) operator on its associated polynomial A very importantfact of the theory is that each pair ∆ pn(x) defines a unique realization or representation ofthe umbral algebra There is a bijective correspondence J between basic series of polynomialsand their ∆ operators Hence J may be defined with only one element of the pair

The commutator of an operator O with the coordinate operator X

Oprime = [OX] = OX minusXO (4)

is called the Pincherle derivative of OGiven a delta operator ∆ we can find an associated operator ξ such that

[∆ ξ] = 1 (5)

This operator ξ is not shift invariant and together with ∆ and 1 close the Heisenberg-Weylalgebra or in other words expression (5) is a Heisenberg-like relation between ∆ and itsconjugate ξ It is worthy to note that ξ is associated with the corresponding basic series ofthe operator ∆ by

ξn middot 1 = pn(x)

Although only in a determined correspondence ξn middot 1 coincides with the Pockhammer symbolx(n) from now on we will use the following notation

ξn middot 1 = pn(x) equiv x(n) (6)

which is easy to prove taking into account that

[∆ ξn] = n ξnminus1

Obviously there is only one way to define ξ if its associated polynomial series obeys all therelations (3) Given an operator ∆ its associated operator ξ must be

ξ = Xβ

where βminus1 is the first Pincherle derivative of ∆ It is easy to demonstrate that βminus1 is invertibleand β is shift invariant

Let ∆1 and ∆2 be two delta operators with associated ξ-operators ξ1 and ξ2 respectively Amap R L rarr L is called an umbral correspondence if

R ξn1 rarr ξn

2 foralln isin N

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

3

The umbral correspondence also induces a correspondence R between two delta operatorsSummarising the following diagram is commutative

ξn1

Rlarrrarr ξn2

J l J l∆1

Rlarrrarr ∆2

J l J lξn1 middot 1 = x

(n)1

Rharr ξn2 middot 1 = x

(n)2

From the above diagram one easily sees that there is a triplet ∆ ξ pn(x) that defines a uniquerepresentation of the umbral algebra Moreover through J we can go in a bijective way fromone element to another of the triplet in such a way that only one of these elements is necessaryand sufficient to define the umbral representation The bijective application R bring us from aumbral representation to another one

3 Umbral correspondence and discretized quantum mechanics

As we mentioned before the main goal of this work is the application of the umbralcorrespondence to discretize Quantum Mechanics In fact the 1-dimensional QuantumMechanics is an umbral realization via the identification

∆ = partx ξ = X pn(x) = xn

Since we are interested in the discretization of Quantum Mechanics we will use the umbralcorrespondence to relate the triplet (partx X x

n) with another one defined on the lattice fieldFσ = x isin R |x = mσ m isin Z with lattice parameter σ isin R

Let us start defining a general difference operator ∆ as a delta operator such that in thelimit when σ goes to zero becomes the differential operator partx Supposing that ∆ is a lineardifference operator then it will have a polynomial dependence on the shift operator T ie

∆ =1

ksum

n=minusj

anTn (7)

where N isin N an isin R and σ isin R is the lattice parameter Imposing condition (2a) ie ∆ middotx = 1since condition (2b) is trivially verified we get

sumkn=minusj an = 0

sumkn=minusj nan = N

(8)

These conditions (8) guarantee that in the limit when σ goes to zero ∆ goes to partx as it is easyto prove

Recalling that the pair of Quantum Mechanics operators (partxX) verifies the Heisenbergrelation

[partxX] = 1

we call discrete position operator to a non-shift invariant operator ξ such that with the differenceoperator ∆ verifies a similar Heisenberg relation ie

[∆ ξ] = 1

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

4

The umbral correspondence allows us to relate continuous linear equations h and theirsolutions f if they can be developed in power series with umbral discrete versions h and f respectively as follows

h (partnxf(x) xs) = 0 larrrarr h

(

∆nf(ξ) ξs)

middot 1 = 0 n s isin N

f(x) =

infinsum

n=0

fnxn larrrarr f(ξ) middot 1 =

infinsum

n=0

fnx(n)

(9)

This is the main result of Umbral Calculus that we will exploit here for ours purposesUmbral Calculus allows us not only to discretize continuous differential equations obtainingdiscrete equations but also to get solutions of these equations if their continuous counterpartsare polynomial solutions or may be developed in power series which converge after thecorrespondence Note however that with the umbral correspondence we obtain an operatorwhich must be applied to 1 to get a difference equation or its solution

For the particular case of a symmetric difference operator ie a difference operator ∆σ suchthat

∆σ middot f(x) = minus∆minusσ middot f(x)

we have that the general expression (7) reduces to

∆σ =1

jsum

n=1

an(T n minus Tminusn) (10)

4 Differential operators for discretized quantum mechanics

In the following we will use some particular expressions (or representations) for the differentialoperator ∆ all of them of low (first and second) order on the shift operator T Let us considerthe two possible representations for ∆ of first order the right discrete derivative ∆+ and theleft discrete derivative ∆minus and the (only) symmetric discrete derivative of second order ∆s

The right-correspondence is determined by the couple of operators (∆+ ξ+) given by

∆+ =1

σ(T minus 1) β+ = Tminus1

and the left-correspondence (∆minus ξminus) by

∆minus =1

σ(1minus Tminus1) βminus = T

Note that both are connected by the change σ harr minusσ

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

5

The basic polynomial series of the right-correspondence is related with the Pochhammersymbols Its explicit expression is

(Xβ+)n middot 1 = x(n)+ = x(xminus σ)(xminus 2σ) (xminus (nminus 1)σ)

=prodnminus1

i=0 (xminus iσ) = σnprodnminus1

i=0 (mminus i)

=

(minusσ)n(minusm+ nminus 1)

(minusmminus 1)if m lt 0

0 if

m ge 0m lt n

σn m

(mminus n)if

m ge 0m ge n

(11)

where x = mσ with m isin Z This series of polynomials has some interesting properties First of

all we can see that the n-th order zero of xn splits into n first order zeros of x(n)+ at the right of

the origin If the right-correspondence is applied to a Taylor power series then for the positivepoints of the domain it will be truncated and therefore will converge but not for the negativeones and therefore could diverge

The left-correspondence ∆minus ξminus is nearly similar to the right one The basic sequence isrelated with the rising factorial (instead of the falling factorial of the previous case) and it ismirror symmetric respect to the y-axis to the right-correspondence in fact the negative pointsof a Taylor series discretized in this way always converge

According to the formula (10) there is only one symmetric representation of second order onT (S-representation) determined by the pair ∆s ξs where

∆s =1

2σ(T minus Tminus1) βs = 2(T + Tminus1)minus1

and its basic sequence is

(Xβs)n middot 1 = x(n)

s = x[xminus (nminus 2)σ][x minus (n minus 4)σ] [x+ (n minus 4)σ][x + (nminus 2)σ]

= x

nminus2prod

i=0

[x+ (2iminus (nminus 2))σ] = σnm

nminus2prod

i=0

[m+ 2iminus (nminus 2)]

=

(sign(m)σ)n|m|(|m|+ nminus 2)

(|m| minus n)if n le |m|

0 if

n gt |m|p(nminusm) = +1

(minus1)1

2(nminus|m|minus1)(sign(m)σ)nm

times(|m|+ nminus 2)(n minus |m| minus 2)if

n gt |m|p(nminusm) = minus1

(12)

where p(n) = (minus1)n is the parity function and the double factorial is defined as n = n(nminus 2)with n = 1 when n is 0 or 1

The behaviour of this basic sequence is much more complicated than those of the right andleft-correspondences The zero at the origin of order n of the continuous power function ofdegree n splits into n simple zeros after discretization These zeros appear at the points x = mσwith the conditions

p(nminusm) = +1 n gt |m| (13)

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

6

Thus applying the S-correspondence to a Taylor series we find that at the points obeying theconditions (13) there is a cut-off in the series and hence the sums will always converge in casethe function has a well defined parity

In the following diagram we display the basis elements (ξn∆ x(n)) of the three usualrepresentations

Right representation Left representation Symmetric representation

ξn+ =

(

XTminus1)n Rlarrrarr ξn

minus = (XT )nRlarrrarr ξn

s =(

2X(

T + Tminus1)minus1

)n

J l J l J l

∆+ =1

σ(T minus 1)

Rlarrrarr ∆minus =1

σ

(

1minus Tminus1) Rlarrrarr ∆s =

1

(

T minus Tminus1)

J l J l J l

x(n)+ =

nminus1prod

i=0

(xminus iσ)Rlarrrarr x

(n)minus =

nminus1prod

i=0

(x+ iσ)Rlarrrarrx(n)

s = x

nminus2prod

i=0

(x+ (2i minus n+ 2)σ)

ccedil

ccedil

ccedil

ccedil

ccedil ccedil ccedil

ccedil

ccedil

ccedil

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute aacute aacute

aacute

aacute

-4 -2 2 4

-20

-10

10

20

(a) Some powers for the position in the S-correspondence

ccedil

ccedil

ccedil

ccedilccedil ccedil

ccedil

ccedil

ccedil

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute aacute aacute

aacute

aacute

-4 -3 -2 -1 1 2 3

-20

-10

10

20

(b) Some powers for the position in the left-correspondence

ccedil

ccedil

ccedil

ccedilccedil ccedil

ccedil

ccedil

ccedil

ccedil

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute aacute aacute

aacute

aacute

-2 2 4

-20

-10

10

20

(c) Some powers for the position in the right-correspondence

Figure 1 Represented in dashed line the continuous powers and in dots the powers for the discrete positionwith red circles for x

2 and blue squares for x3 The number of zeros is equal to the power n for the right and the

left cases

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

7

5 The discretized exponential function and the trigonometric functions

We start with the exponential function which in some sense is the simplest case The continuousexponential function as it is well known is defined through the following differential equation

d

dxyk = kyk yk(0) = 1 k isin R

and its power expansion series around the origin is

yk(x)) = ekx =infinsum

n=0

(kx)n

n

As we mentioned before the umbral correspondence gives rise to the same function eitherby solving the discrete difference equation obtained by applying the umbral correspondence tothe continuous differential equation or by applying the umbral correspondence to its solutionsas long as their power series converge Hence we have to calculate

expU (k x) =infin

sum

n=0

kn

nξn middot 1 (14)

If we use the right-correspondence (11) the umbral-exponential (14) becomes

exp+(k σm) =

msum

n=0

(kσ)nm

n(mminus n)if m gt 0

infinsum

n=0

(minuskσ)n(minusm+ nminus 1)

n(minusmminus 1)if m lt 0

= (1 + kσ)m

For the left-correspondence we get

expminus(k σm) =

infinsum

n=0

(kσ)n(m+ nminus 1)

n(mminus 1)if m gt 0

minusmsum

n=0

(minuskσ)n(minusm)

n(minusmminus n)if m lt 0

= (1minus kσ)minusm

In Fig 2(a) it is displayed the continuous exponential function together with its discrete versionby the right-correspondence It is worthy to note that if in the continuous case we found thatexp(k x) = exp((minusk)(minusx)) now in the discrete case we have that exp+(k x) = expminus(minuskminusx)

Another possibility is to apply the S-correspondence (12) So we obtain

exps(kmσ) =infin

sum

n=0

(kσ)n

nm

nminus2prod

i=0

(m+ 2iminus (nminus 2)) =(

kσ +radic

(kσ)2 + 1)m

These discrete exponentials only converge when the continuous variable k obeys (kσ)2 lt 1for all the three correspondences studied in the previous sections

Also we can easily study the trigonometric functions (as well as the hyperbolic functions)taking into account their expressions in terms of the exponential functions In this way we canobtain the discrete trigonometric functions from the discrete exponential function We displayin Fig 2(b) the sine function

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

8

We can see that the symmetric discrete trigonometric functions maintain the periodicbehaviour of the continuous ones However the period λs is different to the continuous functionλ = 2πk We find it easier in the case of the sine function through sins(k lσ) = sins(k 0σ)We have fixed λ = lσ with l isin Z but it can be generalized without problems to l isin R

sins(k lσ) =1

2i

(

(

radic

1minus (kσ)2 + ikσ)l

minus(

radic

1minus (kσ)2 minus ikσ)l

)

= 0 = sins(k 0σ)

rArr(

radic

1minus (kσ)2 + ikσ)l

=(

radic

1minus (kσ)2 minus ikσ)l

to solve this identity we define

radic

1minus (kσ)2 + ikσ = reiθ rArr

θ = arctan

(

kσradic1minus(kσ)2

)

r = 1

and this guide us to the solution

sin(θl) = 0rArr θn =nπ

lrArr kn =

1

σsin

l

As there are two zeros in each period of the function we can find the relation between thenumber of waves and the wave length We have added an superscript to remark that theserelations are different for each representation then

ks =1

σsin

(

l

)

λs =2πσ

arcsin(ksσ) (15)

It is easy to demonstrate the periodic behaviour of the symmetric trigonometric functions infact introducing (15) into de symmetric sinus

sins(ksmσ) = sin

(

m2π

l

)

For the right and left correspondences the trigonometric functions are not periodic Howeverthe extremums of the functions and the intersection points with the abscissa axis appearperiodically and then we can define a wave function through this property With a similarcomputation than in the symmetric case we find

k+ =1

σtan

(

l

)

λ+ =2πσ

arctan(k+σ) (16)

The wave length is bigger in the right and left discretizations and smaller in thesymmetric discretization than in the continuous trigonometric functions Also in thesethree correspondences the trigonometric functions have a minimum period it appears in theconvergence limit when kσ = 1 For the right and the left discretizations we have λ+

min = 8σin fact it is a 8 point wave and for the symmetric one λs

min = 4σ in fact it is a 4 point waveWe set λ = lσ and without loss of generality we fix l integer Then it is easy to calculate the

change in the amplitude in the right and left correspondences through (16)

sin+(k+mσ) =1

2i

(

(1 + ik+σ)m minus (1minus ik+σ)m)

= cosminusm

(

l

)

sin

(

m2π

l

)

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

9

andsin+(kmσ)An(l) = sin+(k (m + nl)σ)

Hence the non periodic part is then the multiplicative factor

An(l) =

(

secl

(

l

))n

(17)

This is also true for the cosine function and for any l isin R Although we have a wave lengthλ = lσ for the trigonometric functions in the right and left representations we can see that theyare not periodic

ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedilccedil ccedil ccedil

ccedil ccedilccedil ccedil

ccedilccedilccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

oacute oacute oacute oacute oacute oacute oacute oacute oacute oacuteoacute oacute oacute

oacute oacuteoacute oacute

oacute oacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

-2 -1 1 2

5

10

15

ccedil ccedil ccedil ccedil ccedilccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

oacute oacute oacute oacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

-25 -20 -15 -10 -05

02

04

06

08

10

(a) Exponential function with σ = 02

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

-20 -10 10 20

-2

-1

1

(b) Sinus function with σ = 03

Figure 2 We represent here the continuous functions with a black solid line and the discrete ones with redtriangles the right correspondences and with blue circles the symmetric ones

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

10

It is important to note that all the properties that obey the exponential and the trigonometricfunctions are maintained after the discretization with an exception any property that includestwo or more different constants k because they give similar effects than a different lattice spacingσ nor a different x like in the continuous case Thus for example

expU (kmσ) expU (k nσ) = expU (k (m + n)σ)

expU (kmσ) expU(kprimemσ) 6= expU (k + kprimemσ)

6 Umbral Schrodinger equation

Let us go to discretize the Schrodinger equation with a potential V (x) We will profit the wellknown fact that if the potential is independent of the time then the continuous Schrodingerequation is separable Thus from the Schrodinger equation

i~parttφ(x t) = minus ~2

2mpart2

xφ(x t) + V (x)φ(x t)

and considering φ(x t) = ψ(x)ϕ(t) we obtain two uncoupled ordinary differential equations

minus ~2

2mpart2

xψ(x) + V (x)ψ(x) = Eψ(x)

i~parttϕ(t) = Eϕ(t)

that we can rewrite with natural units as

part2xψ(x) + V (x)ψ(x) = Eψ(x)

minusiparttϕ(t) = Eϕ(t)(18)

The solution of the equation (18b) is

ϕ(t) = CeiEt (19)

61 Constant potential

In relation with the first equation of (18) the simplest case appears when the potential isconstant (V (x) = V0) The solution is

ψ(x) = Aeikx +Beminusikx if E gt V0

ψ(x) = Aekx +Beminuskx if E lt V0(20)

with k =radic

|E minus V0| Therefore the solution φ(x t) is a linear combination of trigonometric orexponential functions and hence their discretizations have been studied in section 5

The energy for a fixed momentum k is the same than in the continuous case for anydiscretization as we can see

Hψ =(

minus∆2 + V0

)

infinsum

n=0

(ik)n

n(A+ (minus1)nB) ξn =

=(

k2 + V0

)

infinsum

n=0

(ik)n

n(A+ (minus1)nB) ξn =

(

k2 + V0

)

ψ

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

11

In spite of this result the relation between the momentum and the wave length λ = lσ is differentin the discrete case

k =2π

λ kplusmn =

1

σtan

(

l

)

ks =1

σsin

(

l

)

Then the phase velocity changes although the group velocity is the same as in the continuouscase and for this reason the relation between the energy and the velocity

Let be t = nτ where n isin Z the discrete time and τ the fundamental time length Followingthe limits of convergence of the discrete exponentials we find two upper limits for the energyone in relation with the temporal part of the wave function (19) and the other one in relationwith the spatial part of the wave function (20)

Emaxt=

~

τ Emaxl

=~

2

2mσ2 (21)

In fact we have to take the minor of them in each situation Taking σ asymp lP lanck = 162 10minus35mand τ asymp tP lanck = 539 10minus44s we find values of the maximum energy for the time wave Emaxt

and for the spatial wave for a proton Ep+maxland an electron Eeminusmaxl

Emaxtasymp EP lanck = 122 1028eV Emaxl

= 138 1020 1

meV

Ep+maxl= 794 1046eV Eeminusmaxl

= 146 1050eV

Remark that these are non-relativistic effects We can study also the change in the amplitudefor the right and left correspondences The factor of expansion or contraction is

An(l) =

(

secl

(

l

))n

≃(

1 +2π2

l

)n

where l is the number of points into the wave length and n is the number of wave lengths alongthe wave For the temporal part of the wave function of a particle which travel into the LEPthat is during 910minus5s with an energy of 1991014eV we find that the factor is An(l) sim 10105

Forthe spatial part of the same particle an electron the factor is of order An(l) sim 3 These factorsgrow a lot with the energy or the mass of the particle As at this energy the relativistic effectsare important and we are using now non relativistic quantum mechanics it is comprehensibleto find these too big numbers

62 Infinite potential well

A little more complicated is the infinite potential well although it is very similar to a constantpotential it reduces the space to a finite region and due to this fact new differences will appearbetween the continuous and the discrete case The potential is

V (x) =

0 if x isin [0 L]

infin if x isin [0 L]

The wave functions must obey the boundary conditions ψ(0) = ψ(L) = 0 which lead to acountable number of solutions

ψn(x) = sin(

nπx

L

)

k =nπ

L n isin Z

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

12

in the same way we apply the boundary conditions to all our discretizations We can find thequantum rule for both the right and left correspondences following the computation of (15) So

k+n =

1

σtanπ

n

M

where L = Mσ Therefore there are only M2 possible states instead of the infinite states ofthe continuous case with a degeneration relative to the parity The energy is En = k2

n and it isbounded at n = (M minus 1)2 So the maximum energy is

E+max =

~2

2mσ2tan2

(

π

[

M minus 1

2M

])

At n = M2 we find a non physical state of infinite energy and infinite wave function amplitudeWe can do a small computation finding that an electron in an infinite well of wide the Bohrradius (M sim 1027) will have a maximum state energy of E+

max sim 1077eV The maximum energygrows when increasing the number of pointsM and also when decreasing the mass of the particleBut the wave function as we saw previously has a convergence range that limits the numberof states to n isin (minusM4M4) because k lt 1σ Hence the maximum energy is much moresmaller

We have that the quantum rule for the S-correspondence is

ksn =

1

σsinπ

n

M

Again we have a finite number of states M2 rounding down with a degeneration relative to theparity also The energy is always bounded by ~(2mσ2) just as we found with the convergencecondition

Esn = (ks

n)2 =1

σ2sin2 π

n

M

In Figure 3 are drawn the energy levels and the wave functions of the ground state and thetwo first excited states for the continuous case and the three discretizations We can see thegreat fit of the symmetric one for the first excited states but remarking that as its number ofstates is finite M2 then upper these wave functions there are not more states The right andthe left ones have an asymmetry to the left and right directions of the space and then are muchmore different to the continuous wave functions

7 Conclusions

In this paper we have shown how to apply the techniques of the Umbral Calculus for thediscretization of equations preserving the point symmetries We can see the advantage of a toolthat may be used not only on the equations but also over their solutions Due to this fact wehave not to solve difference equations because we alternatively can sum series Moreover in themost difficult cases we can use numerical methods to get a solution

In the umbral discretization we can choose between infinite umbral representations Howeverstill in the simplest cases they present very different behaviours We can separate all of them intwo classes one preserving the parity of the equations and solutions (like the S-representation)and the other one that does not (like the right and left representations) From the point of view ofthe local symmetries in Ref ([2]ndash[9] [26]) it was proved that independently of the correspondencewe get the same discrete point symmetries

The study of the discrete Schrodinger equation together with other potentials (Coulombharmonic oscillator ) are in progress [31]ndash[32] and the results will be published elsewhere

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

13

02 04 06 08 10

1

2

3

4

5

6

oacuteoacuteoacuteoacuteoacuteoacute oacuteoacute oacute oacute

oacuteoacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacute oacute oacute oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacute oacute oacute

oacute

oacute

oacute

oacute

oacuteccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilaacute

aacuteaacuteaacuteaacute aacuteaacute aacute aacute aacute

aacuteaacuteaacuteaacuteaacuteaacuteaacute aacute aacute aacute aacute aacute aacute

aacute aacuteaacuteaacuteaacute aacuteaacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

1 2 3 4

4

5

6

7

8

oacuteoacuteoacuteoacuteoacuteoacuteoacute oacuteoacute oacute oacute oacute oacute oacute oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute oacute oacute oacute oacute oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilaacute

aacuteaacuteaacuteaacute aacuteaacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute

aacuteaacuteaacuteaacuteaacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

aacute aacuteaacute aacuteaacute aacuteaacute

1 2 3 4

10

15

20

30

35

oacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacute oacute

oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacuteccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilaacute aacute

aacute aacuteaacute aacuteaacute aacuteaacute aacuteaacute aacute aacute

aacute aacute aacute aacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

1 2 3 4

081012141618

Figure 3 Energy levels and wave functions of the infinite well The energy levels are in theleft ones in solid line for the continuous case and dashed for the discrete case the shorter redlines are the rightleft case energies and the longer blue lines are the symmetric case energiesWave functions are in the right in black solid line are for the continuous case blue circled pointsare for the S-correspondence red triangled ones for the right correspondence and green squaredones the left correspondence

Acknowledgments

We thank to D Levi for stimulating interesting discussions and the Physics Dp of RomaTre Univ for their hospitality This work was partially supported by the Ministerio deEducacion y Ciencia of Spain (Projects FIS2005-03989 and by the Junta de Castilla y Leon(Project VA013C05) JLS thanks the Universidad de Valladolid and the Banco SantanderCentral Hispano by the PhD grant of the program ldquoAyudas de la Universidad de Valladolidcofinanciadas por el BSCHrdquo

References[1] Gibbs P 1995 The small scale structure of space-time a bibliographical review hep-th9506171[2] Dimakis A Muler-Hoissen F and Striker T 1996 Umbral calculus discretization and quantum mechanics on

a lattice J Phys A 29 6861[3] Levi D Vinet L and Winternitz P 1997 Lie group formalism for difference equations J Phys A 30 633[4] Levi D Negro J and del Olmo M A 2001 Discrete derivatives and symmetries of difference equations J Phys

A 34 2023[5] Levi D Negro J and del Olmo M A 2001 Lie symmetries of difference equations Czech J Phys 51 341[6] Senosiain M J 2002 Teorıa de las Ecuaciones Genericas Una Introduccion al Calculo Umbral Memoria de

Grado Universidad de Salamanca[7] Levi D Negro J and del Olmo M A 2004 Discrete q-derivatives and symmetries of q-difference equations J

Phys A 37 3459ndash3473[8] Levi D Tempesta P and Winternitz P 2004 Umbral calculus difference equations and the discrete Schrodinger

equation J Math Phys 45 4077[9] Salgado E 2004 Mecanica Cuantica Discreta Trabajo Fin de Carrera de Fısicas Univ de Valladolid

[10] Mullin R and Rota G C 1970 On the foundations of combinatorial theory III Theory of binomial enumeration(Graph theory and its applications) Ed B Harris (Academic Press) p 167-213

[11] Blissard J 1861 Theory of generic equations Quart J Pure Appl Math 4 279[12] Blissard J 1862 Theory of generic equations Quart J Pure Appl Math 5 58 184

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

14

[13] Bell E T 1938 The history of Blissardrsquos symbolic calculus with a sketch of the inventorrsquos life Amer MathMonthly 45 414

[14] Appell P 1880 Sur une classe de polynomes Ann Sci Ecole Norm Sup (2) 9 119[15] Pincherle S and Amaldi S 1901 Le Operazioni Distributive e le loro Applicazioni allrsquoAnalisi (Bologna N

Zanichelli)[16] Davis H T 1936 The Theory of Linear Operators (Bloomington Principia Press)[17] Sheffer I M 1939 Some properties of polynomial sets of type zero Duke Math J 5 590[18] Rota G C Kahaner D and Odlyzko A 1973 On the foundations of combinatorial theory VII Finite operator

calculus J Math Anal Appl 42 684[19] Rota G C 1975 Finite Operator Calculus (San Diego Academic)[20] Roman S M 1982 The theory of umbral calculus I J Math Anal Appl 87 58[21] Roman S M 1982 The theory of umbral calculus II J Math Anal Appl 89 290[22] Roman S M 1983 The theory of umbral calculus III J Math Anal Appl 95 528[23] Roman S M 1975 The Umbral Calculus (San Diego Academic)[24] Di Bucchianico A and Loeb D 2000 A selected survey of umbral calculus Electr J Combin DS3[25] Zachos C K 2007 Umbral deformations on discrete spacetime Preprint hep-th07102306[26] Levi D and Winternitz P 2005 Continuous symmetries of difference equations J Phys A 39 R1ndashR63[27] Levi D and Petrera M 2007 Continuous symmetries of the lattice potential KdV equation J Phys A 40

4141ndash4159[28] Levi D Tremblay S and Winternitz P 2007 Lie point symmetries of difference equations and lattices Preprint

math-ph07093112[29] Levi D Tremblay S and Winternitz P 2007 Lie symmetries of multidimensional difference equations Preprint

math-ph07093238[30] Hernandez Heredero R Levi D Petrera M and Scimiterna C 2007 Multiscale expansion on the lattice and

integrability of partial difference equations Preprint math-ph07105299[31] Lopez-Sendino J E Negro J del Olmo M A and Salgado E 2008 Discretizing quantum mechanics using

umbral calculus Preprint[32] Lopez-Sendino J E Negro J and del Olmo M A 2008 Discrete harmonic oscillator and umbral calculus

Preprint

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

15

polynomials of type zero) [14]ndash[17] and the theory of abstract linear operators by Pincherle [15]converged to Umbral Calculus Finally in the second half of the 20th century Rota Roman andcollaborators [18]ndash[23] developed the Umbral Calculus as a linear algebra of operators Thusthey formulated the theory of the umbral algebra and its dual in the space of formal series Alarge bibliography about Umbral Calculus and its applications can be found in Ref [24]

About recent results we can mention that new methods in Umbral Calculus have beenintroduced for computation of series by integration [25] Also Ref [26]ndash[30] study the symmetriesof nonlinear difference equations or multidimensional ones related with Quantum Mechanics

This paper is organised as follows In the next section we introduce the basic conceptsof Umbral Calculus in terms of the theory of linear operators In section 3 we show themain facts relative to the discretization of the (continuous) Quantum Mechanics The mostusual representations for the discrete derivative operator (right left and symmetric discretederivatives) are analysed in section 4 In order to see how the above umbral correspondenceswork we present in section 5 their action on some non-polynomial functions the exponential andthe trigonometric functions The next section is devoted to present the basis for constructinga discrete Quantum Mechanics founded on the Umbral Calculus Thus we present an umbralversion of the Schrodinger equation for some potentials Finally some conclusions close thepaper

2 Introduction to Umbral Calculus

This introductory exposition of the modern theory of the Umbral Calculus developed mainlyby Rota and Roman follows mainly Ref [23] The umbral algebra L is the algebra of linearoperators acting on the algebra F of formal power series in a variable or acting on the algebraof real or complex polynomials in a variable P The elements of F are of the form

f(x) =infinsum

n=0

anxn an isin F

and those of P are

pn(x) =n

sum

i=0

aixi ai isin F n isin N

being F a field of characteristic zero (in our case it will be identified with the real numbers Rbut it could be for example the complex numbers)

The linear operators of L called shift operator T and coordinate operator X act on theelements of F or P as follows

Tσ middot p(x) = p(x+ σ)

X middot p(x) = x p(x)(1)

All the results of this work can be extended to separable equations of any number of variablesFor non separable equations the method is the same but the results may be quite different

An operator O isin L is said shift invariant if and only if commutes with the shift operatorie

[OTσ] = OTσ minus TσO = 0 forall σ isin F

The so-called delta operators ∆ are those operators of L such as

∆ middot x = c 6= 0 c isin F

[∆ Tσ] = ∆Tσ minus Tσ∆ = 0 forall σ isin F(2)

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

2

where c isin F is any fixed constant It is easy to prove that

∆ middot a = 0 forall a isin F

For every delta operator ∆ there is a series of basic polynomials p0(x) p1(x) p2(x) pn(x)of P verifying

p0(x) = 1

pn(0) = 0 forall n gt 0

∆ middot pn(x) = n pnminus1(x)

(3)

We see that ∆ acts as a lowering (index) operator on its associated polynomial A very importantfact of the theory is that each pair ∆ pn(x) defines a unique realization or representation ofthe umbral algebra There is a bijective correspondence J between basic series of polynomialsand their ∆ operators Hence J may be defined with only one element of the pair

The commutator of an operator O with the coordinate operator X

Oprime = [OX] = OX minusXO (4)

is called the Pincherle derivative of OGiven a delta operator ∆ we can find an associated operator ξ such that

[∆ ξ] = 1 (5)

This operator ξ is not shift invariant and together with ∆ and 1 close the Heisenberg-Weylalgebra or in other words expression (5) is a Heisenberg-like relation between ∆ and itsconjugate ξ It is worthy to note that ξ is associated with the corresponding basic series ofthe operator ∆ by

ξn middot 1 = pn(x)

Although only in a determined correspondence ξn middot 1 coincides with the Pockhammer symbolx(n) from now on we will use the following notation

ξn middot 1 = pn(x) equiv x(n) (6)

which is easy to prove taking into account that

[∆ ξn] = n ξnminus1

Obviously there is only one way to define ξ if its associated polynomial series obeys all therelations (3) Given an operator ∆ its associated operator ξ must be

ξ = Xβ

where βminus1 is the first Pincherle derivative of ∆ It is easy to demonstrate that βminus1 is invertibleand β is shift invariant

Let ∆1 and ∆2 be two delta operators with associated ξ-operators ξ1 and ξ2 respectively Amap R L rarr L is called an umbral correspondence if

R ξn1 rarr ξn

2 foralln isin N

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

3

The umbral correspondence also induces a correspondence R between two delta operatorsSummarising the following diagram is commutative

ξn1

Rlarrrarr ξn2

J l J l∆1

Rlarrrarr ∆2

J l J lξn1 middot 1 = x

(n)1

Rharr ξn2 middot 1 = x

(n)2

From the above diagram one easily sees that there is a triplet ∆ ξ pn(x) that defines a uniquerepresentation of the umbral algebra Moreover through J we can go in a bijective way fromone element to another of the triplet in such a way that only one of these elements is necessaryand sufficient to define the umbral representation The bijective application R bring us from aumbral representation to another one

3 Umbral correspondence and discretized quantum mechanics

As we mentioned before the main goal of this work is the application of the umbralcorrespondence to discretize Quantum Mechanics In fact the 1-dimensional QuantumMechanics is an umbral realization via the identification

∆ = partx ξ = X pn(x) = xn

Since we are interested in the discretization of Quantum Mechanics we will use the umbralcorrespondence to relate the triplet (partx X x

n) with another one defined on the lattice fieldFσ = x isin R |x = mσ m isin Z with lattice parameter σ isin R

Let us start defining a general difference operator ∆ as a delta operator such that in thelimit when σ goes to zero becomes the differential operator partx Supposing that ∆ is a lineardifference operator then it will have a polynomial dependence on the shift operator T ie

∆ =1

ksum

n=minusj

anTn (7)

where N isin N an isin R and σ isin R is the lattice parameter Imposing condition (2a) ie ∆ middotx = 1since condition (2b) is trivially verified we get

sumkn=minusj an = 0

sumkn=minusj nan = N

(8)

These conditions (8) guarantee that in the limit when σ goes to zero ∆ goes to partx as it is easyto prove

Recalling that the pair of Quantum Mechanics operators (partxX) verifies the Heisenbergrelation

[partxX] = 1

we call discrete position operator to a non-shift invariant operator ξ such that with the differenceoperator ∆ verifies a similar Heisenberg relation ie

[∆ ξ] = 1

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

4

The umbral correspondence allows us to relate continuous linear equations h and theirsolutions f if they can be developed in power series with umbral discrete versions h and f respectively as follows

h (partnxf(x) xs) = 0 larrrarr h

(

∆nf(ξ) ξs)

middot 1 = 0 n s isin N

f(x) =

infinsum

n=0

fnxn larrrarr f(ξ) middot 1 =

infinsum

n=0

fnx(n)

(9)

This is the main result of Umbral Calculus that we will exploit here for ours purposesUmbral Calculus allows us not only to discretize continuous differential equations obtainingdiscrete equations but also to get solutions of these equations if their continuous counterpartsare polynomial solutions or may be developed in power series which converge after thecorrespondence Note however that with the umbral correspondence we obtain an operatorwhich must be applied to 1 to get a difference equation or its solution

For the particular case of a symmetric difference operator ie a difference operator ∆σ suchthat

∆σ middot f(x) = minus∆minusσ middot f(x)

we have that the general expression (7) reduces to

∆σ =1

jsum

n=1

an(T n minus Tminusn) (10)

4 Differential operators for discretized quantum mechanics

In the following we will use some particular expressions (or representations) for the differentialoperator ∆ all of them of low (first and second) order on the shift operator T Let us considerthe two possible representations for ∆ of first order the right discrete derivative ∆+ and theleft discrete derivative ∆minus and the (only) symmetric discrete derivative of second order ∆s

The right-correspondence is determined by the couple of operators (∆+ ξ+) given by

∆+ =1

σ(T minus 1) β+ = Tminus1

and the left-correspondence (∆minus ξminus) by

∆minus =1

σ(1minus Tminus1) βminus = T

Note that both are connected by the change σ harr minusσ

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

5

The basic polynomial series of the right-correspondence is related with the Pochhammersymbols Its explicit expression is

(Xβ+)n middot 1 = x(n)+ = x(xminus σ)(xminus 2σ) (xminus (nminus 1)σ)

=prodnminus1

i=0 (xminus iσ) = σnprodnminus1

i=0 (mminus i)

=

(minusσ)n(minusm+ nminus 1)

(minusmminus 1)if m lt 0

0 if

m ge 0m lt n

σn m

(mminus n)if

m ge 0m ge n

(11)

where x = mσ with m isin Z This series of polynomials has some interesting properties First of

all we can see that the n-th order zero of xn splits into n first order zeros of x(n)+ at the right of

the origin If the right-correspondence is applied to a Taylor power series then for the positivepoints of the domain it will be truncated and therefore will converge but not for the negativeones and therefore could diverge

The left-correspondence ∆minus ξminus is nearly similar to the right one The basic sequence isrelated with the rising factorial (instead of the falling factorial of the previous case) and it ismirror symmetric respect to the y-axis to the right-correspondence in fact the negative pointsof a Taylor series discretized in this way always converge

According to the formula (10) there is only one symmetric representation of second order onT (S-representation) determined by the pair ∆s ξs where

∆s =1

2σ(T minus Tminus1) βs = 2(T + Tminus1)minus1

and its basic sequence is

(Xβs)n middot 1 = x(n)

s = x[xminus (nminus 2)σ][x minus (n minus 4)σ] [x+ (n minus 4)σ][x + (nminus 2)σ]

= x

nminus2prod

i=0

[x+ (2iminus (nminus 2))σ] = σnm

nminus2prod

i=0

[m+ 2iminus (nminus 2)]

=

(sign(m)σ)n|m|(|m|+ nminus 2)

(|m| minus n)if n le |m|

0 if

n gt |m|p(nminusm) = +1

(minus1)1

2(nminus|m|minus1)(sign(m)σ)nm

times(|m|+ nminus 2)(n minus |m| minus 2)if

n gt |m|p(nminusm) = minus1

(12)

where p(n) = (minus1)n is the parity function and the double factorial is defined as n = n(nminus 2)with n = 1 when n is 0 or 1

The behaviour of this basic sequence is much more complicated than those of the right andleft-correspondences The zero at the origin of order n of the continuous power function ofdegree n splits into n simple zeros after discretization These zeros appear at the points x = mσwith the conditions

p(nminusm) = +1 n gt |m| (13)

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

6

Thus applying the S-correspondence to a Taylor series we find that at the points obeying theconditions (13) there is a cut-off in the series and hence the sums will always converge in casethe function has a well defined parity

In the following diagram we display the basis elements (ξn∆ x(n)) of the three usualrepresentations

Right representation Left representation Symmetric representation

ξn+ =

(

XTminus1)n Rlarrrarr ξn

minus = (XT )nRlarrrarr ξn

s =(

2X(

T + Tminus1)minus1

)n

J l J l J l

∆+ =1

σ(T minus 1)

Rlarrrarr ∆minus =1

σ

(

1minus Tminus1) Rlarrrarr ∆s =

1

(

T minus Tminus1)

J l J l J l

x(n)+ =

nminus1prod

i=0

(xminus iσ)Rlarrrarr x

(n)minus =

nminus1prod

i=0

(x+ iσ)Rlarrrarrx(n)

s = x

nminus2prod

i=0

(x+ (2i minus n+ 2)σ)

ccedil

ccedil

ccedil

ccedil

ccedil ccedil ccedil

ccedil

ccedil

ccedil

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute aacute aacute

aacute

aacute

-4 -2 2 4

-20

-10

10

20

(a) Some powers for the position in the S-correspondence

ccedil

ccedil

ccedil

ccedilccedil ccedil

ccedil

ccedil

ccedil

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute aacute aacute

aacute

aacute

-4 -3 -2 -1 1 2 3

-20

-10

10

20

(b) Some powers for the position in the left-correspondence

ccedil

ccedil

ccedil

ccedilccedil ccedil

ccedil

ccedil

ccedil

ccedil

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute aacute aacute

aacute

aacute

-2 2 4

-20

-10

10

20

(c) Some powers for the position in the right-correspondence

Figure 1 Represented in dashed line the continuous powers and in dots the powers for the discrete positionwith red circles for x

2 and blue squares for x3 The number of zeros is equal to the power n for the right and the

left cases

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

7

5 The discretized exponential function and the trigonometric functions

We start with the exponential function which in some sense is the simplest case The continuousexponential function as it is well known is defined through the following differential equation

d

dxyk = kyk yk(0) = 1 k isin R

and its power expansion series around the origin is

yk(x)) = ekx =infinsum

n=0

(kx)n

n

As we mentioned before the umbral correspondence gives rise to the same function eitherby solving the discrete difference equation obtained by applying the umbral correspondence tothe continuous differential equation or by applying the umbral correspondence to its solutionsas long as their power series converge Hence we have to calculate

expU (k x) =infin

sum

n=0

kn

nξn middot 1 (14)

If we use the right-correspondence (11) the umbral-exponential (14) becomes

exp+(k σm) =

msum

n=0

(kσ)nm

n(mminus n)if m gt 0

infinsum

n=0

(minuskσ)n(minusm+ nminus 1)

n(minusmminus 1)if m lt 0

= (1 + kσ)m

For the left-correspondence we get

expminus(k σm) =

infinsum

n=0

(kσ)n(m+ nminus 1)

n(mminus 1)if m gt 0

minusmsum

n=0

(minuskσ)n(minusm)

n(minusmminus n)if m lt 0

= (1minus kσ)minusm

In Fig 2(a) it is displayed the continuous exponential function together with its discrete versionby the right-correspondence It is worthy to note that if in the continuous case we found thatexp(k x) = exp((minusk)(minusx)) now in the discrete case we have that exp+(k x) = expminus(minuskminusx)

Another possibility is to apply the S-correspondence (12) So we obtain

exps(kmσ) =infin

sum

n=0

(kσ)n

nm

nminus2prod

i=0

(m+ 2iminus (nminus 2)) =(

kσ +radic

(kσ)2 + 1)m

These discrete exponentials only converge when the continuous variable k obeys (kσ)2 lt 1for all the three correspondences studied in the previous sections

Also we can easily study the trigonometric functions (as well as the hyperbolic functions)taking into account their expressions in terms of the exponential functions In this way we canobtain the discrete trigonometric functions from the discrete exponential function We displayin Fig 2(b) the sine function

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

8

We can see that the symmetric discrete trigonometric functions maintain the periodicbehaviour of the continuous ones However the period λs is different to the continuous functionλ = 2πk We find it easier in the case of the sine function through sins(k lσ) = sins(k 0σ)We have fixed λ = lσ with l isin Z but it can be generalized without problems to l isin R

sins(k lσ) =1

2i

(

(

radic

1minus (kσ)2 + ikσ)l

minus(

radic

1minus (kσ)2 minus ikσ)l

)

= 0 = sins(k 0σ)

rArr(

radic

1minus (kσ)2 + ikσ)l

=(

radic

1minus (kσ)2 minus ikσ)l

to solve this identity we define

radic

1minus (kσ)2 + ikσ = reiθ rArr

θ = arctan

(

kσradic1minus(kσ)2

)

r = 1

and this guide us to the solution

sin(θl) = 0rArr θn =nπ

lrArr kn =

1

σsin

l

As there are two zeros in each period of the function we can find the relation between thenumber of waves and the wave length We have added an superscript to remark that theserelations are different for each representation then

ks =1

σsin

(

l

)

λs =2πσ

arcsin(ksσ) (15)

It is easy to demonstrate the periodic behaviour of the symmetric trigonometric functions infact introducing (15) into de symmetric sinus

sins(ksmσ) = sin

(

m2π

l

)

For the right and left correspondences the trigonometric functions are not periodic Howeverthe extremums of the functions and the intersection points with the abscissa axis appearperiodically and then we can define a wave function through this property With a similarcomputation than in the symmetric case we find

k+ =1

σtan

(

l

)

λ+ =2πσ

arctan(k+σ) (16)

The wave length is bigger in the right and left discretizations and smaller in thesymmetric discretization than in the continuous trigonometric functions Also in thesethree correspondences the trigonometric functions have a minimum period it appears in theconvergence limit when kσ = 1 For the right and the left discretizations we have λ+

min = 8σin fact it is a 8 point wave and for the symmetric one λs

min = 4σ in fact it is a 4 point waveWe set λ = lσ and without loss of generality we fix l integer Then it is easy to calculate the

change in the amplitude in the right and left correspondences through (16)

sin+(k+mσ) =1

2i

(

(1 + ik+σ)m minus (1minus ik+σ)m)

= cosminusm

(

l

)

sin

(

m2π

l

)

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

9

andsin+(kmσ)An(l) = sin+(k (m + nl)σ)

Hence the non periodic part is then the multiplicative factor

An(l) =

(

secl

(

l

))n

(17)

This is also true for the cosine function and for any l isin R Although we have a wave lengthλ = lσ for the trigonometric functions in the right and left representations we can see that theyare not periodic

ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedilccedil ccedil ccedil

ccedil ccedilccedil ccedil

ccedilccedilccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

oacute oacute oacute oacute oacute oacute oacute oacute oacute oacuteoacute oacute oacute

oacute oacuteoacute oacute

oacute oacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

-2 -1 1 2

5

10

15

ccedil ccedil ccedil ccedil ccedilccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

oacute oacute oacute oacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

-25 -20 -15 -10 -05

02

04

06

08

10

(a) Exponential function with σ = 02

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

-20 -10 10 20

-2

-1

1

(b) Sinus function with σ = 03

Figure 2 We represent here the continuous functions with a black solid line and the discrete ones with redtriangles the right correspondences and with blue circles the symmetric ones

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

10

It is important to note that all the properties that obey the exponential and the trigonometricfunctions are maintained after the discretization with an exception any property that includestwo or more different constants k because they give similar effects than a different lattice spacingσ nor a different x like in the continuous case Thus for example

expU (kmσ) expU (k nσ) = expU (k (m + n)σ)

expU (kmσ) expU(kprimemσ) 6= expU (k + kprimemσ)

6 Umbral Schrodinger equation

Let us go to discretize the Schrodinger equation with a potential V (x) We will profit the wellknown fact that if the potential is independent of the time then the continuous Schrodingerequation is separable Thus from the Schrodinger equation

i~parttφ(x t) = minus ~2

2mpart2

xφ(x t) + V (x)φ(x t)

and considering φ(x t) = ψ(x)ϕ(t) we obtain two uncoupled ordinary differential equations

minus ~2

2mpart2

xψ(x) + V (x)ψ(x) = Eψ(x)

i~parttϕ(t) = Eϕ(t)

that we can rewrite with natural units as

part2xψ(x) + V (x)ψ(x) = Eψ(x)

minusiparttϕ(t) = Eϕ(t)(18)

The solution of the equation (18b) is

ϕ(t) = CeiEt (19)

61 Constant potential

In relation with the first equation of (18) the simplest case appears when the potential isconstant (V (x) = V0) The solution is

ψ(x) = Aeikx +Beminusikx if E gt V0

ψ(x) = Aekx +Beminuskx if E lt V0(20)

with k =radic

|E minus V0| Therefore the solution φ(x t) is a linear combination of trigonometric orexponential functions and hence their discretizations have been studied in section 5

The energy for a fixed momentum k is the same than in the continuous case for anydiscretization as we can see

Hψ =(

minus∆2 + V0

)

infinsum

n=0

(ik)n

n(A+ (minus1)nB) ξn =

=(

k2 + V0

)

infinsum

n=0

(ik)n

n(A+ (minus1)nB) ξn =

(

k2 + V0

)

ψ

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

11

In spite of this result the relation between the momentum and the wave length λ = lσ is differentin the discrete case

k =2π

λ kplusmn =

1

σtan

(

l

)

ks =1

σsin

(

l

)

Then the phase velocity changes although the group velocity is the same as in the continuouscase and for this reason the relation between the energy and the velocity

Let be t = nτ where n isin Z the discrete time and τ the fundamental time length Followingthe limits of convergence of the discrete exponentials we find two upper limits for the energyone in relation with the temporal part of the wave function (19) and the other one in relationwith the spatial part of the wave function (20)

Emaxt=

~

τ Emaxl

=~

2

2mσ2 (21)

In fact we have to take the minor of them in each situation Taking σ asymp lP lanck = 162 10minus35mand τ asymp tP lanck = 539 10minus44s we find values of the maximum energy for the time wave Emaxt

and for the spatial wave for a proton Ep+maxland an electron Eeminusmaxl

Emaxtasymp EP lanck = 122 1028eV Emaxl

= 138 1020 1

meV

Ep+maxl= 794 1046eV Eeminusmaxl

= 146 1050eV

Remark that these are non-relativistic effects We can study also the change in the amplitudefor the right and left correspondences The factor of expansion or contraction is

An(l) =

(

secl

(

l

))n

≃(

1 +2π2

l

)n

where l is the number of points into the wave length and n is the number of wave lengths alongthe wave For the temporal part of the wave function of a particle which travel into the LEPthat is during 910minus5s with an energy of 1991014eV we find that the factor is An(l) sim 10105

Forthe spatial part of the same particle an electron the factor is of order An(l) sim 3 These factorsgrow a lot with the energy or the mass of the particle As at this energy the relativistic effectsare important and we are using now non relativistic quantum mechanics it is comprehensibleto find these too big numbers

62 Infinite potential well

A little more complicated is the infinite potential well although it is very similar to a constantpotential it reduces the space to a finite region and due to this fact new differences will appearbetween the continuous and the discrete case The potential is

V (x) =

0 if x isin [0 L]

infin if x isin [0 L]

The wave functions must obey the boundary conditions ψ(0) = ψ(L) = 0 which lead to acountable number of solutions

ψn(x) = sin(

nπx

L

)

k =nπ

L n isin Z

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

12

in the same way we apply the boundary conditions to all our discretizations We can find thequantum rule for both the right and left correspondences following the computation of (15) So

k+n =

1

σtanπ

n

M

where L = Mσ Therefore there are only M2 possible states instead of the infinite states ofthe continuous case with a degeneration relative to the parity The energy is En = k2

n and it isbounded at n = (M minus 1)2 So the maximum energy is

E+max =

~2

2mσ2tan2

(

π

[

M minus 1

2M

])

At n = M2 we find a non physical state of infinite energy and infinite wave function amplitudeWe can do a small computation finding that an electron in an infinite well of wide the Bohrradius (M sim 1027) will have a maximum state energy of E+

max sim 1077eV The maximum energygrows when increasing the number of pointsM and also when decreasing the mass of the particleBut the wave function as we saw previously has a convergence range that limits the numberof states to n isin (minusM4M4) because k lt 1σ Hence the maximum energy is much moresmaller

We have that the quantum rule for the S-correspondence is

ksn =

1

σsinπ

n

M

Again we have a finite number of states M2 rounding down with a degeneration relative to theparity also The energy is always bounded by ~(2mσ2) just as we found with the convergencecondition

Esn = (ks

n)2 =1

σ2sin2 π

n

M

In Figure 3 are drawn the energy levels and the wave functions of the ground state and thetwo first excited states for the continuous case and the three discretizations We can see thegreat fit of the symmetric one for the first excited states but remarking that as its number ofstates is finite M2 then upper these wave functions there are not more states The right andthe left ones have an asymmetry to the left and right directions of the space and then are muchmore different to the continuous wave functions

7 Conclusions

In this paper we have shown how to apply the techniques of the Umbral Calculus for thediscretization of equations preserving the point symmetries We can see the advantage of a toolthat may be used not only on the equations but also over their solutions Due to this fact wehave not to solve difference equations because we alternatively can sum series Moreover in themost difficult cases we can use numerical methods to get a solution

In the umbral discretization we can choose between infinite umbral representations Howeverstill in the simplest cases they present very different behaviours We can separate all of them intwo classes one preserving the parity of the equations and solutions (like the S-representation)and the other one that does not (like the right and left representations) From the point of view ofthe local symmetries in Ref ([2]ndash[9] [26]) it was proved that independently of the correspondencewe get the same discrete point symmetries

The study of the discrete Schrodinger equation together with other potentials (Coulombharmonic oscillator ) are in progress [31]ndash[32] and the results will be published elsewhere

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

13

02 04 06 08 10

1

2

3

4

5

6

oacuteoacuteoacuteoacuteoacuteoacute oacuteoacute oacute oacute

oacuteoacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacute oacute oacute oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacute oacute oacute

oacute

oacute

oacute

oacute

oacuteccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilaacute

aacuteaacuteaacuteaacute aacuteaacute aacute aacute aacute

aacuteaacuteaacuteaacuteaacuteaacuteaacute aacute aacute aacute aacute aacute aacute

aacute aacuteaacuteaacuteaacute aacuteaacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

1 2 3 4

4

5

6

7

8

oacuteoacuteoacuteoacuteoacuteoacuteoacute oacuteoacute oacute oacute oacute oacute oacute oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute oacute oacute oacute oacute oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilaacute

aacuteaacuteaacuteaacute aacuteaacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute

aacuteaacuteaacuteaacuteaacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

aacute aacuteaacute aacuteaacute aacuteaacute

1 2 3 4

10

15

20

30

35

oacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacute oacute

oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacuteccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilaacute aacute

aacute aacuteaacute aacuteaacute aacuteaacute aacuteaacute aacute aacute

aacute aacute aacute aacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

1 2 3 4

081012141618

Figure 3 Energy levels and wave functions of the infinite well The energy levels are in theleft ones in solid line for the continuous case and dashed for the discrete case the shorter redlines are the rightleft case energies and the longer blue lines are the symmetric case energiesWave functions are in the right in black solid line are for the continuous case blue circled pointsare for the S-correspondence red triangled ones for the right correspondence and green squaredones the left correspondence

Acknowledgments

We thank to D Levi for stimulating interesting discussions and the Physics Dp of RomaTre Univ for their hospitality This work was partially supported by the Ministerio deEducacion y Ciencia of Spain (Projects FIS2005-03989 and by the Junta de Castilla y Leon(Project VA013C05) JLS thanks the Universidad de Valladolid and the Banco SantanderCentral Hispano by the PhD grant of the program ldquoAyudas de la Universidad de Valladolidcofinanciadas por el BSCHrdquo

References[1] Gibbs P 1995 The small scale structure of space-time a bibliographical review hep-th9506171[2] Dimakis A Muler-Hoissen F and Striker T 1996 Umbral calculus discretization and quantum mechanics on

a lattice J Phys A 29 6861[3] Levi D Vinet L and Winternitz P 1997 Lie group formalism for difference equations J Phys A 30 633[4] Levi D Negro J and del Olmo M A 2001 Discrete derivatives and symmetries of difference equations J Phys

A 34 2023[5] Levi D Negro J and del Olmo M A 2001 Lie symmetries of difference equations Czech J Phys 51 341[6] Senosiain M J 2002 Teorıa de las Ecuaciones Genericas Una Introduccion al Calculo Umbral Memoria de

Grado Universidad de Salamanca[7] Levi D Negro J and del Olmo M A 2004 Discrete q-derivatives and symmetries of q-difference equations J

Phys A 37 3459ndash3473[8] Levi D Tempesta P and Winternitz P 2004 Umbral calculus difference equations and the discrete Schrodinger

equation J Math Phys 45 4077[9] Salgado E 2004 Mecanica Cuantica Discreta Trabajo Fin de Carrera de Fısicas Univ de Valladolid

[10] Mullin R and Rota G C 1970 On the foundations of combinatorial theory III Theory of binomial enumeration(Graph theory and its applications) Ed B Harris (Academic Press) p 167-213

[11] Blissard J 1861 Theory of generic equations Quart J Pure Appl Math 4 279[12] Blissard J 1862 Theory of generic equations Quart J Pure Appl Math 5 58 184

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

14

[13] Bell E T 1938 The history of Blissardrsquos symbolic calculus with a sketch of the inventorrsquos life Amer MathMonthly 45 414

[14] Appell P 1880 Sur une classe de polynomes Ann Sci Ecole Norm Sup (2) 9 119[15] Pincherle S and Amaldi S 1901 Le Operazioni Distributive e le loro Applicazioni allrsquoAnalisi (Bologna N

Zanichelli)[16] Davis H T 1936 The Theory of Linear Operators (Bloomington Principia Press)[17] Sheffer I M 1939 Some properties of polynomial sets of type zero Duke Math J 5 590[18] Rota G C Kahaner D and Odlyzko A 1973 On the foundations of combinatorial theory VII Finite operator

calculus J Math Anal Appl 42 684[19] Rota G C 1975 Finite Operator Calculus (San Diego Academic)[20] Roman S M 1982 The theory of umbral calculus I J Math Anal Appl 87 58[21] Roman S M 1982 The theory of umbral calculus II J Math Anal Appl 89 290[22] Roman S M 1983 The theory of umbral calculus III J Math Anal Appl 95 528[23] Roman S M 1975 The Umbral Calculus (San Diego Academic)[24] Di Bucchianico A and Loeb D 2000 A selected survey of umbral calculus Electr J Combin DS3[25] Zachos C K 2007 Umbral deformations on discrete spacetime Preprint hep-th07102306[26] Levi D and Winternitz P 2005 Continuous symmetries of difference equations J Phys A 39 R1ndashR63[27] Levi D and Petrera M 2007 Continuous symmetries of the lattice potential KdV equation J Phys A 40

4141ndash4159[28] Levi D Tremblay S and Winternitz P 2007 Lie point symmetries of difference equations and lattices Preprint

math-ph07093112[29] Levi D Tremblay S and Winternitz P 2007 Lie symmetries of multidimensional difference equations Preprint

math-ph07093238[30] Hernandez Heredero R Levi D Petrera M and Scimiterna C 2007 Multiscale expansion on the lattice and

integrability of partial difference equations Preprint math-ph07105299[31] Lopez-Sendino J E Negro J del Olmo M A and Salgado E 2008 Discretizing quantum mechanics using

umbral calculus Preprint[32] Lopez-Sendino J E Negro J and del Olmo M A 2008 Discrete harmonic oscillator and umbral calculus

Preprint

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

15

where c isin F is any fixed constant It is easy to prove that

∆ middot a = 0 forall a isin F

For every delta operator ∆ there is a series of basic polynomials p0(x) p1(x) p2(x) pn(x)of P verifying

p0(x) = 1

pn(0) = 0 forall n gt 0

∆ middot pn(x) = n pnminus1(x)

(3)

We see that ∆ acts as a lowering (index) operator on its associated polynomial A very importantfact of the theory is that each pair ∆ pn(x) defines a unique realization or representation ofthe umbral algebra There is a bijective correspondence J between basic series of polynomialsand their ∆ operators Hence J may be defined with only one element of the pair

The commutator of an operator O with the coordinate operator X

Oprime = [OX] = OX minusXO (4)

is called the Pincherle derivative of OGiven a delta operator ∆ we can find an associated operator ξ such that

[∆ ξ] = 1 (5)

This operator ξ is not shift invariant and together with ∆ and 1 close the Heisenberg-Weylalgebra or in other words expression (5) is a Heisenberg-like relation between ∆ and itsconjugate ξ It is worthy to note that ξ is associated with the corresponding basic series ofthe operator ∆ by

ξn middot 1 = pn(x)

Although only in a determined correspondence ξn middot 1 coincides with the Pockhammer symbolx(n) from now on we will use the following notation

ξn middot 1 = pn(x) equiv x(n) (6)

which is easy to prove taking into account that

[∆ ξn] = n ξnminus1

Obviously there is only one way to define ξ if its associated polynomial series obeys all therelations (3) Given an operator ∆ its associated operator ξ must be

ξ = Xβ

where βminus1 is the first Pincherle derivative of ∆ It is easy to demonstrate that βminus1 is invertibleand β is shift invariant

Let ∆1 and ∆2 be two delta operators with associated ξ-operators ξ1 and ξ2 respectively Amap R L rarr L is called an umbral correspondence if

R ξn1 rarr ξn

2 foralln isin N

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

3

The umbral correspondence also induces a correspondence R between two delta operatorsSummarising the following diagram is commutative

ξn1

Rlarrrarr ξn2

J l J l∆1

Rlarrrarr ∆2

J l J lξn1 middot 1 = x

(n)1

Rharr ξn2 middot 1 = x

(n)2

From the above diagram one easily sees that there is a triplet ∆ ξ pn(x) that defines a uniquerepresentation of the umbral algebra Moreover through J we can go in a bijective way fromone element to another of the triplet in such a way that only one of these elements is necessaryand sufficient to define the umbral representation The bijective application R bring us from aumbral representation to another one

3 Umbral correspondence and discretized quantum mechanics

As we mentioned before the main goal of this work is the application of the umbralcorrespondence to discretize Quantum Mechanics In fact the 1-dimensional QuantumMechanics is an umbral realization via the identification

∆ = partx ξ = X pn(x) = xn

Since we are interested in the discretization of Quantum Mechanics we will use the umbralcorrespondence to relate the triplet (partx X x

n) with another one defined on the lattice fieldFσ = x isin R |x = mσ m isin Z with lattice parameter σ isin R

Let us start defining a general difference operator ∆ as a delta operator such that in thelimit when σ goes to zero becomes the differential operator partx Supposing that ∆ is a lineardifference operator then it will have a polynomial dependence on the shift operator T ie

∆ =1

ksum

n=minusj

anTn (7)

where N isin N an isin R and σ isin R is the lattice parameter Imposing condition (2a) ie ∆ middotx = 1since condition (2b) is trivially verified we get

sumkn=minusj an = 0

sumkn=minusj nan = N

(8)

These conditions (8) guarantee that in the limit when σ goes to zero ∆ goes to partx as it is easyto prove

Recalling that the pair of Quantum Mechanics operators (partxX) verifies the Heisenbergrelation

[partxX] = 1

we call discrete position operator to a non-shift invariant operator ξ such that with the differenceoperator ∆ verifies a similar Heisenberg relation ie

[∆ ξ] = 1

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

4

The umbral correspondence allows us to relate continuous linear equations h and theirsolutions f if they can be developed in power series with umbral discrete versions h and f respectively as follows

h (partnxf(x) xs) = 0 larrrarr h

(

∆nf(ξ) ξs)

middot 1 = 0 n s isin N

f(x) =

infinsum

n=0

fnxn larrrarr f(ξ) middot 1 =

infinsum

n=0

fnx(n)

(9)

This is the main result of Umbral Calculus that we will exploit here for ours purposesUmbral Calculus allows us not only to discretize continuous differential equations obtainingdiscrete equations but also to get solutions of these equations if their continuous counterpartsare polynomial solutions or may be developed in power series which converge after thecorrespondence Note however that with the umbral correspondence we obtain an operatorwhich must be applied to 1 to get a difference equation or its solution

For the particular case of a symmetric difference operator ie a difference operator ∆σ suchthat

∆σ middot f(x) = minus∆minusσ middot f(x)

we have that the general expression (7) reduces to

∆σ =1

jsum

n=1

an(T n minus Tminusn) (10)

4 Differential operators for discretized quantum mechanics

In the following we will use some particular expressions (or representations) for the differentialoperator ∆ all of them of low (first and second) order on the shift operator T Let us considerthe two possible representations for ∆ of first order the right discrete derivative ∆+ and theleft discrete derivative ∆minus and the (only) symmetric discrete derivative of second order ∆s

The right-correspondence is determined by the couple of operators (∆+ ξ+) given by

∆+ =1

σ(T minus 1) β+ = Tminus1

and the left-correspondence (∆minus ξminus) by

∆minus =1

σ(1minus Tminus1) βminus = T

Note that both are connected by the change σ harr minusσ

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

5

The basic polynomial series of the right-correspondence is related with the Pochhammersymbols Its explicit expression is

(Xβ+)n middot 1 = x(n)+ = x(xminus σ)(xminus 2σ) (xminus (nminus 1)σ)

=prodnminus1

i=0 (xminus iσ) = σnprodnminus1

i=0 (mminus i)

=

(minusσ)n(minusm+ nminus 1)

(minusmminus 1)if m lt 0

0 if

m ge 0m lt n

σn m

(mminus n)if

m ge 0m ge n

(11)

where x = mσ with m isin Z This series of polynomials has some interesting properties First of

all we can see that the n-th order zero of xn splits into n first order zeros of x(n)+ at the right of

the origin If the right-correspondence is applied to a Taylor power series then for the positivepoints of the domain it will be truncated and therefore will converge but not for the negativeones and therefore could diverge

The left-correspondence ∆minus ξminus is nearly similar to the right one The basic sequence isrelated with the rising factorial (instead of the falling factorial of the previous case) and it ismirror symmetric respect to the y-axis to the right-correspondence in fact the negative pointsof a Taylor series discretized in this way always converge

According to the formula (10) there is only one symmetric representation of second order onT (S-representation) determined by the pair ∆s ξs where

∆s =1

2σ(T minus Tminus1) βs = 2(T + Tminus1)minus1

and its basic sequence is

(Xβs)n middot 1 = x(n)

s = x[xminus (nminus 2)σ][x minus (n minus 4)σ] [x+ (n minus 4)σ][x + (nminus 2)σ]

= x

nminus2prod

i=0

[x+ (2iminus (nminus 2))σ] = σnm

nminus2prod

i=0

[m+ 2iminus (nminus 2)]

=

(sign(m)σ)n|m|(|m|+ nminus 2)

(|m| minus n)if n le |m|

0 if

n gt |m|p(nminusm) = +1

(minus1)1

2(nminus|m|minus1)(sign(m)σ)nm

times(|m|+ nminus 2)(n minus |m| minus 2)if

n gt |m|p(nminusm) = minus1

(12)

where p(n) = (minus1)n is the parity function and the double factorial is defined as n = n(nminus 2)with n = 1 when n is 0 or 1

The behaviour of this basic sequence is much more complicated than those of the right andleft-correspondences The zero at the origin of order n of the continuous power function ofdegree n splits into n simple zeros after discretization These zeros appear at the points x = mσwith the conditions

p(nminusm) = +1 n gt |m| (13)

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

6

Thus applying the S-correspondence to a Taylor series we find that at the points obeying theconditions (13) there is a cut-off in the series and hence the sums will always converge in casethe function has a well defined parity

In the following diagram we display the basis elements (ξn∆ x(n)) of the three usualrepresentations

Right representation Left representation Symmetric representation

ξn+ =

(

XTminus1)n Rlarrrarr ξn

minus = (XT )nRlarrrarr ξn

s =(

2X(

T + Tminus1)minus1

)n

J l J l J l

∆+ =1

σ(T minus 1)

Rlarrrarr ∆minus =1

σ

(

1minus Tminus1) Rlarrrarr ∆s =

1

(

T minus Tminus1)

J l J l J l

x(n)+ =

nminus1prod

i=0

(xminus iσ)Rlarrrarr x

(n)minus =

nminus1prod

i=0

(x+ iσ)Rlarrrarrx(n)

s = x

nminus2prod

i=0

(x+ (2i minus n+ 2)σ)

ccedil

ccedil

ccedil

ccedil

ccedil ccedil ccedil

ccedil

ccedil

ccedil

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute aacute aacute

aacute

aacute

-4 -2 2 4

-20

-10

10

20

(a) Some powers for the position in the S-correspondence

ccedil

ccedil

ccedil

ccedilccedil ccedil

ccedil

ccedil

ccedil

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute aacute aacute

aacute

aacute

-4 -3 -2 -1 1 2 3

-20

-10

10

20

(b) Some powers for the position in the left-correspondence

ccedil

ccedil

ccedil

ccedilccedil ccedil

ccedil

ccedil

ccedil

ccedil

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute aacute aacute

aacute

aacute

-2 2 4

-20

-10

10

20

(c) Some powers for the position in the right-correspondence

Figure 1 Represented in dashed line the continuous powers and in dots the powers for the discrete positionwith red circles for x

2 and blue squares for x3 The number of zeros is equal to the power n for the right and the

left cases

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

7

5 The discretized exponential function and the trigonometric functions

We start with the exponential function which in some sense is the simplest case The continuousexponential function as it is well known is defined through the following differential equation

d

dxyk = kyk yk(0) = 1 k isin R

and its power expansion series around the origin is

yk(x)) = ekx =infinsum

n=0

(kx)n

n

As we mentioned before the umbral correspondence gives rise to the same function eitherby solving the discrete difference equation obtained by applying the umbral correspondence tothe continuous differential equation or by applying the umbral correspondence to its solutionsas long as their power series converge Hence we have to calculate

expU (k x) =infin

sum

n=0

kn

nξn middot 1 (14)

If we use the right-correspondence (11) the umbral-exponential (14) becomes

exp+(k σm) =

msum

n=0

(kσ)nm

n(mminus n)if m gt 0

infinsum

n=0

(minuskσ)n(minusm+ nminus 1)

n(minusmminus 1)if m lt 0

= (1 + kσ)m

For the left-correspondence we get

expminus(k σm) =

infinsum

n=0

(kσ)n(m+ nminus 1)

n(mminus 1)if m gt 0

minusmsum

n=0

(minuskσ)n(minusm)

n(minusmminus n)if m lt 0

= (1minus kσ)minusm

In Fig 2(a) it is displayed the continuous exponential function together with its discrete versionby the right-correspondence It is worthy to note that if in the continuous case we found thatexp(k x) = exp((minusk)(minusx)) now in the discrete case we have that exp+(k x) = expminus(minuskminusx)

Another possibility is to apply the S-correspondence (12) So we obtain

exps(kmσ) =infin

sum

n=0

(kσ)n

nm

nminus2prod

i=0

(m+ 2iminus (nminus 2)) =(

kσ +radic

(kσ)2 + 1)m

These discrete exponentials only converge when the continuous variable k obeys (kσ)2 lt 1for all the three correspondences studied in the previous sections

Also we can easily study the trigonometric functions (as well as the hyperbolic functions)taking into account their expressions in terms of the exponential functions In this way we canobtain the discrete trigonometric functions from the discrete exponential function We displayin Fig 2(b) the sine function

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

8

We can see that the symmetric discrete trigonometric functions maintain the periodicbehaviour of the continuous ones However the period λs is different to the continuous functionλ = 2πk We find it easier in the case of the sine function through sins(k lσ) = sins(k 0σ)We have fixed λ = lσ with l isin Z but it can be generalized without problems to l isin R

sins(k lσ) =1

2i

(

(

radic

1minus (kσ)2 + ikσ)l

minus(

radic

1minus (kσ)2 minus ikσ)l

)

= 0 = sins(k 0σ)

rArr(

radic

1minus (kσ)2 + ikσ)l

=(

radic

1minus (kσ)2 minus ikσ)l

to solve this identity we define

radic

1minus (kσ)2 + ikσ = reiθ rArr

θ = arctan

(

kσradic1minus(kσ)2

)

r = 1

and this guide us to the solution

sin(θl) = 0rArr θn =nπ

lrArr kn =

1

σsin

l

As there are two zeros in each period of the function we can find the relation between thenumber of waves and the wave length We have added an superscript to remark that theserelations are different for each representation then

ks =1

σsin

(

l

)

λs =2πσ

arcsin(ksσ) (15)

It is easy to demonstrate the periodic behaviour of the symmetric trigonometric functions infact introducing (15) into de symmetric sinus

sins(ksmσ) = sin

(

m2π

l

)

For the right and left correspondences the trigonometric functions are not periodic Howeverthe extremums of the functions and the intersection points with the abscissa axis appearperiodically and then we can define a wave function through this property With a similarcomputation than in the symmetric case we find

k+ =1

σtan

(

l

)

λ+ =2πσ

arctan(k+σ) (16)

The wave length is bigger in the right and left discretizations and smaller in thesymmetric discretization than in the continuous trigonometric functions Also in thesethree correspondences the trigonometric functions have a minimum period it appears in theconvergence limit when kσ = 1 For the right and the left discretizations we have λ+

min = 8σin fact it is a 8 point wave and for the symmetric one λs

min = 4σ in fact it is a 4 point waveWe set λ = lσ and without loss of generality we fix l integer Then it is easy to calculate the

change in the amplitude in the right and left correspondences through (16)

sin+(k+mσ) =1

2i

(

(1 + ik+σ)m minus (1minus ik+σ)m)

= cosminusm

(

l

)

sin

(

m2π

l

)

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

9

andsin+(kmσ)An(l) = sin+(k (m + nl)σ)

Hence the non periodic part is then the multiplicative factor

An(l) =

(

secl

(

l

))n

(17)

This is also true for the cosine function and for any l isin R Although we have a wave lengthλ = lσ for the trigonometric functions in the right and left representations we can see that theyare not periodic

ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedilccedil ccedil ccedil

ccedil ccedilccedil ccedil

ccedilccedilccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

oacute oacute oacute oacute oacute oacute oacute oacute oacute oacuteoacute oacute oacute

oacute oacuteoacute oacute

oacute oacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

-2 -1 1 2

5

10

15

ccedil ccedil ccedil ccedil ccedilccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

oacute oacute oacute oacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

-25 -20 -15 -10 -05

02

04

06

08

10

(a) Exponential function with σ = 02

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

-20 -10 10 20

-2

-1

1

(b) Sinus function with σ = 03

Figure 2 We represent here the continuous functions with a black solid line and the discrete ones with redtriangles the right correspondences and with blue circles the symmetric ones

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

10

It is important to note that all the properties that obey the exponential and the trigonometricfunctions are maintained after the discretization with an exception any property that includestwo or more different constants k because they give similar effects than a different lattice spacingσ nor a different x like in the continuous case Thus for example

expU (kmσ) expU (k nσ) = expU (k (m + n)σ)

expU (kmσ) expU(kprimemσ) 6= expU (k + kprimemσ)

6 Umbral Schrodinger equation

Let us go to discretize the Schrodinger equation with a potential V (x) We will profit the wellknown fact that if the potential is independent of the time then the continuous Schrodingerequation is separable Thus from the Schrodinger equation

i~parttφ(x t) = minus ~2

2mpart2

xφ(x t) + V (x)φ(x t)

and considering φ(x t) = ψ(x)ϕ(t) we obtain two uncoupled ordinary differential equations

minus ~2

2mpart2

xψ(x) + V (x)ψ(x) = Eψ(x)

i~parttϕ(t) = Eϕ(t)

that we can rewrite with natural units as

part2xψ(x) + V (x)ψ(x) = Eψ(x)

minusiparttϕ(t) = Eϕ(t)(18)

The solution of the equation (18b) is

ϕ(t) = CeiEt (19)

61 Constant potential

In relation with the first equation of (18) the simplest case appears when the potential isconstant (V (x) = V0) The solution is

ψ(x) = Aeikx +Beminusikx if E gt V0

ψ(x) = Aekx +Beminuskx if E lt V0(20)

with k =radic

|E minus V0| Therefore the solution φ(x t) is a linear combination of trigonometric orexponential functions and hence their discretizations have been studied in section 5

The energy for a fixed momentum k is the same than in the continuous case for anydiscretization as we can see

Hψ =(

minus∆2 + V0

)

infinsum

n=0

(ik)n

n(A+ (minus1)nB) ξn =

=(

k2 + V0

)

infinsum

n=0

(ik)n

n(A+ (minus1)nB) ξn =

(

k2 + V0

)

ψ

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

11

In spite of this result the relation between the momentum and the wave length λ = lσ is differentin the discrete case

k =2π

λ kplusmn =

1

σtan

(

l

)

ks =1

σsin

(

l

)

Then the phase velocity changes although the group velocity is the same as in the continuouscase and for this reason the relation between the energy and the velocity

Let be t = nτ where n isin Z the discrete time and τ the fundamental time length Followingthe limits of convergence of the discrete exponentials we find two upper limits for the energyone in relation with the temporal part of the wave function (19) and the other one in relationwith the spatial part of the wave function (20)

Emaxt=

~

τ Emaxl

=~

2

2mσ2 (21)

In fact we have to take the minor of them in each situation Taking σ asymp lP lanck = 162 10minus35mand τ asymp tP lanck = 539 10minus44s we find values of the maximum energy for the time wave Emaxt

and for the spatial wave for a proton Ep+maxland an electron Eeminusmaxl

Emaxtasymp EP lanck = 122 1028eV Emaxl

= 138 1020 1

meV

Ep+maxl= 794 1046eV Eeminusmaxl

= 146 1050eV

Remark that these are non-relativistic effects We can study also the change in the amplitudefor the right and left correspondences The factor of expansion or contraction is

An(l) =

(

secl

(

l

))n

≃(

1 +2π2

l

)n

where l is the number of points into the wave length and n is the number of wave lengths alongthe wave For the temporal part of the wave function of a particle which travel into the LEPthat is during 910minus5s with an energy of 1991014eV we find that the factor is An(l) sim 10105

Forthe spatial part of the same particle an electron the factor is of order An(l) sim 3 These factorsgrow a lot with the energy or the mass of the particle As at this energy the relativistic effectsare important and we are using now non relativistic quantum mechanics it is comprehensibleto find these too big numbers

62 Infinite potential well

A little more complicated is the infinite potential well although it is very similar to a constantpotential it reduces the space to a finite region and due to this fact new differences will appearbetween the continuous and the discrete case The potential is

V (x) =

0 if x isin [0 L]

infin if x isin [0 L]

The wave functions must obey the boundary conditions ψ(0) = ψ(L) = 0 which lead to acountable number of solutions

ψn(x) = sin(

nπx

L

)

k =nπ

L n isin Z

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

12

in the same way we apply the boundary conditions to all our discretizations We can find thequantum rule for both the right and left correspondences following the computation of (15) So

k+n =

1

σtanπ

n

M

where L = Mσ Therefore there are only M2 possible states instead of the infinite states ofthe continuous case with a degeneration relative to the parity The energy is En = k2

n and it isbounded at n = (M minus 1)2 So the maximum energy is

E+max =

~2

2mσ2tan2

(

π

[

M minus 1

2M

])

At n = M2 we find a non physical state of infinite energy and infinite wave function amplitudeWe can do a small computation finding that an electron in an infinite well of wide the Bohrradius (M sim 1027) will have a maximum state energy of E+

max sim 1077eV The maximum energygrows when increasing the number of pointsM and also when decreasing the mass of the particleBut the wave function as we saw previously has a convergence range that limits the numberof states to n isin (minusM4M4) because k lt 1σ Hence the maximum energy is much moresmaller

We have that the quantum rule for the S-correspondence is

ksn =

1

σsinπ

n

M

Again we have a finite number of states M2 rounding down with a degeneration relative to theparity also The energy is always bounded by ~(2mσ2) just as we found with the convergencecondition

Esn = (ks

n)2 =1

σ2sin2 π

n

M

In Figure 3 are drawn the energy levels and the wave functions of the ground state and thetwo first excited states for the continuous case and the three discretizations We can see thegreat fit of the symmetric one for the first excited states but remarking that as its number ofstates is finite M2 then upper these wave functions there are not more states The right andthe left ones have an asymmetry to the left and right directions of the space and then are muchmore different to the continuous wave functions

7 Conclusions

In this paper we have shown how to apply the techniques of the Umbral Calculus for thediscretization of equations preserving the point symmetries We can see the advantage of a toolthat may be used not only on the equations but also over their solutions Due to this fact wehave not to solve difference equations because we alternatively can sum series Moreover in themost difficult cases we can use numerical methods to get a solution

In the umbral discretization we can choose between infinite umbral representations Howeverstill in the simplest cases they present very different behaviours We can separate all of them intwo classes one preserving the parity of the equations and solutions (like the S-representation)and the other one that does not (like the right and left representations) From the point of view ofthe local symmetries in Ref ([2]ndash[9] [26]) it was proved that independently of the correspondencewe get the same discrete point symmetries

The study of the discrete Schrodinger equation together with other potentials (Coulombharmonic oscillator ) are in progress [31]ndash[32] and the results will be published elsewhere

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

13

02 04 06 08 10

1

2

3

4

5

6

oacuteoacuteoacuteoacuteoacuteoacute oacuteoacute oacute oacute

oacuteoacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacute oacute oacute oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacute oacute oacute

oacute

oacute

oacute

oacute

oacuteccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilaacute

aacuteaacuteaacuteaacute aacuteaacute aacute aacute aacute

aacuteaacuteaacuteaacuteaacuteaacuteaacute aacute aacute aacute aacute aacute aacute

aacute aacuteaacuteaacuteaacute aacuteaacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

1 2 3 4

4

5

6

7

8

oacuteoacuteoacuteoacuteoacuteoacuteoacute oacuteoacute oacute oacute oacute oacute oacute oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute oacute oacute oacute oacute oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilaacute

aacuteaacuteaacuteaacute aacuteaacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute

aacuteaacuteaacuteaacuteaacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

aacute aacuteaacute aacuteaacute aacuteaacute

1 2 3 4

10

15

20

30

35

oacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacute oacute

oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacuteccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilaacute aacute

aacute aacuteaacute aacuteaacute aacuteaacute aacuteaacute aacute aacute

aacute aacute aacute aacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

1 2 3 4

081012141618

Figure 3 Energy levels and wave functions of the infinite well The energy levels are in theleft ones in solid line for the continuous case and dashed for the discrete case the shorter redlines are the rightleft case energies and the longer blue lines are the symmetric case energiesWave functions are in the right in black solid line are for the continuous case blue circled pointsare for the S-correspondence red triangled ones for the right correspondence and green squaredones the left correspondence

Acknowledgments

We thank to D Levi for stimulating interesting discussions and the Physics Dp of RomaTre Univ for their hospitality This work was partially supported by the Ministerio deEducacion y Ciencia of Spain (Projects FIS2005-03989 and by the Junta de Castilla y Leon(Project VA013C05) JLS thanks the Universidad de Valladolid and the Banco SantanderCentral Hispano by the PhD grant of the program ldquoAyudas de la Universidad de Valladolidcofinanciadas por el BSCHrdquo

References[1] Gibbs P 1995 The small scale structure of space-time a bibliographical review hep-th9506171[2] Dimakis A Muler-Hoissen F and Striker T 1996 Umbral calculus discretization and quantum mechanics on

a lattice J Phys A 29 6861[3] Levi D Vinet L and Winternitz P 1997 Lie group formalism for difference equations J Phys A 30 633[4] Levi D Negro J and del Olmo M A 2001 Discrete derivatives and symmetries of difference equations J Phys

A 34 2023[5] Levi D Negro J and del Olmo M A 2001 Lie symmetries of difference equations Czech J Phys 51 341[6] Senosiain M J 2002 Teorıa de las Ecuaciones Genericas Una Introduccion al Calculo Umbral Memoria de

Grado Universidad de Salamanca[7] Levi D Negro J and del Olmo M A 2004 Discrete q-derivatives and symmetries of q-difference equations J

Phys A 37 3459ndash3473[8] Levi D Tempesta P and Winternitz P 2004 Umbral calculus difference equations and the discrete Schrodinger

equation J Math Phys 45 4077[9] Salgado E 2004 Mecanica Cuantica Discreta Trabajo Fin de Carrera de Fısicas Univ de Valladolid

[10] Mullin R and Rota G C 1970 On the foundations of combinatorial theory III Theory of binomial enumeration(Graph theory and its applications) Ed B Harris (Academic Press) p 167-213

[11] Blissard J 1861 Theory of generic equations Quart J Pure Appl Math 4 279[12] Blissard J 1862 Theory of generic equations Quart J Pure Appl Math 5 58 184

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

14

[13] Bell E T 1938 The history of Blissardrsquos symbolic calculus with a sketch of the inventorrsquos life Amer MathMonthly 45 414

[14] Appell P 1880 Sur une classe de polynomes Ann Sci Ecole Norm Sup (2) 9 119[15] Pincherle S and Amaldi S 1901 Le Operazioni Distributive e le loro Applicazioni allrsquoAnalisi (Bologna N

Zanichelli)[16] Davis H T 1936 The Theory of Linear Operators (Bloomington Principia Press)[17] Sheffer I M 1939 Some properties of polynomial sets of type zero Duke Math J 5 590[18] Rota G C Kahaner D and Odlyzko A 1973 On the foundations of combinatorial theory VII Finite operator

calculus J Math Anal Appl 42 684[19] Rota G C 1975 Finite Operator Calculus (San Diego Academic)[20] Roman S M 1982 The theory of umbral calculus I J Math Anal Appl 87 58[21] Roman S M 1982 The theory of umbral calculus II J Math Anal Appl 89 290[22] Roman S M 1983 The theory of umbral calculus III J Math Anal Appl 95 528[23] Roman S M 1975 The Umbral Calculus (San Diego Academic)[24] Di Bucchianico A and Loeb D 2000 A selected survey of umbral calculus Electr J Combin DS3[25] Zachos C K 2007 Umbral deformations on discrete spacetime Preprint hep-th07102306[26] Levi D and Winternitz P 2005 Continuous symmetries of difference equations J Phys A 39 R1ndashR63[27] Levi D and Petrera M 2007 Continuous symmetries of the lattice potential KdV equation J Phys A 40

4141ndash4159[28] Levi D Tremblay S and Winternitz P 2007 Lie point symmetries of difference equations and lattices Preprint

math-ph07093112[29] Levi D Tremblay S and Winternitz P 2007 Lie symmetries of multidimensional difference equations Preprint

math-ph07093238[30] Hernandez Heredero R Levi D Petrera M and Scimiterna C 2007 Multiscale expansion on the lattice and

integrability of partial difference equations Preprint math-ph07105299[31] Lopez-Sendino J E Negro J del Olmo M A and Salgado E 2008 Discretizing quantum mechanics using

umbral calculus Preprint[32] Lopez-Sendino J E Negro J and del Olmo M A 2008 Discrete harmonic oscillator and umbral calculus

Preprint

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

15

The umbral correspondence also induces a correspondence R between two delta operatorsSummarising the following diagram is commutative

ξn1

Rlarrrarr ξn2

J l J l∆1

Rlarrrarr ∆2

J l J lξn1 middot 1 = x

(n)1

Rharr ξn2 middot 1 = x

(n)2

From the above diagram one easily sees that there is a triplet ∆ ξ pn(x) that defines a uniquerepresentation of the umbral algebra Moreover through J we can go in a bijective way fromone element to another of the triplet in such a way that only one of these elements is necessaryand sufficient to define the umbral representation The bijective application R bring us from aumbral representation to another one

3 Umbral correspondence and discretized quantum mechanics

As we mentioned before the main goal of this work is the application of the umbralcorrespondence to discretize Quantum Mechanics In fact the 1-dimensional QuantumMechanics is an umbral realization via the identification

∆ = partx ξ = X pn(x) = xn

Since we are interested in the discretization of Quantum Mechanics we will use the umbralcorrespondence to relate the triplet (partx X x

n) with another one defined on the lattice fieldFσ = x isin R |x = mσ m isin Z with lattice parameter σ isin R

Let us start defining a general difference operator ∆ as a delta operator such that in thelimit when σ goes to zero becomes the differential operator partx Supposing that ∆ is a lineardifference operator then it will have a polynomial dependence on the shift operator T ie

∆ =1

ksum

n=minusj

anTn (7)

where N isin N an isin R and σ isin R is the lattice parameter Imposing condition (2a) ie ∆ middotx = 1since condition (2b) is trivially verified we get

sumkn=minusj an = 0

sumkn=minusj nan = N

(8)

These conditions (8) guarantee that in the limit when σ goes to zero ∆ goes to partx as it is easyto prove

Recalling that the pair of Quantum Mechanics operators (partxX) verifies the Heisenbergrelation

[partxX] = 1

we call discrete position operator to a non-shift invariant operator ξ such that with the differenceoperator ∆ verifies a similar Heisenberg relation ie

[∆ ξ] = 1

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

4

The umbral correspondence allows us to relate continuous linear equations h and theirsolutions f if they can be developed in power series with umbral discrete versions h and f respectively as follows

h (partnxf(x) xs) = 0 larrrarr h

(

∆nf(ξ) ξs)

middot 1 = 0 n s isin N

f(x) =

infinsum

n=0

fnxn larrrarr f(ξ) middot 1 =

infinsum

n=0

fnx(n)

(9)

This is the main result of Umbral Calculus that we will exploit here for ours purposesUmbral Calculus allows us not only to discretize continuous differential equations obtainingdiscrete equations but also to get solutions of these equations if their continuous counterpartsare polynomial solutions or may be developed in power series which converge after thecorrespondence Note however that with the umbral correspondence we obtain an operatorwhich must be applied to 1 to get a difference equation or its solution

For the particular case of a symmetric difference operator ie a difference operator ∆σ suchthat

∆σ middot f(x) = minus∆minusσ middot f(x)

we have that the general expression (7) reduces to

∆σ =1

jsum

n=1

an(T n minus Tminusn) (10)

4 Differential operators for discretized quantum mechanics

In the following we will use some particular expressions (or representations) for the differentialoperator ∆ all of them of low (first and second) order on the shift operator T Let us considerthe two possible representations for ∆ of first order the right discrete derivative ∆+ and theleft discrete derivative ∆minus and the (only) symmetric discrete derivative of second order ∆s

The right-correspondence is determined by the couple of operators (∆+ ξ+) given by

∆+ =1

σ(T minus 1) β+ = Tminus1

and the left-correspondence (∆minus ξminus) by

∆minus =1

σ(1minus Tminus1) βminus = T

Note that both are connected by the change σ harr minusσ

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

5

The basic polynomial series of the right-correspondence is related with the Pochhammersymbols Its explicit expression is

(Xβ+)n middot 1 = x(n)+ = x(xminus σ)(xminus 2σ) (xminus (nminus 1)σ)

=prodnminus1

i=0 (xminus iσ) = σnprodnminus1

i=0 (mminus i)

=

(minusσ)n(minusm+ nminus 1)

(minusmminus 1)if m lt 0

0 if

m ge 0m lt n

σn m

(mminus n)if

m ge 0m ge n

(11)

where x = mσ with m isin Z This series of polynomials has some interesting properties First of

all we can see that the n-th order zero of xn splits into n first order zeros of x(n)+ at the right of

the origin If the right-correspondence is applied to a Taylor power series then for the positivepoints of the domain it will be truncated and therefore will converge but not for the negativeones and therefore could diverge

The left-correspondence ∆minus ξminus is nearly similar to the right one The basic sequence isrelated with the rising factorial (instead of the falling factorial of the previous case) and it ismirror symmetric respect to the y-axis to the right-correspondence in fact the negative pointsof a Taylor series discretized in this way always converge

According to the formula (10) there is only one symmetric representation of second order onT (S-representation) determined by the pair ∆s ξs where

∆s =1

2σ(T minus Tminus1) βs = 2(T + Tminus1)minus1

and its basic sequence is

(Xβs)n middot 1 = x(n)

s = x[xminus (nminus 2)σ][x minus (n minus 4)σ] [x+ (n minus 4)σ][x + (nminus 2)σ]

= x

nminus2prod

i=0

[x+ (2iminus (nminus 2))σ] = σnm

nminus2prod

i=0

[m+ 2iminus (nminus 2)]

=

(sign(m)σ)n|m|(|m|+ nminus 2)

(|m| minus n)if n le |m|

0 if

n gt |m|p(nminusm) = +1

(minus1)1

2(nminus|m|minus1)(sign(m)σ)nm

times(|m|+ nminus 2)(n minus |m| minus 2)if

n gt |m|p(nminusm) = minus1

(12)

where p(n) = (minus1)n is the parity function and the double factorial is defined as n = n(nminus 2)with n = 1 when n is 0 or 1

The behaviour of this basic sequence is much more complicated than those of the right andleft-correspondences The zero at the origin of order n of the continuous power function ofdegree n splits into n simple zeros after discretization These zeros appear at the points x = mσwith the conditions

p(nminusm) = +1 n gt |m| (13)

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

6

Thus applying the S-correspondence to a Taylor series we find that at the points obeying theconditions (13) there is a cut-off in the series and hence the sums will always converge in casethe function has a well defined parity

In the following diagram we display the basis elements (ξn∆ x(n)) of the three usualrepresentations

Right representation Left representation Symmetric representation

ξn+ =

(

XTminus1)n Rlarrrarr ξn

minus = (XT )nRlarrrarr ξn

s =(

2X(

T + Tminus1)minus1

)n

J l J l J l

∆+ =1

σ(T minus 1)

Rlarrrarr ∆minus =1

σ

(

1minus Tminus1) Rlarrrarr ∆s =

1

(

T minus Tminus1)

J l J l J l

x(n)+ =

nminus1prod

i=0

(xminus iσ)Rlarrrarr x

(n)minus =

nminus1prod

i=0

(x+ iσ)Rlarrrarrx(n)

s = x

nminus2prod

i=0

(x+ (2i minus n+ 2)σ)

ccedil

ccedil

ccedil

ccedil

ccedil ccedil ccedil

ccedil

ccedil

ccedil

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute aacute aacute

aacute

aacute

-4 -2 2 4

-20

-10

10

20

(a) Some powers for the position in the S-correspondence

ccedil

ccedil

ccedil

ccedilccedil ccedil

ccedil

ccedil

ccedil

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute aacute aacute

aacute

aacute

-4 -3 -2 -1 1 2 3

-20

-10

10

20

(b) Some powers for the position in the left-correspondence

ccedil

ccedil

ccedil

ccedilccedil ccedil

ccedil

ccedil

ccedil

ccedil

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute aacute aacute

aacute

aacute

-2 2 4

-20

-10

10

20

(c) Some powers for the position in the right-correspondence

Figure 1 Represented in dashed line the continuous powers and in dots the powers for the discrete positionwith red circles for x

2 and blue squares for x3 The number of zeros is equal to the power n for the right and the

left cases

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

7

5 The discretized exponential function and the trigonometric functions

We start with the exponential function which in some sense is the simplest case The continuousexponential function as it is well known is defined through the following differential equation

d

dxyk = kyk yk(0) = 1 k isin R

and its power expansion series around the origin is

yk(x)) = ekx =infinsum

n=0

(kx)n

n

As we mentioned before the umbral correspondence gives rise to the same function eitherby solving the discrete difference equation obtained by applying the umbral correspondence tothe continuous differential equation or by applying the umbral correspondence to its solutionsas long as their power series converge Hence we have to calculate

expU (k x) =infin

sum

n=0

kn

nξn middot 1 (14)

If we use the right-correspondence (11) the umbral-exponential (14) becomes

exp+(k σm) =

msum

n=0

(kσ)nm

n(mminus n)if m gt 0

infinsum

n=0

(minuskσ)n(minusm+ nminus 1)

n(minusmminus 1)if m lt 0

= (1 + kσ)m

For the left-correspondence we get

expminus(k σm) =

infinsum

n=0

(kσ)n(m+ nminus 1)

n(mminus 1)if m gt 0

minusmsum

n=0

(minuskσ)n(minusm)

n(minusmminus n)if m lt 0

= (1minus kσ)minusm

In Fig 2(a) it is displayed the continuous exponential function together with its discrete versionby the right-correspondence It is worthy to note that if in the continuous case we found thatexp(k x) = exp((minusk)(minusx)) now in the discrete case we have that exp+(k x) = expminus(minuskminusx)

Another possibility is to apply the S-correspondence (12) So we obtain

exps(kmσ) =infin

sum

n=0

(kσ)n

nm

nminus2prod

i=0

(m+ 2iminus (nminus 2)) =(

kσ +radic

(kσ)2 + 1)m

These discrete exponentials only converge when the continuous variable k obeys (kσ)2 lt 1for all the three correspondences studied in the previous sections

Also we can easily study the trigonometric functions (as well as the hyperbolic functions)taking into account their expressions in terms of the exponential functions In this way we canobtain the discrete trigonometric functions from the discrete exponential function We displayin Fig 2(b) the sine function

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

8

We can see that the symmetric discrete trigonometric functions maintain the periodicbehaviour of the continuous ones However the period λs is different to the continuous functionλ = 2πk We find it easier in the case of the sine function through sins(k lσ) = sins(k 0σ)We have fixed λ = lσ with l isin Z but it can be generalized without problems to l isin R

sins(k lσ) =1

2i

(

(

radic

1minus (kσ)2 + ikσ)l

minus(

radic

1minus (kσ)2 minus ikσ)l

)

= 0 = sins(k 0σ)

rArr(

radic

1minus (kσ)2 + ikσ)l

=(

radic

1minus (kσ)2 minus ikσ)l

to solve this identity we define

radic

1minus (kσ)2 + ikσ = reiθ rArr

θ = arctan

(

kσradic1minus(kσ)2

)

r = 1

and this guide us to the solution

sin(θl) = 0rArr θn =nπ

lrArr kn =

1

σsin

l

As there are two zeros in each period of the function we can find the relation between thenumber of waves and the wave length We have added an superscript to remark that theserelations are different for each representation then

ks =1

σsin

(

l

)

λs =2πσ

arcsin(ksσ) (15)

It is easy to demonstrate the periodic behaviour of the symmetric trigonometric functions infact introducing (15) into de symmetric sinus

sins(ksmσ) = sin

(

m2π

l

)

For the right and left correspondences the trigonometric functions are not periodic Howeverthe extremums of the functions and the intersection points with the abscissa axis appearperiodically and then we can define a wave function through this property With a similarcomputation than in the symmetric case we find

k+ =1

σtan

(

l

)

λ+ =2πσ

arctan(k+σ) (16)

The wave length is bigger in the right and left discretizations and smaller in thesymmetric discretization than in the continuous trigonometric functions Also in thesethree correspondences the trigonometric functions have a minimum period it appears in theconvergence limit when kσ = 1 For the right and the left discretizations we have λ+

min = 8σin fact it is a 8 point wave and for the symmetric one λs

min = 4σ in fact it is a 4 point waveWe set λ = lσ and without loss of generality we fix l integer Then it is easy to calculate the

change in the amplitude in the right and left correspondences through (16)

sin+(k+mσ) =1

2i

(

(1 + ik+σ)m minus (1minus ik+σ)m)

= cosminusm

(

l

)

sin

(

m2π

l

)

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

9

andsin+(kmσ)An(l) = sin+(k (m + nl)σ)

Hence the non periodic part is then the multiplicative factor

An(l) =

(

secl

(

l

))n

(17)

This is also true for the cosine function and for any l isin R Although we have a wave lengthλ = lσ for the trigonometric functions in the right and left representations we can see that theyare not periodic

ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedilccedil ccedil ccedil

ccedil ccedilccedil ccedil

ccedilccedilccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

oacute oacute oacute oacute oacute oacute oacute oacute oacute oacuteoacute oacute oacute

oacute oacuteoacute oacute

oacute oacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

-2 -1 1 2

5

10

15

ccedil ccedil ccedil ccedil ccedilccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

oacute oacute oacute oacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

-25 -20 -15 -10 -05

02

04

06

08

10

(a) Exponential function with σ = 02

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

-20 -10 10 20

-2

-1

1

(b) Sinus function with σ = 03

Figure 2 We represent here the continuous functions with a black solid line and the discrete ones with redtriangles the right correspondences and with blue circles the symmetric ones

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

10

It is important to note that all the properties that obey the exponential and the trigonometricfunctions are maintained after the discretization with an exception any property that includestwo or more different constants k because they give similar effects than a different lattice spacingσ nor a different x like in the continuous case Thus for example

expU (kmσ) expU (k nσ) = expU (k (m + n)σ)

expU (kmσ) expU(kprimemσ) 6= expU (k + kprimemσ)

6 Umbral Schrodinger equation

Let us go to discretize the Schrodinger equation with a potential V (x) We will profit the wellknown fact that if the potential is independent of the time then the continuous Schrodingerequation is separable Thus from the Schrodinger equation

i~parttφ(x t) = minus ~2

2mpart2

xφ(x t) + V (x)φ(x t)

and considering φ(x t) = ψ(x)ϕ(t) we obtain two uncoupled ordinary differential equations

minus ~2

2mpart2

xψ(x) + V (x)ψ(x) = Eψ(x)

i~parttϕ(t) = Eϕ(t)

that we can rewrite with natural units as

part2xψ(x) + V (x)ψ(x) = Eψ(x)

minusiparttϕ(t) = Eϕ(t)(18)

The solution of the equation (18b) is

ϕ(t) = CeiEt (19)

61 Constant potential

In relation with the first equation of (18) the simplest case appears when the potential isconstant (V (x) = V0) The solution is

ψ(x) = Aeikx +Beminusikx if E gt V0

ψ(x) = Aekx +Beminuskx if E lt V0(20)

with k =radic

|E minus V0| Therefore the solution φ(x t) is a linear combination of trigonometric orexponential functions and hence their discretizations have been studied in section 5

The energy for a fixed momentum k is the same than in the continuous case for anydiscretization as we can see

Hψ =(

minus∆2 + V0

)

infinsum

n=0

(ik)n

n(A+ (minus1)nB) ξn =

=(

k2 + V0

)

infinsum

n=0

(ik)n

n(A+ (minus1)nB) ξn =

(

k2 + V0

)

ψ

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

11

In spite of this result the relation between the momentum and the wave length λ = lσ is differentin the discrete case

k =2π

λ kplusmn =

1

σtan

(

l

)

ks =1

σsin

(

l

)

Then the phase velocity changes although the group velocity is the same as in the continuouscase and for this reason the relation between the energy and the velocity

Let be t = nτ where n isin Z the discrete time and τ the fundamental time length Followingthe limits of convergence of the discrete exponentials we find two upper limits for the energyone in relation with the temporal part of the wave function (19) and the other one in relationwith the spatial part of the wave function (20)

Emaxt=

~

τ Emaxl

=~

2

2mσ2 (21)

In fact we have to take the minor of them in each situation Taking σ asymp lP lanck = 162 10minus35mand τ asymp tP lanck = 539 10minus44s we find values of the maximum energy for the time wave Emaxt

and for the spatial wave for a proton Ep+maxland an electron Eeminusmaxl

Emaxtasymp EP lanck = 122 1028eV Emaxl

= 138 1020 1

meV

Ep+maxl= 794 1046eV Eeminusmaxl

= 146 1050eV

Remark that these are non-relativistic effects We can study also the change in the amplitudefor the right and left correspondences The factor of expansion or contraction is

An(l) =

(

secl

(

l

))n

≃(

1 +2π2

l

)n

where l is the number of points into the wave length and n is the number of wave lengths alongthe wave For the temporal part of the wave function of a particle which travel into the LEPthat is during 910minus5s with an energy of 1991014eV we find that the factor is An(l) sim 10105

Forthe spatial part of the same particle an electron the factor is of order An(l) sim 3 These factorsgrow a lot with the energy or the mass of the particle As at this energy the relativistic effectsare important and we are using now non relativistic quantum mechanics it is comprehensibleto find these too big numbers

62 Infinite potential well

A little more complicated is the infinite potential well although it is very similar to a constantpotential it reduces the space to a finite region and due to this fact new differences will appearbetween the continuous and the discrete case The potential is

V (x) =

0 if x isin [0 L]

infin if x isin [0 L]

The wave functions must obey the boundary conditions ψ(0) = ψ(L) = 0 which lead to acountable number of solutions

ψn(x) = sin(

nπx

L

)

k =nπ

L n isin Z

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

12

in the same way we apply the boundary conditions to all our discretizations We can find thequantum rule for both the right and left correspondences following the computation of (15) So

k+n =

1

σtanπ

n

M

where L = Mσ Therefore there are only M2 possible states instead of the infinite states ofthe continuous case with a degeneration relative to the parity The energy is En = k2

n and it isbounded at n = (M minus 1)2 So the maximum energy is

E+max =

~2

2mσ2tan2

(

π

[

M minus 1

2M

])

At n = M2 we find a non physical state of infinite energy and infinite wave function amplitudeWe can do a small computation finding that an electron in an infinite well of wide the Bohrradius (M sim 1027) will have a maximum state energy of E+

max sim 1077eV The maximum energygrows when increasing the number of pointsM and also when decreasing the mass of the particleBut the wave function as we saw previously has a convergence range that limits the numberof states to n isin (minusM4M4) because k lt 1σ Hence the maximum energy is much moresmaller

We have that the quantum rule for the S-correspondence is

ksn =

1

σsinπ

n

M

Again we have a finite number of states M2 rounding down with a degeneration relative to theparity also The energy is always bounded by ~(2mσ2) just as we found with the convergencecondition

Esn = (ks

n)2 =1

σ2sin2 π

n

M

In Figure 3 are drawn the energy levels and the wave functions of the ground state and thetwo first excited states for the continuous case and the three discretizations We can see thegreat fit of the symmetric one for the first excited states but remarking that as its number ofstates is finite M2 then upper these wave functions there are not more states The right andthe left ones have an asymmetry to the left and right directions of the space and then are muchmore different to the continuous wave functions

7 Conclusions

In this paper we have shown how to apply the techniques of the Umbral Calculus for thediscretization of equations preserving the point symmetries We can see the advantage of a toolthat may be used not only on the equations but also over their solutions Due to this fact wehave not to solve difference equations because we alternatively can sum series Moreover in themost difficult cases we can use numerical methods to get a solution

In the umbral discretization we can choose between infinite umbral representations Howeverstill in the simplest cases they present very different behaviours We can separate all of them intwo classes one preserving the parity of the equations and solutions (like the S-representation)and the other one that does not (like the right and left representations) From the point of view ofthe local symmetries in Ref ([2]ndash[9] [26]) it was proved that independently of the correspondencewe get the same discrete point symmetries

The study of the discrete Schrodinger equation together with other potentials (Coulombharmonic oscillator ) are in progress [31]ndash[32] and the results will be published elsewhere

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

13

02 04 06 08 10

1

2

3

4

5

6

oacuteoacuteoacuteoacuteoacuteoacute oacuteoacute oacute oacute

oacuteoacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacute oacute oacute oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacute oacute oacute

oacute

oacute

oacute

oacute

oacuteccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilaacute

aacuteaacuteaacuteaacute aacuteaacute aacute aacute aacute

aacuteaacuteaacuteaacuteaacuteaacuteaacute aacute aacute aacute aacute aacute aacute

aacute aacuteaacuteaacuteaacute aacuteaacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

1 2 3 4

4

5

6

7

8

oacuteoacuteoacuteoacuteoacuteoacuteoacute oacuteoacute oacute oacute oacute oacute oacute oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute oacute oacute oacute oacute oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilaacute

aacuteaacuteaacuteaacute aacuteaacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute

aacuteaacuteaacuteaacuteaacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

aacute aacuteaacute aacuteaacute aacuteaacute

1 2 3 4

10

15

20

30

35

oacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacute oacute

oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacuteccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilaacute aacute

aacute aacuteaacute aacuteaacute aacuteaacute aacuteaacute aacute aacute

aacute aacute aacute aacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

1 2 3 4

081012141618

Figure 3 Energy levels and wave functions of the infinite well The energy levels are in theleft ones in solid line for the continuous case and dashed for the discrete case the shorter redlines are the rightleft case energies and the longer blue lines are the symmetric case energiesWave functions are in the right in black solid line are for the continuous case blue circled pointsare for the S-correspondence red triangled ones for the right correspondence and green squaredones the left correspondence

Acknowledgments

We thank to D Levi for stimulating interesting discussions and the Physics Dp of RomaTre Univ for their hospitality This work was partially supported by the Ministerio deEducacion y Ciencia of Spain (Projects FIS2005-03989 and by the Junta de Castilla y Leon(Project VA013C05) JLS thanks the Universidad de Valladolid and the Banco SantanderCentral Hispano by the PhD grant of the program ldquoAyudas de la Universidad de Valladolidcofinanciadas por el BSCHrdquo

References[1] Gibbs P 1995 The small scale structure of space-time a bibliographical review hep-th9506171[2] Dimakis A Muler-Hoissen F and Striker T 1996 Umbral calculus discretization and quantum mechanics on

a lattice J Phys A 29 6861[3] Levi D Vinet L and Winternitz P 1997 Lie group formalism for difference equations J Phys A 30 633[4] Levi D Negro J and del Olmo M A 2001 Discrete derivatives and symmetries of difference equations J Phys

A 34 2023[5] Levi D Negro J and del Olmo M A 2001 Lie symmetries of difference equations Czech J Phys 51 341[6] Senosiain M J 2002 Teorıa de las Ecuaciones Genericas Una Introduccion al Calculo Umbral Memoria de

Grado Universidad de Salamanca[7] Levi D Negro J and del Olmo M A 2004 Discrete q-derivatives and symmetries of q-difference equations J

Phys A 37 3459ndash3473[8] Levi D Tempesta P and Winternitz P 2004 Umbral calculus difference equations and the discrete Schrodinger

equation J Math Phys 45 4077[9] Salgado E 2004 Mecanica Cuantica Discreta Trabajo Fin de Carrera de Fısicas Univ de Valladolid

[10] Mullin R and Rota G C 1970 On the foundations of combinatorial theory III Theory of binomial enumeration(Graph theory and its applications) Ed B Harris (Academic Press) p 167-213

[11] Blissard J 1861 Theory of generic equations Quart J Pure Appl Math 4 279[12] Blissard J 1862 Theory of generic equations Quart J Pure Appl Math 5 58 184

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

14

[13] Bell E T 1938 The history of Blissardrsquos symbolic calculus with a sketch of the inventorrsquos life Amer MathMonthly 45 414

[14] Appell P 1880 Sur une classe de polynomes Ann Sci Ecole Norm Sup (2) 9 119[15] Pincherle S and Amaldi S 1901 Le Operazioni Distributive e le loro Applicazioni allrsquoAnalisi (Bologna N

Zanichelli)[16] Davis H T 1936 The Theory of Linear Operators (Bloomington Principia Press)[17] Sheffer I M 1939 Some properties of polynomial sets of type zero Duke Math J 5 590[18] Rota G C Kahaner D and Odlyzko A 1973 On the foundations of combinatorial theory VII Finite operator

calculus J Math Anal Appl 42 684[19] Rota G C 1975 Finite Operator Calculus (San Diego Academic)[20] Roman S M 1982 The theory of umbral calculus I J Math Anal Appl 87 58[21] Roman S M 1982 The theory of umbral calculus II J Math Anal Appl 89 290[22] Roman S M 1983 The theory of umbral calculus III J Math Anal Appl 95 528[23] Roman S M 1975 The Umbral Calculus (San Diego Academic)[24] Di Bucchianico A and Loeb D 2000 A selected survey of umbral calculus Electr J Combin DS3[25] Zachos C K 2007 Umbral deformations on discrete spacetime Preprint hep-th07102306[26] Levi D and Winternitz P 2005 Continuous symmetries of difference equations J Phys A 39 R1ndashR63[27] Levi D and Petrera M 2007 Continuous symmetries of the lattice potential KdV equation J Phys A 40

4141ndash4159[28] Levi D Tremblay S and Winternitz P 2007 Lie point symmetries of difference equations and lattices Preprint

math-ph07093112[29] Levi D Tremblay S and Winternitz P 2007 Lie symmetries of multidimensional difference equations Preprint

math-ph07093238[30] Hernandez Heredero R Levi D Petrera M and Scimiterna C 2007 Multiscale expansion on the lattice and

integrability of partial difference equations Preprint math-ph07105299[31] Lopez-Sendino J E Negro J del Olmo M A and Salgado E 2008 Discretizing quantum mechanics using

umbral calculus Preprint[32] Lopez-Sendino J E Negro J and del Olmo M A 2008 Discrete harmonic oscillator and umbral calculus

Preprint

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

15

The umbral correspondence allows us to relate continuous linear equations h and theirsolutions f if they can be developed in power series with umbral discrete versions h and f respectively as follows

h (partnxf(x) xs) = 0 larrrarr h

(

∆nf(ξ) ξs)

middot 1 = 0 n s isin N

f(x) =

infinsum

n=0

fnxn larrrarr f(ξ) middot 1 =

infinsum

n=0

fnx(n)

(9)

This is the main result of Umbral Calculus that we will exploit here for ours purposesUmbral Calculus allows us not only to discretize continuous differential equations obtainingdiscrete equations but also to get solutions of these equations if their continuous counterpartsare polynomial solutions or may be developed in power series which converge after thecorrespondence Note however that with the umbral correspondence we obtain an operatorwhich must be applied to 1 to get a difference equation or its solution

For the particular case of a symmetric difference operator ie a difference operator ∆σ suchthat

∆σ middot f(x) = minus∆minusσ middot f(x)

we have that the general expression (7) reduces to

∆σ =1

jsum

n=1

an(T n minus Tminusn) (10)

4 Differential operators for discretized quantum mechanics

In the following we will use some particular expressions (or representations) for the differentialoperator ∆ all of them of low (first and second) order on the shift operator T Let us considerthe two possible representations for ∆ of first order the right discrete derivative ∆+ and theleft discrete derivative ∆minus and the (only) symmetric discrete derivative of second order ∆s

The right-correspondence is determined by the couple of operators (∆+ ξ+) given by

∆+ =1

σ(T minus 1) β+ = Tminus1

and the left-correspondence (∆minus ξminus) by

∆minus =1

σ(1minus Tminus1) βminus = T

Note that both are connected by the change σ harr minusσ

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

5

The basic polynomial series of the right-correspondence is related with the Pochhammersymbols Its explicit expression is

(Xβ+)n middot 1 = x(n)+ = x(xminus σ)(xminus 2σ) (xminus (nminus 1)σ)

=prodnminus1

i=0 (xminus iσ) = σnprodnminus1

i=0 (mminus i)

=

(minusσ)n(minusm+ nminus 1)

(minusmminus 1)if m lt 0

0 if

m ge 0m lt n

σn m

(mminus n)if

m ge 0m ge n

(11)

where x = mσ with m isin Z This series of polynomials has some interesting properties First of

all we can see that the n-th order zero of xn splits into n first order zeros of x(n)+ at the right of

the origin If the right-correspondence is applied to a Taylor power series then for the positivepoints of the domain it will be truncated and therefore will converge but not for the negativeones and therefore could diverge

The left-correspondence ∆minus ξminus is nearly similar to the right one The basic sequence isrelated with the rising factorial (instead of the falling factorial of the previous case) and it ismirror symmetric respect to the y-axis to the right-correspondence in fact the negative pointsof a Taylor series discretized in this way always converge

According to the formula (10) there is only one symmetric representation of second order onT (S-representation) determined by the pair ∆s ξs where

∆s =1

2σ(T minus Tminus1) βs = 2(T + Tminus1)minus1

and its basic sequence is

(Xβs)n middot 1 = x(n)

s = x[xminus (nminus 2)σ][x minus (n minus 4)σ] [x+ (n minus 4)σ][x + (nminus 2)σ]

= x

nminus2prod

i=0

[x+ (2iminus (nminus 2))σ] = σnm

nminus2prod

i=0

[m+ 2iminus (nminus 2)]

=

(sign(m)σ)n|m|(|m|+ nminus 2)

(|m| minus n)if n le |m|

0 if

n gt |m|p(nminusm) = +1

(minus1)1

2(nminus|m|minus1)(sign(m)σ)nm

times(|m|+ nminus 2)(n minus |m| minus 2)if

n gt |m|p(nminusm) = minus1

(12)

where p(n) = (minus1)n is the parity function and the double factorial is defined as n = n(nminus 2)with n = 1 when n is 0 or 1

The behaviour of this basic sequence is much more complicated than those of the right andleft-correspondences The zero at the origin of order n of the continuous power function ofdegree n splits into n simple zeros after discretization These zeros appear at the points x = mσwith the conditions

p(nminusm) = +1 n gt |m| (13)

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

6

Thus applying the S-correspondence to a Taylor series we find that at the points obeying theconditions (13) there is a cut-off in the series and hence the sums will always converge in casethe function has a well defined parity

In the following diagram we display the basis elements (ξn∆ x(n)) of the three usualrepresentations

Right representation Left representation Symmetric representation

ξn+ =

(

XTminus1)n Rlarrrarr ξn

minus = (XT )nRlarrrarr ξn

s =(

2X(

T + Tminus1)minus1

)n

J l J l J l

∆+ =1

σ(T minus 1)

Rlarrrarr ∆minus =1

σ

(

1minus Tminus1) Rlarrrarr ∆s =

1

(

T minus Tminus1)

J l J l J l

x(n)+ =

nminus1prod

i=0

(xminus iσ)Rlarrrarr x

(n)minus =

nminus1prod

i=0

(x+ iσ)Rlarrrarrx(n)

s = x

nminus2prod

i=0

(x+ (2i minus n+ 2)σ)

ccedil

ccedil

ccedil

ccedil

ccedil ccedil ccedil

ccedil

ccedil

ccedil

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute aacute aacute

aacute

aacute

-4 -2 2 4

-20

-10

10

20

(a) Some powers for the position in the S-correspondence

ccedil

ccedil

ccedil

ccedilccedil ccedil

ccedil

ccedil

ccedil

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute aacute aacute

aacute

aacute

-4 -3 -2 -1 1 2 3

-20

-10

10

20

(b) Some powers for the position in the left-correspondence

ccedil

ccedil

ccedil

ccedilccedil ccedil

ccedil

ccedil

ccedil

ccedil

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute aacute aacute

aacute

aacute

-2 2 4

-20

-10

10

20

(c) Some powers for the position in the right-correspondence

Figure 1 Represented in dashed line the continuous powers and in dots the powers for the discrete positionwith red circles for x

2 and blue squares for x3 The number of zeros is equal to the power n for the right and the

left cases

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

7

5 The discretized exponential function and the trigonometric functions

We start with the exponential function which in some sense is the simplest case The continuousexponential function as it is well known is defined through the following differential equation

d

dxyk = kyk yk(0) = 1 k isin R

and its power expansion series around the origin is

yk(x)) = ekx =infinsum

n=0

(kx)n

n

As we mentioned before the umbral correspondence gives rise to the same function eitherby solving the discrete difference equation obtained by applying the umbral correspondence tothe continuous differential equation or by applying the umbral correspondence to its solutionsas long as their power series converge Hence we have to calculate

expU (k x) =infin

sum

n=0

kn

nξn middot 1 (14)

If we use the right-correspondence (11) the umbral-exponential (14) becomes

exp+(k σm) =

msum

n=0

(kσ)nm

n(mminus n)if m gt 0

infinsum

n=0

(minuskσ)n(minusm+ nminus 1)

n(minusmminus 1)if m lt 0

= (1 + kσ)m

For the left-correspondence we get

expminus(k σm) =

infinsum

n=0

(kσ)n(m+ nminus 1)

n(mminus 1)if m gt 0

minusmsum

n=0

(minuskσ)n(minusm)

n(minusmminus n)if m lt 0

= (1minus kσ)minusm

In Fig 2(a) it is displayed the continuous exponential function together with its discrete versionby the right-correspondence It is worthy to note that if in the continuous case we found thatexp(k x) = exp((minusk)(minusx)) now in the discrete case we have that exp+(k x) = expminus(minuskminusx)

Another possibility is to apply the S-correspondence (12) So we obtain

exps(kmσ) =infin

sum

n=0

(kσ)n

nm

nminus2prod

i=0

(m+ 2iminus (nminus 2)) =(

kσ +radic

(kσ)2 + 1)m

These discrete exponentials only converge when the continuous variable k obeys (kσ)2 lt 1for all the three correspondences studied in the previous sections

Also we can easily study the trigonometric functions (as well as the hyperbolic functions)taking into account their expressions in terms of the exponential functions In this way we canobtain the discrete trigonometric functions from the discrete exponential function We displayin Fig 2(b) the sine function

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

8

We can see that the symmetric discrete trigonometric functions maintain the periodicbehaviour of the continuous ones However the period λs is different to the continuous functionλ = 2πk We find it easier in the case of the sine function through sins(k lσ) = sins(k 0σ)We have fixed λ = lσ with l isin Z but it can be generalized without problems to l isin R

sins(k lσ) =1

2i

(

(

radic

1minus (kσ)2 + ikσ)l

minus(

radic

1minus (kσ)2 minus ikσ)l

)

= 0 = sins(k 0σ)

rArr(

radic

1minus (kσ)2 + ikσ)l

=(

radic

1minus (kσ)2 minus ikσ)l

to solve this identity we define

radic

1minus (kσ)2 + ikσ = reiθ rArr

θ = arctan

(

kσradic1minus(kσ)2

)

r = 1

and this guide us to the solution

sin(θl) = 0rArr θn =nπ

lrArr kn =

1

σsin

l

As there are two zeros in each period of the function we can find the relation between thenumber of waves and the wave length We have added an superscript to remark that theserelations are different for each representation then

ks =1

σsin

(

l

)

λs =2πσ

arcsin(ksσ) (15)

It is easy to demonstrate the periodic behaviour of the symmetric trigonometric functions infact introducing (15) into de symmetric sinus

sins(ksmσ) = sin

(

m2π

l

)

For the right and left correspondences the trigonometric functions are not periodic Howeverthe extremums of the functions and the intersection points with the abscissa axis appearperiodically and then we can define a wave function through this property With a similarcomputation than in the symmetric case we find

k+ =1

σtan

(

l

)

λ+ =2πσ

arctan(k+σ) (16)

The wave length is bigger in the right and left discretizations and smaller in thesymmetric discretization than in the continuous trigonometric functions Also in thesethree correspondences the trigonometric functions have a minimum period it appears in theconvergence limit when kσ = 1 For the right and the left discretizations we have λ+

min = 8σin fact it is a 8 point wave and for the symmetric one λs

min = 4σ in fact it is a 4 point waveWe set λ = lσ and without loss of generality we fix l integer Then it is easy to calculate the

change in the amplitude in the right and left correspondences through (16)

sin+(k+mσ) =1

2i

(

(1 + ik+σ)m minus (1minus ik+σ)m)

= cosminusm

(

l

)

sin

(

m2π

l

)

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

9

andsin+(kmσ)An(l) = sin+(k (m + nl)σ)

Hence the non periodic part is then the multiplicative factor

An(l) =

(

secl

(

l

))n

(17)

This is also true for the cosine function and for any l isin R Although we have a wave lengthλ = lσ for the trigonometric functions in the right and left representations we can see that theyare not periodic

ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedilccedil ccedil ccedil

ccedil ccedilccedil ccedil

ccedilccedilccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

oacute oacute oacute oacute oacute oacute oacute oacute oacute oacuteoacute oacute oacute

oacute oacuteoacute oacute

oacute oacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

-2 -1 1 2

5

10

15

ccedil ccedil ccedil ccedil ccedilccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

oacute oacute oacute oacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

-25 -20 -15 -10 -05

02

04

06

08

10

(a) Exponential function with σ = 02

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

-20 -10 10 20

-2

-1

1

(b) Sinus function with σ = 03

Figure 2 We represent here the continuous functions with a black solid line and the discrete ones with redtriangles the right correspondences and with blue circles the symmetric ones

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

10

It is important to note that all the properties that obey the exponential and the trigonometricfunctions are maintained after the discretization with an exception any property that includestwo or more different constants k because they give similar effects than a different lattice spacingσ nor a different x like in the continuous case Thus for example

expU (kmσ) expU (k nσ) = expU (k (m + n)σ)

expU (kmσ) expU(kprimemσ) 6= expU (k + kprimemσ)

6 Umbral Schrodinger equation

Let us go to discretize the Schrodinger equation with a potential V (x) We will profit the wellknown fact that if the potential is independent of the time then the continuous Schrodingerequation is separable Thus from the Schrodinger equation

i~parttφ(x t) = minus ~2

2mpart2

xφ(x t) + V (x)φ(x t)

and considering φ(x t) = ψ(x)ϕ(t) we obtain two uncoupled ordinary differential equations

minus ~2

2mpart2

xψ(x) + V (x)ψ(x) = Eψ(x)

i~parttϕ(t) = Eϕ(t)

that we can rewrite with natural units as

part2xψ(x) + V (x)ψ(x) = Eψ(x)

minusiparttϕ(t) = Eϕ(t)(18)

The solution of the equation (18b) is

ϕ(t) = CeiEt (19)

61 Constant potential

In relation with the first equation of (18) the simplest case appears when the potential isconstant (V (x) = V0) The solution is

ψ(x) = Aeikx +Beminusikx if E gt V0

ψ(x) = Aekx +Beminuskx if E lt V0(20)

with k =radic

|E minus V0| Therefore the solution φ(x t) is a linear combination of trigonometric orexponential functions and hence their discretizations have been studied in section 5

The energy for a fixed momentum k is the same than in the continuous case for anydiscretization as we can see

Hψ =(

minus∆2 + V0

)

infinsum

n=0

(ik)n

n(A+ (minus1)nB) ξn =

=(

k2 + V0

)

infinsum

n=0

(ik)n

n(A+ (minus1)nB) ξn =

(

k2 + V0

)

ψ

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

11

In spite of this result the relation between the momentum and the wave length λ = lσ is differentin the discrete case

k =2π

λ kplusmn =

1

σtan

(

l

)

ks =1

σsin

(

l

)

Then the phase velocity changes although the group velocity is the same as in the continuouscase and for this reason the relation between the energy and the velocity

Let be t = nτ where n isin Z the discrete time and τ the fundamental time length Followingthe limits of convergence of the discrete exponentials we find two upper limits for the energyone in relation with the temporal part of the wave function (19) and the other one in relationwith the spatial part of the wave function (20)

Emaxt=

~

τ Emaxl

=~

2

2mσ2 (21)

In fact we have to take the minor of them in each situation Taking σ asymp lP lanck = 162 10minus35mand τ asymp tP lanck = 539 10minus44s we find values of the maximum energy for the time wave Emaxt

and for the spatial wave for a proton Ep+maxland an electron Eeminusmaxl

Emaxtasymp EP lanck = 122 1028eV Emaxl

= 138 1020 1

meV

Ep+maxl= 794 1046eV Eeminusmaxl

= 146 1050eV

Remark that these are non-relativistic effects We can study also the change in the amplitudefor the right and left correspondences The factor of expansion or contraction is

An(l) =

(

secl

(

l

))n

≃(

1 +2π2

l

)n

where l is the number of points into the wave length and n is the number of wave lengths alongthe wave For the temporal part of the wave function of a particle which travel into the LEPthat is during 910minus5s with an energy of 1991014eV we find that the factor is An(l) sim 10105

Forthe spatial part of the same particle an electron the factor is of order An(l) sim 3 These factorsgrow a lot with the energy or the mass of the particle As at this energy the relativistic effectsare important and we are using now non relativistic quantum mechanics it is comprehensibleto find these too big numbers

62 Infinite potential well

A little more complicated is the infinite potential well although it is very similar to a constantpotential it reduces the space to a finite region and due to this fact new differences will appearbetween the continuous and the discrete case The potential is

V (x) =

0 if x isin [0 L]

infin if x isin [0 L]

The wave functions must obey the boundary conditions ψ(0) = ψ(L) = 0 which lead to acountable number of solutions

ψn(x) = sin(

nπx

L

)

k =nπ

L n isin Z

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

12

in the same way we apply the boundary conditions to all our discretizations We can find thequantum rule for both the right and left correspondences following the computation of (15) So

k+n =

1

σtanπ

n

M

where L = Mσ Therefore there are only M2 possible states instead of the infinite states ofthe continuous case with a degeneration relative to the parity The energy is En = k2

n and it isbounded at n = (M minus 1)2 So the maximum energy is

E+max =

~2

2mσ2tan2

(

π

[

M minus 1

2M

])

At n = M2 we find a non physical state of infinite energy and infinite wave function amplitudeWe can do a small computation finding that an electron in an infinite well of wide the Bohrradius (M sim 1027) will have a maximum state energy of E+

max sim 1077eV The maximum energygrows when increasing the number of pointsM and also when decreasing the mass of the particleBut the wave function as we saw previously has a convergence range that limits the numberof states to n isin (minusM4M4) because k lt 1σ Hence the maximum energy is much moresmaller

We have that the quantum rule for the S-correspondence is

ksn =

1

σsinπ

n

M

Again we have a finite number of states M2 rounding down with a degeneration relative to theparity also The energy is always bounded by ~(2mσ2) just as we found with the convergencecondition

Esn = (ks

n)2 =1

σ2sin2 π

n

M

In Figure 3 are drawn the energy levels and the wave functions of the ground state and thetwo first excited states for the continuous case and the three discretizations We can see thegreat fit of the symmetric one for the first excited states but remarking that as its number ofstates is finite M2 then upper these wave functions there are not more states The right andthe left ones have an asymmetry to the left and right directions of the space and then are muchmore different to the continuous wave functions

7 Conclusions

In this paper we have shown how to apply the techniques of the Umbral Calculus for thediscretization of equations preserving the point symmetries We can see the advantage of a toolthat may be used not only on the equations but also over their solutions Due to this fact wehave not to solve difference equations because we alternatively can sum series Moreover in themost difficult cases we can use numerical methods to get a solution

In the umbral discretization we can choose between infinite umbral representations Howeverstill in the simplest cases they present very different behaviours We can separate all of them intwo classes one preserving the parity of the equations and solutions (like the S-representation)and the other one that does not (like the right and left representations) From the point of view ofthe local symmetries in Ref ([2]ndash[9] [26]) it was proved that independently of the correspondencewe get the same discrete point symmetries

The study of the discrete Schrodinger equation together with other potentials (Coulombharmonic oscillator ) are in progress [31]ndash[32] and the results will be published elsewhere

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

13

02 04 06 08 10

1

2

3

4

5

6

oacuteoacuteoacuteoacuteoacuteoacute oacuteoacute oacute oacute

oacuteoacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacute oacute oacute oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacute oacute oacute

oacute

oacute

oacute

oacute

oacuteccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilaacute

aacuteaacuteaacuteaacute aacuteaacute aacute aacute aacute

aacuteaacuteaacuteaacuteaacuteaacuteaacute aacute aacute aacute aacute aacute aacute

aacute aacuteaacuteaacuteaacute aacuteaacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

1 2 3 4

4

5

6

7

8

oacuteoacuteoacuteoacuteoacuteoacuteoacute oacuteoacute oacute oacute oacute oacute oacute oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute oacute oacute oacute oacute oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilaacute

aacuteaacuteaacuteaacute aacuteaacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute

aacuteaacuteaacuteaacuteaacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

aacute aacuteaacute aacuteaacute aacuteaacute

1 2 3 4

10

15

20

30

35

oacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacute oacute

oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacuteccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilaacute aacute

aacute aacuteaacute aacuteaacute aacuteaacute aacuteaacute aacute aacute

aacute aacute aacute aacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

1 2 3 4

081012141618

Figure 3 Energy levels and wave functions of the infinite well The energy levels are in theleft ones in solid line for the continuous case and dashed for the discrete case the shorter redlines are the rightleft case energies and the longer blue lines are the symmetric case energiesWave functions are in the right in black solid line are for the continuous case blue circled pointsare for the S-correspondence red triangled ones for the right correspondence and green squaredones the left correspondence

Acknowledgments

We thank to D Levi for stimulating interesting discussions and the Physics Dp of RomaTre Univ for their hospitality This work was partially supported by the Ministerio deEducacion y Ciencia of Spain (Projects FIS2005-03989 and by the Junta de Castilla y Leon(Project VA013C05) JLS thanks the Universidad de Valladolid and the Banco SantanderCentral Hispano by the PhD grant of the program ldquoAyudas de la Universidad de Valladolidcofinanciadas por el BSCHrdquo

References[1] Gibbs P 1995 The small scale structure of space-time a bibliographical review hep-th9506171[2] Dimakis A Muler-Hoissen F and Striker T 1996 Umbral calculus discretization and quantum mechanics on

a lattice J Phys A 29 6861[3] Levi D Vinet L and Winternitz P 1997 Lie group formalism for difference equations J Phys A 30 633[4] Levi D Negro J and del Olmo M A 2001 Discrete derivatives and symmetries of difference equations J Phys

A 34 2023[5] Levi D Negro J and del Olmo M A 2001 Lie symmetries of difference equations Czech J Phys 51 341[6] Senosiain M J 2002 Teorıa de las Ecuaciones Genericas Una Introduccion al Calculo Umbral Memoria de

Grado Universidad de Salamanca[7] Levi D Negro J and del Olmo M A 2004 Discrete q-derivatives and symmetries of q-difference equations J

Phys A 37 3459ndash3473[8] Levi D Tempesta P and Winternitz P 2004 Umbral calculus difference equations and the discrete Schrodinger

equation J Math Phys 45 4077[9] Salgado E 2004 Mecanica Cuantica Discreta Trabajo Fin de Carrera de Fısicas Univ de Valladolid

[10] Mullin R and Rota G C 1970 On the foundations of combinatorial theory III Theory of binomial enumeration(Graph theory and its applications) Ed B Harris (Academic Press) p 167-213

[11] Blissard J 1861 Theory of generic equations Quart J Pure Appl Math 4 279[12] Blissard J 1862 Theory of generic equations Quart J Pure Appl Math 5 58 184

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

14

[13] Bell E T 1938 The history of Blissardrsquos symbolic calculus with a sketch of the inventorrsquos life Amer MathMonthly 45 414

[14] Appell P 1880 Sur une classe de polynomes Ann Sci Ecole Norm Sup (2) 9 119[15] Pincherle S and Amaldi S 1901 Le Operazioni Distributive e le loro Applicazioni allrsquoAnalisi (Bologna N

Zanichelli)[16] Davis H T 1936 The Theory of Linear Operators (Bloomington Principia Press)[17] Sheffer I M 1939 Some properties of polynomial sets of type zero Duke Math J 5 590[18] Rota G C Kahaner D and Odlyzko A 1973 On the foundations of combinatorial theory VII Finite operator

calculus J Math Anal Appl 42 684[19] Rota G C 1975 Finite Operator Calculus (San Diego Academic)[20] Roman S M 1982 The theory of umbral calculus I J Math Anal Appl 87 58[21] Roman S M 1982 The theory of umbral calculus II J Math Anal Appl 89 290[22] Roman S M 1983 The theory of umbral calculus III J Math Anal Appl 95 528[23] Roman S M 1975 The Umbral Calculus (San Diego Academic)[24] Di Bucchianico A and Loeb D 2000 A selected survey of umbral calculus Electr J Combin DS3[25] Zachos C K 2007 Umbral deformations on discrete spacetime Preprint hep-th07102306[26] Levi D and Winternitz P 2005 Continuous symmetries of difference equations J Phys A 39 R1ndashR63[27] Levi D and Petrera M 2007 Continuous symmetries of the lattice potential KdV equation J Phys A 40

4141ndash4159[28] Levi D Tremblay S and Winternitz P 2007 Lie point symmetries of difference equations and lattices Preprint

math-ph07093112[29] Levi D Tremblay S and Winternitz P 2007 Lie symmetries of multidimensional difference equations Preprint

math-ph07093238[30] Hernandez Heredero R Levi D Petrera M and Scimiterna C 2007 Multiscale expansion on the lattice and

integrability of partial difference equations Preprint math-ph07105299[31] Lopez-Sendino J E Negro J del Olmo M A and Salgado E 2008 Discretizing quantum mechanics using

umbral calculus Preprint[32] Lopez-Sendino J E Negro J and del Olmo M A 2008 Discrete harmonic oscillator and umbral calculus

Preprint

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

15

The basic polynomial series of the right-correspondence is related with the Pochhammersymbols Its explicit expression is

(Xβ+)n middot 1 = x(n)+ = x(xminus σ)(xminus 2σ) (xminus (nminus 1)σ)

=prodnminus1

i=0 (xminus iσ) = σnprodnminus1

i=0 (mminus i)

=

(minusσ)n(minusm+ nminus 1)

(minusmminus 1)if m lt 0

0 if

m ge 0m lt n

σn m

(mminus n)if

m ge 0m ge n

(11)

where x = mσ with m isin Z This series of polynomials has some interesting properties First of

all we can see that the n-th order zero of xn splits into n first order zeros of x(n)+ at the right of

the origin If the right-correspondence is applied to a Taylor power series then for the positivepoints of the domain it will be truncated and therefore will converge but not for the negativeones and therefore could diverge

The left-correspondence ∆minus ξminus is nearly similar to the right one The basic sequence isrelated with the rising factorial (instead of the falling factorial of the previous case) and it ismirror symmetric respect to the y-axis to the right-correspondence in fact the negative pointsof a Taylor series discretized in this way always converge

According to the formula (10) there is only one symmetric representation of second order onT (S-representation) determined by the pair ∆s ξs where

∆s =1

2σ(T minus Tminus1) βs = 2(T + Tminus1)minus1

and its basic sequence is

(Xβs)n middot 1 = x(n)

s = x[xminus (nminus 2)σ][x minus (n minus 4)σ] [x+ (n minus 4)σ][x + (nminus 2)σ]

= x

nminus2prod

i=0

[x+ (2iminus (nminus 2))σ] = σnm

nminus2prod

i=0

[m+ 2iminus (nminus 2)]

=

(sign(m)σ)n|m|(|m|+ nminus 2)

(|m| minus n)if n le |m|

0 if

n gt |m|p(nminusm) = +1

(minus1)1

2(nminus|m|minus1)(sign(m)σ)nm

times(|m|+ nminus 2)(n minus |m| minus 2)if

n gt |m|p(nminusm) = minus1

(12)

where p(n) = (minus1)n is the parity function and the double factorial is defined as n = n(nminus 2)with n = 1 when n is 0 or 1

The behaviour of this basic sequence is much more complicated than those of the right andleft-correspondences The zero at the origin of order n of the continuous power function ofdegree n splits into n simple zeros after discretization These zeros appear at the points x = mσwith the conditions

p(nminusm) = +1 n gt |m| (13)

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

6

Thus applying the S-correspondence to a Taylor series we find that at the points obeying theconditions (13) there is a cut-off in the series and hence the sums will always converge in casethe function has a well defined parity

In the following diagram we display the basis elements (ξn∆ x(n)) of the three usualrepresentations

Right representation Left representation Symmetric representation

ξn+ =

(

XTminus1)n Rlarrrarr ξn

minus = (XT )nRlarrrarr ξn

s =(

2X(

T + Tminus1)minus1

)n

J l J l J l

∆+ =1

σ(T minus 1)

Rlarrrarr ∆minus =1

σ

(

1minus Tminus1) Rlarrrarr ∆s =

1

(

T minus Tminus1)

J l J l J l

x(n)+ =

nminus1prod

i=0

(xminus iσ)Rlarrrarr x

(n)minus =

nminus1prod

i=0

(x+ iσ)Rlarrrarrx(n)

s = x

nminus2prod

i=0

(x+ (2i minus n+ 2)σ)

ccedil

ccedil

ccedil

ccedil

ccedil ccedil ccedil

ccedil

ccedil

ccedil

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute aacute aacute

aacute

aacute

-4 -2 2 4

-20

-10

10

20

(a) Some powers for the position in the S-correspondence

ccedil

ccedil

ccedil

ccedilccedil ccedil

ccedil

ccedil

ccedil

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute aacute aacute

aacute

aacute

-4 -3 -2 -1 1 2 3

-20

-10

10

20

(b) Some powers for the position in the left-correspondence

ccedil

ccedil

ccedil

ccedilccedil ccedil

ccedil

ccedil

ccedil

ccedil

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute aacute aacute

aacute

aacute

-2 2 4

-20

-10

10

20

(c) Some powers for the position in the right-correspondence

Figure 1 Represented in dashed line the continuous powers and in dots the powers for the discrete positionwith red circles for x

2 and blue squares for x3 The number of zeros is equal to the power n for the right and the

left cases

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

7

5 The discretized exponential function and the trigonometric functions

We start with the exponential function which in some sense is the simplest case The continuousexponential function as it is well known is defined through the following differential equation

d

dxyk = kyk yk(0) = 1 k isin R

and its power expansion series around the origin is

yk(x)) = ekx =infinsum

n=0

(kx)n

n

As we mentioned before the umbral correspondence gives rise to the same function eitherby solving the discrete difference equation obtained by applying the umbral correspondence tothe continuous differential equation or by applying the umbral correspondence to its solutionsas long as their power series converge Hence we have to calculate

expU (k x) =infin

sum

n=0

kn

nξn middot 1 (14)

If we use the right-correspondence (11) the umbral-exponential (14) becomes

exp+(k σm) =

msum

n=0

(kσ)nm

n(mminus n)if m gt 0

infinsum

n=0

(minuskσ)n(minusm+ nminus 1)

n(minusmminus 1)if m lt 0

= (1 + kσ)m

For the left-correspondence we get

expminus(k σm) =

infinsum

n=0

(kσ)n(m+ nminus 1)

n(mminus 1)if m gt 0

minusmsum

n=0

(minuskσ)n(minusm)

n(minusmminus n)if m lt 0

= (1minus kσ)minusm

In Fig 2(a) it is displayed the continuous exponential function together with its discrete versionby the right-correspondence It is worthy to note that if in the continuous case we found thatexp(k x) = exp((minusk)(minusx)) now in the discrete case we have that exp+(k x) = expminus(minuskminusx)

Another possibility is to apply the S-correspondence (12) So we obtain

exps(kmσ) =infin

sum

n=0

(kσ)n

nm

nminus2prod

i=0

(m+ 2iminus (nminus 2)) =(

kσ +radic

(kσ)2 + 1)m

These discrete exponentials only converge when the continuous variable k obeys (kσ)2 lt 1for all the three correspondences studied in the previous sections

Also we can easily study the trigonometric functions (as well as the hyperbolic functions)taking into account their expressions in terms of the exponential functions In this way we canobtain the discrete trigonometric functions from the discrete exponential function We displayin Fig 2(b) the sine function

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

8

We can see that the symmetric discrete trigonometric functions maintain the periodicbehaviour of the continuous ones However the period λs is different to the continuous functionλ = 2πk We find it easier in the case of the sine function through sins(k lσ) = sins(k 0σ)We have fixed λ = lσ with l isin Z but it can be generalized without problems to l isin R

sins(k lσ) =1

2i

(

(

radic

1minus (kσ)2 + ikσ)l

minus(

radic

1minus (kσ)2 minus ikσ)l

)

= 0 = sins(k 0σ)

rArr(

radic

1minus (kσ)2 + ikσ)l

=(

radic

1minus (kσ)2 minus ikσ)l

to solve this identity we define

radic

1minus (kσ)2 + ikσ = reiθ rArr

θ = arctan

(

kσradic1minus(kσ)2

)

r = 1

and this guide us to the solution

sin(θl) = 0rArr θn =nπ

lrArr kn =

1

σsin

l

As there are two zeros in each period of the function we can find the relation between thenumber of waves and the wave length We have added an superscript to remark that theserelations are different for each representation then

ks =1

σsin

(

l

)

λs =2πσ

arcsin(ksσ) (15)

It is easy to demonstrate the periodic behaviour of the symmetric trigonometric functions infact introducing (15) into de symmetric sinus

sins(ksmσ) = sin

(

m2π

l

)

For the right and left correspondences the trigonometric functions are not periodic Howeverthe extremums of the functions and the intersection points with the abscissa axis appearperiodically and then we can define a wave function through this property With a similarcomputation than in the symmetric case we find

k+ =1

σtan

(

l

)

λ+ =2πσ

arctan(k+σ) (16)

The wave length is bigger in the right and left discretizations and smaller in thesymmetric discretization than in the continuous trigonometric functions Also in thesethree correspondences the trigonometric functions have a minimum period it appears in theconvergence limit when kσ = 1 For the right and the left discretizations we have λ+

min = 8σin fact it is a 8 point wave and for the symmetric one λs

min = 4σ in fact it is a 4 point waveWe set λ = lσ and without loss of generality we fix l integer Then it is easy to calculate the

change in the amplitude in the right and left correspondences through (16)

sin+(k+mσ) =1

2i

(

(1 + ik+σ)m minus (1minus ik+σ)m)

= cosminusm

(

l

)

sin

(

m2π

l

)

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

9

andsin+(kmσ)An(l) = sin+(k (m + nl)σ)

Hence the non periodic part is then the multiplicative factor

An(l) =

(

secl

(

l

))n

(17)

This is also true for the cosine function and for any l isin R Although we have a wave lengthλ = lσ for the trigonometric functions in the right and left representations we can see that theyare not periodic

ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedilccedil ccedil ccedil

ccedil ccedilccedil ccedil

ccedilccedilccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

oacute oacute oacute oacute oacute oacute oacute oacute oacute oacuteoacute oacute oacute

oacute oacuteoacute oacute

oacute oacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

-2 -1 1 2

5

10

15

ccedil ccedil ccedil ccedil ccedilccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

oacute oacute oacute oacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

-25 -20 -15 -10 -05

02

04

06

08

10

(a) Exponential function with σ = 02

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

-20 -10 10 20

-2

-1

1

(b) Sinus function with σ = 03

Figure 2 We represent here the continuous functions with a black solid line and the discrete ones with redtriangles the right correspondences and with blue circles the symmetric ones

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

10

It is important to note that all the properties that obey the exponential and the trigonometricfunctions are maintained after the discretization with an exception any property that includestwo or more different constants k because they give similar effects than a different lattice spacingσ nor a different x like in the continuous case Thus for example

expU (kmσ) expU (k nσ) = expU (k (m + n)σ)

expU (kmσ) expU(kprimemσ) 6= expU (k + kprimemσ)

6 Umbral Schrodinger equation

Let us go to discretize the Schrodinger equation with a potential V (x) We will profit the wellknown fact that if the potential is independent of the time then the continuous Schrodingerequation is separable Thus from the Schrodinger equation

i~parttφ(x t) = minus ~2

2mpart2

xφ(x t) + V (x)φ(x t)

and considering φ(x t) = ψ(x)ϕ(t) we obtain two uncoupled ordinary differential equations

minus ~2

2mpart2

xψ(x) + V (x)ψ(x) = Eψ(x)

i~parttϕ(t) = Eϕ(t)

that we can rewrite with natural units as

part2xψ(x) + V (x)ψ(x) = Eψ(x)

minusiparttϕ(t) = Eϕ(t)(18)

The solution of the equation (18b) is

ϕ(t) = CeiEt (19)

61 Constant potential

In relation with the first equation of (18) the simplest case appears when the potential isconstant (V (x) = V0) The solution is

ψ(x) = Aeikx +Beminusikx if E gt V0

ψ(x) = Aekx +Beminuskx if E lt V0(20)

with k =radic

|E minus V0| Therefore the solution φ(x t) is a linear combination of trigonometric orexponential functions and hence their discretizations have been studied in section 5

The energy for a fixed momentum k is the same than in the continuous case for anydiscretization as we can see

Hψ =(

minus∆2 + V0

)

infinsum

n=0

(ik)n

n(A+ (minus1)nB) ξn =

=(

k2 + V0

)

infinsum

n=0

(ik)n

n(A+ (minus1)nB) ξn =

(

k2 + V0

)

ψ

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

11

In spite of this result the relation between the momentum and the wave length λ = lσ is differentin the discrete case

k =2π

λ kplusmn =

1

σtan

(

l

)

ks =1

σsin

(

l

)

Then the phase velocity changes although the group velocity is the same as in the continuouscase and for this reason the relation between the energy and the velocity

Let be t = nτ where n isin Z the discrete time and τ the fundamental time length Followingthe limits of convergence of the discrete exponentials we find two upper limits for the energyone in relation with the temporal part of the wave function (19) and the other one in relationwith the spatial part of the wave function (20)

Emaxt=

~

τ Emaxl

=~

2

2mσ2 (21)

In fact we have to take the minor of them in each situation Taking σ asymp lP lanck = 162 10minus35mand τ asymp tP lanck = 539 10minus44s we find values of the maximum energy for the time wave Emaxt

and for the spatial wave for a proton Ep+maxland an electron Eeminusmaxl

Emaxtasymp EP lanck = 122 1028eV Emaxl

= 138 1020 1

meV

Ep+maxl= 794 1046eV Eeminusmaxl

= 146 1050eV

Remark that these are non-relativistic effects We can study also the change in the amplitudefor the right and left correspondences The factor of expansion or contraction is

An(l) =

(

secl

(

l

))n

≃(

1 +2π2

l

)n

where l is the number of points into the wave length and n is the number of wave lengths alongthe wave For the temporal part of the wave function of a particle which travel into the LEPthat is during 910minus5s with an energy of 1991014eV we find that the factor is An(l) sim 10105

Forthe spatial part of the same particle an electron the factor is of order An(l) sim 3 These factorsgrow a lot with the energy or the mass of the particle As at this energy the relativistic effectsare important and we are using now non relativistic quantum mechanics it is comprehensibleto find these too big numbers

62 Infinite potential well

A little more complicated is the infinite potential well although it is very similar to a constantpotential it reduces the space to a finite region and due to this fact new differences will appearbetween the continuous and the discrete case The potential is

V (x) =

0 if x isin [0 L]

infin if x isin [0 L]

The wave functions must obey the boundary conditions ψ(0) = ψ(L) = 0 which lead to acountable number of solutions

ψn(x) = sin(

nπx

L

)

k =nπ

L n isin Z

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

12

in the same way we apply the boundary conditions to all our discretizations We can find thequantum rule for both the right and left correspondences following the computation of (15) So

k+n =

1

σtanπ

n

M

where L = Mσ Therefore there are only M2 possible states instead of the infinite states ofthe continuous case with a degeneration relative to the parity The energy is En = k2

n and it isbounded at n = (M minus 1)2 So the maximum energy is

E+max =

~2

2mσ2tan2

(

π

[

M minus 1

2M

])

At n = M2 we find a non physical state of infinite energy and infinite wave function amplitudeWe can do a small computation finding that an electron in an infinite well of wide the Bohrradius (M sim 1027) will have a maximum state energy of E+

max sim 1077eV The maximum energygrows when increasing the number of pointsM and also when decreasing the mass of the particleBut the wave function as we saw previously has a convergence range that limits the numberof states to n isin (minusM4M4) because k lt 1σ Hence the maximum energy is much moresmaller

We have that the quantum rule for the S-correspondence is

ksn =

1

σsinπ

n

M

Again we have a finite number of states M2 rounding down with a degeneration relative to theparity also The energy is always bounded by ~(2mσ2) just as we found with the convergencecondition

Esn = (ks

n)2 =1

σ2sin2 π

n

M

In Figure 3 are drawn the energy levels and the wave functions of the ground state and thetwo first excited states for the continuous case and the three discretizations We can see thegreat fit of the symmetric one for the first excited states but remarking that as its number ofstates is finite M2 then upper these wave functions there are not more states The right andthe left ones have an asymmetry to the left and right directions of the space and then are muchmore different to the continuous wave functions

7 Conclusions

In this paper we have shown how to apply the techniques of the Umbral Calculus for thediscretization of equations preserving the point symmetries We can see the advantage of a toolthat may be used not only on the equations but also over their solutions Due to this fact wehave not to solve difference equations because we alternatively can sum series Moreover in themost difficult cases we can use numerical methods to get a solution

In the umbral discretization we can choose between infinite umbral representations Howeverstill in the simplest cases they present very different behaviours We can separate all of them intwo classes one preserving the parity of the equations and solutions (like the S-representation)and the other one that does not (like the right and left representations) From the point of view ofthe local symmetries in Ref ([2]ndash[9] [26]) it was proved that independently of the correspondencewe get the same discrete point symmetries

The study of the discrete Schrodinger equation together with other potentials (Coulombharmonic oscillator ) are in progress [31]ndash[32] and the results will be published elsewhere

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

13

02 04 06 08 10

1

2

3

4

5

6

oacuteoacuteoacuteoacuteoacuteoacute oacuteoacute oacute oacute

oacuteoacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacute oacute oacute oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacute oacute oacute

oacute

oacute

oacute

oacute

oacuteccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilaacute

aacuteaacuteaacuteaacute aacuteaacute aacute aacute aacute

aacuteaacuteaacuteaacuteaacuteaacuteaacute aacute aacute aacute aacute aacute aacute

aacute aacuteaacuteaacuteaacute aacuteaacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

1 2 3 4

4

5

6

7

8

oacuteoacuteoacuteoacuteoacuteoacuteoacute oacuteoacute oacute oacute oacute oacute oacute oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute oacute oacute oacute oacute oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilaacute

aacuteaacuteaacuteaacute aacuteaacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute

aacuteaacuteaacuteaacuteaacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

aacute aacuteaacute aacuteaacute aacuteaacute

1 2 3 4

10

15

20

30

35

oacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacute oacute

oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacuteccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilaacute aacute

aacute aacuteaacute aacuteaacute aacuteaacute aacuteaacute aacute aacute

aacute aacute aacute aacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

1 2 3 4

081012141618

Figure 3 Energy levels and wave functions of the infinite well The energy levels are in theleft ones in solid line for the continuous case and dashed for the discrete case the shorter redlines are the rightleft case energies and the longer blue lines are the symmetric case energiesWave functions are in the right in black solid line are for the continuous case blue circled pointsare for the S-correspondence red triangled ones for the right correspondence and green squaredones the left correspondence

Acknowledgments

We thank to D Levi for stimulating interesting discussions and the Physics Dp of RomaTre Univ for their hospitality This work was partially supported by the Ministerio deEducacion y Ciencia of Spain (Projects FIS2005-03989 and by the Junta de Castilla y Leon(Project VA013C05) JLS thanks the Universidad de Valladolid and the Banco SantanderCentral Hispano by the PhD grant of the program ldquoAyudas de la Universidad de Valladolidcofinanciadas por el BSCHrdquo

References[1] Gibbs P 1995 The small scale structure of space-time a bibliographical review hep-th9506171[2] Dimakis A Muler-Hoissen F and Striker T 1996 Umbral calculus discretization and quantum mechanics on

a lattice J Phys A 29 6861[3] Levi D Vinet L and Winternitz P 1997 Lie group formalism for difference equations J Phys A 30 633[4] Levi D Negro J and del Olmo M A 2001 Discrete derivatives and symmetries of difference equations J Phys

A 34 2023[5] Levi D Negro J and del Olmo M A 2001 Lie symmetries of difference equations Czech J Phys 51 341[6] Senosiain M J 2002 Teorıa de las Ecuaciones Genericas Una Introduccion al Calculo Umbral Memoria de

Grado Universidad de Salamanca[7] Levi D Negro J and del Olmo M A 2004 Discrete q-derivatives and symmetries of q-difference equations J

Phys A 37 3459ndash3473[8] Levi D Tempesta P and Winternitz P 2004 Umbral calculus difference equations and the discrete Schrodinger

equation J Math Phys 45 4077[9] Salgado E 2004 Mecanica Cuantica Discreta Trabajo Fin de Carrera de Fısicas Univ de Valladolid

[10] Mullin R and Rota G C 1970 On the foundations of combinatorial theory III Theory of binomial enumeration(Graph theory and its applications) Ed B Harris (Academic Press) p 167-213

[11] Blissard J 1861 Theory of generic equations Quart J Pure Appl Math 4 279[12] Blissard J 1862 Theory of generic equations Quart J Pure Appl Math 5 58 184

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

14

[13] Bell E T 1938 The history of Blissardrsquos symbolic calculus with a sketch of the inventorrsquos life Amer MathMonthly 45 414

[14] Appell P 1880 Sur une classe de polynomes Ann Sci Ecole Norm Sup (2) 9 119[15] Pincherle S and Amaldi S 1901 Le Operazioni Distributive e le loro Applicazioni allrsquoAnalisi (Bologna N

Zanichelli)[16] Davis H T 1936 The Theory of Linear Operators (Bloomington Principia Press)[17] Sheffer I M 1939 Some properties of polynomial sets of type zero Duke Math J 5 590[18] Rota G C Kahaner D and Odlyzko A 1973 On the foundations of combinatorial theory VII Finite operator

calculus J Math Anal Appl 42 684[19] Rota G C 1975 Finite Operator Calculus (San Diego Academic)[20] Roman S M 1982 The theory of umbral calculus I J Math Anal Appl 87 58[21] Roman S M 1982 The theory of umbral calculus II J Math Anal Appl 89 290[22] Roman S M 1983 The theory of umbral calculus III J Math Anal Appl 95 528[23] Roman S M 1975 The Umbral Calculus (San Diego Academic)[24] Di Bucchianico A and Loeb D 2000 A selected survey of umbral calculus Electr J Combin DS3[25] Zachos C K 2007 Umbral deformations on discrete spacetime Preprint hep-th07102306[26] Levi D and Winternitz P 2005 Continuous symmetries of difference equations J Phys A 39 R1ndashR63[27] Levi D and Petrera M 2007 Continuous symmetries of the lattice potential KdV equation J Phys A 40

4141ndash4159[28] Levi D Tremblay S and Winternitz P 2007 Lie point symmetries of difference equations and lattices Preprint

math-ph07093112[29] Levi D Tremblay S and Winternitz P 2007 Lie symmetries of multidimensional difference equations Preprint

math-ph07093238[30] Hernandez Heredero R Levi D Petrera M and Scimiterna C 2007 Multiscale expansion on the lattice and

integrability of partial difference equations Preprint math-ph07105299[31] Lopez-Sendino J E Negro J del Olmo M A and Salgado E 2008 Discretizing quantum mechanics using

umbral calculus Preprint[32] Lopez-Sendino J E Negro J and del Olmo M A 2008 Discrete harmonic oscillator and umbral calculus

Preprint

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

15

Thus applying the S-correspondence to a Taylor series we find that at the points obeying theconditions (13) there is a cut-off in the series and hence the sums will always converge in casethe function has a well defined parity

In the following diagram we display the basis elements (ξn∆ x(n)) of the three usualrepresentations

Right representation Left representation Symmetric representation

ξn+ =

(

XTminus1)n Rlarrrarr ξn

minus = (XT )nRlarrrarr ξn

s =(

2X(

T + Tminus1)minus1

)n

J l J l J l

∆+ =1

σ(T minus 1)

Rlarrrarr ∆minus =1

σ

(

1minus Tminus1) Rlarrrarr ∆s =

1

(

T minus Tminus1)

J l J l J l

x(n)+ =

nminus1prod

i=0

(xminus iσ)Rlarrrarr x

(n)minus =

nminus1prod

i=0

(x+ iσ)Rlarrrarrx(n)

s = x

nminus2prod

i=0

(x+ (2i minus n+ 2)σ)

ccedil

ccedil

ccedil

ccedil

ccedil ccedil ccedil

ccedil

ccedil

ccedil

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute aacute aacute

aacute

aacute

-4 -2 2 4

-20

-10

10

20

(a) Some powers for the position in the S-correspondence

ccedil

ccedil

ccedil

ccedilccedil ccedil

ccedil

ccedil

ccedil

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute aacute aacute

aacute

aacute

-4 -3 -2 -1 1 2 3

-20

-10

10

20

(b) Some powers for the position in the left-correspondence

ccedil

ccedil

ccedil

ccedilccedil ccedil

ccedil

ccedil

ccedil

ccedil

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute

aacute aacute aacute

aacute

aacute

-2 2 4

-20

-10

10

20

(c) Some powers for the position in the right-correspondence

Figure 1 Represented in dashed line the continuous powers and in dots the powers for the discrete positionwith red circles for x

2 and blue squares for x3 The number of zeros is equal to the power n for the right and the

left cases

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

7

5 The discretized exponential function and the trigonometric functions

We start with the exponential function which in some sense is the simplest case The continuousexponential function as it is well known is defined through the following differential equation

d

dxyk = kyk yk(0) = 1 k isin R

and its power expansion series around the origin is

yk(x)) = ekx =infinsum

n=0

(kx)n

n

As we mentioned before the umbral correspondence gives rise to the same function eitherby solving the discrete difference equation obtained by applying the umbral correspondence tothe continuous differential equation or by applying the umbral correspondence to its solutionsas long as their power series converge Hence we have to calculate

expU (k x) =infin

sum

n=0

kn

nξn middot 1 (14)

If we use the right-correspondence (11) the umbral-exponential (14) becomes

exp+(k σm) =

msum

n=0

(kσ)nm

n(mminus n)if m gt 0

infinsum

n=0

(minuskσ)n(minusm+ nminus 1)

n(minusmminus 1)if m lt 0

= (1 + kσ)m

For the left-correspondence we get

expminus(k σm) =

infinsum

n=0

(kσ)n(m+ nminus 1)

n(mminus 1)if m gt 0

minusmsum

n=0

(minuskσ)n(minusm)

n(minusmminus n)if m lt 0

= (1minus kσ)minusm

In Fig 2(a) it is displayed the continuous exponential function together with its discrete versionby the right-correspondence It is worthy to note that if in the continuous case we found thatexp(k x) = exp((minusk)(minusx)) now in the discrete case we have that exp+(k x) = expminus(minuskminusx)

Another possibility is to apply the S-correspondence (12) So we obtain

exps(kmσ) =infin

sum

n=0

(kσ)n

nm

nminus2prod

i=0

(m+ 2iminus (nminus 2)) =(

kσ +radic

(kσ)2 + 1)m

These discrete exponentials only converge when the continuous variable k obeys (kσ)2 lt 1for all the three correspondences studied in the previous sections

Also we can easily study the trigonometric functions (as well as the hyperbolic functions)taking into account their expressions in terms of the exponential functions In this way we canobtain the discrete trigonometric functions from the discrete exponential function We displayin Fig 2(b) the sine function

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

8

We can see that the symmetric discrete trigonometric functions maintain the periodicbehaviour of the continuous ones However the period λs is different to the continuous functionλ = 2πk We find it easier in the case of the sine function through sins(k lσ) = sins(k 0σ)We have fixed λ = lσ with l isin Z but it can be generalized without problems to l isin R

sins(k lσ) =1

2i

(

(

radic

1minus (kσ)2 + ikσ)l

minus(

radic

1minus (kσ)2 minus ikσ)l

)

= 0 = sins(k 0σ)

rArr(

radic

1minus (kσ)2 + ikσ)l

=(

radic

1minus (kσ)2 minus ikσ)l

to solve this identity we define

radic

1minus (kσ)2 + ikσ = reiθ rArr

θ = arctan

(

kσradic1minus(kσ)2

)

r = 1

and this guide us to the solution

sin(θl) = 0rArr θn =nπ

lrArr kn =

1

σsin

l

As there are two zeros in each period of the function we can find the relation between thenumber of waves and the wave length We have added an superscript to remark that theserelations are different for each representation then

ks =1

σsin

(

l

)

λs =2πσ

arcsin(ksσ) (15)

It is easy to demonstrate the periodic behaviour of the symmetric trigonometric functions infact introducing (15) into de symmetric sinus

sins(ksmσ) = sin

(

m2π

l

)

For the right and left correspondences the trigonometric functions are not periodic Howeverthe extremums of the functions and the intersection points with the abscissa axis appearperiodically and then we can define a wave function through this property With a similarcomputation than in the symmetric case we find

k+ =1

σtan

(

l

)

λ+ =2πσ

arctan(k+σ) (16)

The wave length is bigger in the right and left discretizations and smaller in thesymmetric discretization than in the continuous trigonometric functions Also in thesethree correspondences the trigonometric functions have a minimum period it appears in theconvergence limit when kσ = 1 For the right and the left discretizations we have λ+

min = 8σin fact it is a 8 point wave and for the symmetric one λs

min = 4σ in fact it is a 4 point waveWe set λ = lσ and without loss of generality we fix l integer Then it is easy to calculate the

change in the amplitude in the right and left correspondences through (16)

sin+(k+mσ) =1

2i

(

(1 + ik+σ)m minus (1minus ik+σ)m)

= cosminusm

(

l

)

sin

(

m2π

l

)

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

9

andsin+(kmσ)An(l) = sin+(k (m + nl)σ)

Hence the non periodic part is then the multiplicative factor

An(l) =

(

secl

(

l

))n

(17)

This is also true for the cosine function and for any l isin R Although we have a wave lengthλ = lσ for the trigonometric functions in the right and left representations we can see that theyare not periodic

ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedilccedil ccedil ccedil

ccedil ccedilccedil ccedil

ccedilccedilccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

oacute oacute oacute oacute oacute oacute oacute oacute oacute oacuteoacute oacute oacute

oacute oacuteoacute oacute

oacute oacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

-2 -1 1 2

5

10

15

ccedil ccedil ccedil ccedil ccedilccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

oacute oacute oacute oacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

-25 -20 -15 -10 -05

02

04

06

08

10

(a) Exponential function with σ = 02

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

-20 -10 10 20

-2

-1

1

(b) Sinus function with σ = 03

Figure 2 We represent here the continuous functions with a black solid line and the discrete ones with redtriangles the right correspondences and with blue circles the symmetric ones

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

10

It is important to note that all the properties that obey the exponential and the trigonometricfunctions are maintained after the discretization with an exception any property that includestwo or more different constants k because they give similar effects than a different lattice spacingσ nor a different x like in the continuous case Thus for example

expU (kmσ) expU (k nσ) = expU (k (m + n)σ)

expU (kmσ) expU(kprimemσ) 6= expU (k + kprimemσ)

6 Umbral Schrodinger equation

Let us go to discretize the Schrodinger equation with a potential V (x) We will profit the wellknown fact that if the potential is independent of the time then the continuous Schrodingerequation is separable Thus from the Schrodinger equation

i~parttφ(x t) = minus ~2

2mpart2

xφ(x t) + V (x)φ(x t)

and considering φ(x t) = ψ(x)ϕ(t) we obtain two uncoupled ordinary differential equations

minus ~2

2mpart2

xψ(x) + V (x)ψ(x) = Eψ(x)

i~parttϕ(t) = Eϕ(t)

that we can rewrite with natural units as

part2xψ(x) + V (x)ψ(x) = Eψ(x)

minusiparttϕ(t) = Eϕ(t)(18)

The solution of the equation (18b) is

ϕ(t) = CeiEt (19)

61 Constant potential

In relation with the first equation of (18) the simplest case appears when the potential isconstant (V (x) = V0) The solution is

ψ(x) = Aeikx +Beminusikx if E gt V0

ψ(x) = Aekx +Beminuskx if E lt V0(20)

with k =radic

|E minus V0| Therefore the solution φ(x t) is a linear combination of trigonometric orexponential functions and hence their discretizations have been studied in section 5

The energy for a fixed momentum k is the same than in the continuous case for anydiscretization as we can see

Hψ =(

minus∆2 + V0

)

infinsum

n=0

(ik)n

n(A+ (minus1)nB) ξn =

=(

k2 + V0

)

infinsum

n=0

(ik)n

n(A+ (minus1)nB) ξn =

(

k2 + V0

)

ψ

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

11

In spite of this result the relation between the momentum and the wave length λ = lσ is differentin the discrete case

k =2π

λ kplusmn =

1

σtan

(

l

)

ks =1

σsin

(

l

)

Then the phase velocity changes although the group velocity is the same as in the continuouscase and for this reason the relation between the energy and the velocity

Let be t = nτ where n isin Z the discrete time and τ the fundamental time length Followingthe limits of convergence of the discrete exponentials we find two upper limits for the energyone in relation with the temporal part of the wave function (19) and the other one in relationwith the spatial part of the wave function (20)

Emaxt=

~

τ Emaxl

=~

2

2mσ2 (21)

In fact we have to take the minor of them in each situation Taking σ asymp lP lanck = 162 10minus35mand τ asymp tP lanck = 539 10minus44s we find values of the maximum energy for the time wave Emaxt

and for the spatial wave for a proton Ep+maxland an electron Eeminusmaxl

Emaxtasymp EP lanck = 122 1028eV Emaxl

= 138 1020 1

meV

Ep+maxl= 794 1046eV Eeminusmaxl

= 146 1050eV

Remark that these are non-relativistic effects We can study also the change in the amplitudefor the right and left correspondences The factor of expansion or contraction is

An(l) =

(

secl

(

l

))n

≃(

1 +2π2

l

)n

where l is the number of points into the wave length and n is the number of wave lengths alongthe wave For the temporal part of the wave function of a particle which travel into the LEPthat is during 910minus5s with an energy of 1991014eV we find that the factor is An(l) sim 10105

Forthe spatial part of the same particle an electron the factor is of order An(l) sim 3 These factorsgrow a lot with the energy or the mass of the particle As at this energy the relativistic effectsare important and we are using now non relativistic quantum mechanics it is comprehensibleto find these too big numbers

62 Infinite potential well

A little more complicated is the infinite potential well although it is very similar to a constantpotential it reduces the space to a finite region and due to this fact new differences will appearbetween the continuous and the discrete case The potential is

V (x) =

0 if x isin [0 L]

infin if x isin [0 L]

The wave functions must obey the boundary conditions ψ(0) = ψ(L) = 0 which lead to acountable number of solutions

ψn(x) = sin(

nπx

L

)

k =nπ

L n isin Z

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

12

in the same way we apply the boundary conditions to all our discretizations We can find thequantum rule for both the right and left correspondences following the computation of (15) So

k+n =

1

σtanπ

n

M

where L = Mσ Therefore there are only M2 possible states instead of the infinite states ofthe continuous case with a degeneration relative to the parity The energy is En = k2

n and it isbounded at n = (M minus 1)2 So the maximum energy is

E+max =

~2

2mσ2tan2

(

π

[

M minus 1

2M

])

At n = M2 we find a non physical state of infinite energy and infinite wave function amplitudeWe can do a small computation finding that an electron in an infinite well of wide the Bohrradius (M sim 1027) will have a maximum state energy of E+

max sim 1077eV The maximum energygrows when increasing the number of pointsM and also when decreasing the mass of the particleBut the wave function as we saw previously has a convergence range that limits the numberof states to n isin (minusM4M4) because k lt 1σ Hence the maximum energy is much moresmaller

We have that the quantum rule for the S-correspondence is

ksn =

1

σsinπ

n

M

Again we have a finite number of states M2 rounding down with a degeneration relative to theparity also The energy is always bounded by ~(2mσ2) just as we found with the convergencecondition

Esn = (ks

n)2 =1

σ2sin2 π

n

M

In Figure 3 are drawn the energy levels and the wave functions of the ground state and thetwo first excited states for the continuous case and the three discretizations We can see thegreat fit of the symmetric one for the first excited states but remarking that as its number ofstates is finite M2 then upper these wave functions there are not more states The right andthe left ones have an asymmetry to the left and right directions of the space and then are muchmore different to the continuous wave functions

7 Conclusions

In this paper we have shown how to apply the techniques of the Umbral Calculus for thediscretization of equations preserving the point symmetries We can see the advantage of a toolthat may be used not only on the equations but also over their solutions Due to this fact wehave not to solve difference equations because we alternatively can sum series Moreover in themost difficult cases we can use numerical methods to get a solution

In the umbral discretization we can choose between infinite umbral representations Howeverstill in the simplest cases they present very different behaviours We can separate all of them intwo classes one preserving the parity of the equations and solutions (like the S-representation)and the other one that does not (like the right and left representations) From the point of view ofthe local symmetries in Ref ([2]ndash[9] [26]) it was proved that independently of the correspondencewe get the same discrete point symmetries

The study of the discrete Schrodinger equation together with other potentials (Coulombharmonic oscillator ) are in progress [31]ndash[32] and the results will be published elsewhere

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

13

02 04 06 08 10

1

2

3

4

5

6

oacuteoacuteoacuteoacuteoacuteoacute oacuteoacute oacute oacute

oacuteoacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacute oacute oacute oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacute oacute oacute

oacute

oacute

oacute

oacute

oacuteccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilaacute

aacuteaacuteaacuteaacute aacuteaacute aacute aacute aacute

aacuteaacuteaacuteaacuteaacuteaacuteaacute aacute aacute aacute aacute aacute aacute

aacute aacuteaacuteaacuteaacute aacuteaacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

1 2 3 4

4

5

6

7

8

oacuteoacuteoacuteoacuteoacuteoacuteoacute oacuteoacute oacute oacute oacute oacute oacute oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute oacute oacute oacute oacute oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilaacute

aacuteaacuteaacuteaacute aacuteaacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute

aacuteaacuteaacuteaacuteaacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

aacute aacuteaacute aacuteaacute aacuteaacute

1 2 3 4

10

15

20

30

35

oacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacute oacute

oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacuteccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilaacute aacute

aacute aacuteaacute aacuteaacute aacuteaacute aacuteaacute aacute aacute

aacute aacute aacute aacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

1 2 3 4

081012141618

Figure 3 Energy levels and wave functions of the infinite well The energy levels are in theleft ones in solid line for the continuous case and dashed for the discrete case the shorter redlines are the rightleft case energies and the longer blue lines are the symmetric case energiesWave functions are in the right in black solid line are for the continuous case blue circled pointsare for the S-correspondence red triangled ones for the right correspondence and green squaredones the left correspondence

Acknowledgments

We thank to D Levi for stimulating interesting discussions and the Physics Dp of RomaTre Univ for their hospitality This work was partially supported by the Ministerio deEducacion y Ciencia of Spain (Projects FIS2005-03989 and by the Junta de Castilla y Leon(Project VA013C05) JLS thanks the Universidad de Valladolid and the Banco SantanderCentral Hispano by the PhD grant of the program ldquoAyudas de la Universidad de Valladolidcofinanciadas por el BSCHrdquo

References[1] Gibbs P 1995 The small scale structure of space-time a bibliographical review hep-th9506171[2] Dimakis A Muler-Hoissen F and Striker T 1996 Umbral calculus discretization and quantum mechanics on

a lattice J Phys A 29 6861[3] Levi D Vinet L and Winternitz P 1997 Lie group formalism for difference equations J Phys A 30 633[4] Levi D Negro J and del Olmo M A 2001 Discrete derivatives and symmetries of difference equations J Phys

A 34 2023[5] Levi D Negro J and del Olmo M A 2001 Lie symmetries of difference equations Czech J Phys 51 341[6] Senosiain M J 2002 Teorıa de las Ecuaciones Genericas Una Introduccion al Calculo Umbral Memoria de

Grado Universidad de Salamanca[7] Levi D Negro J and del Olmo M A 2004 Discrete q-derivatives and symmetries of q-difference equations J

Phys A 37 3459ndash3473[8] Levi D Tempesta P and Winternitz P 2004 Umbral calculus difference equations and the discrete Schrodinger

equation J Math Phys 45 4077[9] Salgado E 2004 Mecanica Cuantica Discreta Trabajo Fin de Carrera de Fısicas Univ de Valladolid

[10] Mullin R and Rota G C 1970 On the foundations of combinatorial theory III Theory of binomial enumeration(Graph theory and its applications) Ed B Harris (Academic Press) p 167-213

[11] Blissard J 1861 Theory of generic equations Quart J Pure Appl Math 4 279[12] Blissard J 1862 Theory of generic equations Quart J Pure Appl Math 5 58 184

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

14

[13] Bell E T 1938 The history of Blissardrsquos symbolic calculus with a sketch of the inventorrsquos life Amer MathMonthly 45 414

[14] Appell P 1880 Sur une classe de polynomes Ann Sci Ecole Norm Sup (2) 9 119[15] Pincherle S and Amaldi S 1901 Le Operazioni Distributive e le loro Applicazioni allrsquoAnalisi (Bologna N

Zanichelli)[16] Davis H T 1936 The Theory of Linear Operators (Bloomington Principia Press)[17] Sheffer I M 1939 Some properties of polynomial sets of type zero Duke Math J 5 590[18] Rota G C Kahaner D and Odlyzko A 1973 On the foundations of combinatorial theory VII Finite operator

calculus J Math Anal Appl 42 684[19] Rota G C 1975 Finite Operator Calculus (San Diego Academic)[20] Roman S M 1982 The theory of umbral calculus I J Math Anal Appl 87 58[21] Roman S M 1982 The theory of umbral calculus II J Math Anal Appl 89 290[22] Roman S M 1983 The theory of umbral calculus III J Math Anal Appl 95 528[23] Roman S M 1975 The Umbral Calculus (San Diego Academic)[24] Di Bucchianico A and Loeb D 2000 A selected survey of umbral calculus Electr J Combin DS3[25] Zachos C K 2007 Umbral deformations on discrete spacetime Preprint hep-th07102306[26] Levi D and Winternitz P 2005 Continuous symmetries of difference equations J Phys A 39 R1ndashR63[27] Levi D and Petrera M 2007 Continuous symmetries of the lattice potential KdV equation J Phys A 40

4141ndash4159[28] Levi D Tremblay S and Winternitz P 2007 Lie point symmetries of difference equations and lattices Preprint

math-ph07093112[29] Levi D Tremblay S and Winternitz P 2007 Lie symmetries of multidimensional difference equations Preprint

math-ph07093238[30] Hernandez Heredero R Levi D Petrera M and Scimiterna C 2007 Multiscale expansion on the lattice and

integrability of partial difference equations Preprint math-ph07105299[31] Lopez-Sendino J E Negro J del Olmo M A and Salgado E 2008 Discretizing quantum mechanics using

umbral calculus Preprint[32] Lopez-Sendino J E Negro J and del Olmo M A 2008 Discrete harmonic oscillator and umbral calculus

Preprint

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

15

5 The discretized exponential function and the trigonometric functions

We start with the exponential function which in some sense is the simplest case The continuousexponential function as it is well known is defined through the following differential equation

d

dxyk = kyk yk(0) = 1 k isin R

and its power expansion series around the origin is

yk(x)) = ekx =infinsum

n=0

(kx)n

n

As we mentioned before the umbral correspondence gives rise to the same function eitherby solving the discrete difference equation obtained by applying the umbral correspondence tothe continuous differential equation or by applying the umbral correspondence to its solutionsas long as their power series converge Hence we have to calculate

expU (k x) =infin

sum

n=0

kn

nξn middot 1 (14)

If we use the right-correspondence (11) the umbral-exponential (14) becomes

exp+(k σm) =

msum

n=0

(kσ)nm

n(mminus n)if m gt 0

infinsum

n=0

(minuskσ)n(minusm+ nminus 1)

n(minusmminus 1)if m lt 0

= (1 + kσ)m

For the left-correspondence we get

expminus(k σm) =

infinsum

n=0

(kσ)n(m+ nminus 1)

n(mminus 1)if m gt 0

minusmsum

n=0

(minuskσ)n(minusm)

n(minusmminus n)if m lt 0

= (1minus kσ)minusm

In Fig 2(a) it is displayed the continuous exponential function together with its discrete versionby the right-correspondence It is worthy to note that if in the continuous case we found thatexp(k x) = exp((minusk)(minusx)) now in the discrete case we have that exp+(k x) = expminus(minuskminusx)

Another possibility is to apply the S-correspondence (12) So we obtain

exps(kmσ) =infin

sum

n=0

(kσ)n

nm

nminus2prod

i=0

(m+ 2iminus (nminus 2)) =(

kσ +radic

(kσ)2 + 1)m

These discrete exponentials only converge when the continuous variable k obeys (kσ)2 lt 1for all the three correspondences studied in the previous sections

Also we can easily study the trigonometric functions (as well as the hyperbolic functions)taking into account their expressions in terms of the exponential functions In this way we canobtain the discrete trigonometric functions from the discrete exponential function We displayin Fig 2(b) the sine function

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

8

We can see that the symmetric discrete trigonometric functions maintain the periodicbehaviour of the continuous ones However the period λs is different to the continuous functionλ = 2πk We find it easier in the case of the sine function through sins(k lσ) = sins(k 0σ)We have fixed λ = lσ with l isin Z but it can be generalized without problems to l isin R

sins(k lσ) =1

2i

(

(

radic

1minus (kσ)2 + ikσ)l

minus(

radic

1minus (kσ)2 minus ikσ)l

)

= 0 = sins(k 0σ)

rArr(

radic

1minus (kσ)2 + ikσ)l

=(

radic

1minus (kσ)2 minus ikσ)l

to solve this identity we define

radic

1minus (kσ)2 + ikσ = reiθ rArr

θ = arctan

(

kσradic1minus(kσ)2

)

r = 1

and this guide us to the solution

sin(θl) = 0rArr θn =nπ

lrArr kn =

1

σsin

l

As there are two zeros in each period of the function we can find the relation between thenumber of waves and the wave length We have added an superscript to remark that theserelations are different for each representation then

ks =1

σsin

(

l

)

λs =2πσ

arcsin(ksσ) (15)

It is easy to demonstrate the periodic behaviour of the symmetric trigonometric functions infact introducing (15) into de symmetric sinus

sins(ksmσ) = sin

(

m2π

l

)

For the right and left correspondences the trigonometric functions are not periodic Howeverthe extremums of the functions and the intersection points with the abscissa axis appearperiodically and then we can define a wave function through this property With a similarcomputation than in the symmetric case we find

k+ =1

σtan

(

l

)

λ+ =2πσ

arctan(k+σ) (16)

The wave length is bigger in the right and left discretizations and smaller in thesymmetric discretization than in the continuous trigonometric functions Also in thesethree correspondences the trigonometric functions have a minimum period it appears in theconvergence limit when kσ = 1 For the right and the left discretizations we have λ+

min = 8σin fact it is a 8 point wave and for the symmetric one λs

min = 4σ in fact it is a 4 point waveWe set λ = lσ and without loss of generality we fix l integer Then it is easy to calculate the

change in the amplitude in the right and left correspondences through (16)

sin+(k+mσ) =1

2i

(

(1 + ik+σ)m minus (1minus ik+σ)m)

= cosminusm

(

l

)

sin

(

m2π

l

)

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

9

andsin+(kmσ)An(l) = sin+(k (m + nl)σ)

Hence the non periodic part is then the multiplicative factor

An(l) =

(

secl

(

l

))n

(17)

This is also true for the cosine function and for any l isin R Although we have a wave lengthλ = lσ for the trigonometric functions in the right and left representations we can see that theyare not periodic

ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedilccedil ccedil ccedil

ccedil ccedilccedil ccedil

ccedilccedilccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

oacute oacute oacute oacute oacute oacute oacute oacute oacute oacuteoacute oacute oacute

oacute oacuteoacute oacute

oacute oacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

-2 -1 1 2

5

10

15

ccedil ccedil ccedil ccedil ccedilccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

oacute oacute oacute oacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

-25 -20 -15 -10 -05

02

04

06

08

10

(a) Exponential function with σ = 02

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

-20 -10 10 20

-2

-1

1

(b) Sinus function with σ = 03

Figure 2 We represent here the continuous functions with a black solid line and the discrete ones with redtriangles the right correspondences and with blue circles the symmetric ones

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

10

It is important to note that all the properties that obey the exponential and the trigonometricfunctions are maintained after the discretization with an exception any property that includestwo or more different constants k because they give similar effects than a different lattice spacingσ nor a different x like in the continuous case Thus for example

expU (kmσ) expU (k nσ) = expU (k (m + n)σ)

expU (kmσ) expU(kprimemσ) 6= expU (k + kprimemσ)

6 Umbral Schrodinger equation

Let us go to discretize the Schrodinger equation with a potential V (x) We will profit the wellknown fact that if the potential is independent of the time then the continuous Schrodingerequation is separable Thus from the Schrodinger equation

i~parttφ(x t) = minus ~2

2mpart2

xφ(x t) + V (x)φ(x t)

and considering φ(x t) = ψ(x)ϕ(t) we obtain two uncoupled ordinary differential equations

minus ~2

2mpart2

xψ(x) + V (x)ψ(x) = Eψ(x)

i~parttϕ(t) = Eϕ(t)

that we can rewrite with natural units as

part2xψ(x) + V (x)ψ(x) = Eψ(x)

minusiparttϕ(t) = Eϕ(t)(18)

The solution of the equation (18b) is

ϕ(t) = CeiEt (19)

61 Constant potential

In relation with the first equation of (18) the simplest case appears when the potential isconstant (V (x) = V0) The solution is

ψ(x) = Aeikx +Beminusikx if E gt V0

ψ(x) = Aekx +Beminuskx if E lt V0(20)

with k =radic

|E minus V0| Therefore the solution φ(x t) is a linear combination of trigonometric orexponential functions and hence their discretizations have been studied in section 5

The energy for a fixed momentum k is the same than in the continuous case for anydiscretization as we can see

Hψ =(

minus∆2 + V0

)

infinsum

n=0

(ik)n

n(A+ (minus1)nB) ξn =

=(

k2 + V0

)

infinsum

n=0

(ik)n

n(A+ (minus1)nB) ξn =

(

k2 + V0

)

ψ

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

11

In spite of this result the relation between the momentum and the wave length λ = lσ is differentin the discrete case

k =2π

λ kplusmn =

1

σtan

(

l

)

ks =1

σsin

(

l

)

Then the phase velocity changes although the group velocity is the same as in the continuouscase and for this reason the relation between the energy and the velocity

Let be t = nτ where n isin Z the discrete time and τ the fundamental time length Followingthe limits of convergence of the discrete exponentials we find two upper limits for the energyone in relation with the temporal part of the wave function (19) and the other one in relationwith the spatial part of the wave function (20)

Emaxt=

~

τ Emaxl

=~

2

2mσ2 (21)

In fact we have to take the minor of them in each situation Taking σ asymp lP lanck = 162 10minus35mand τ asymp tP lanck = 539 10minus44s we find values of the maximum energy for the time wave Emaxt

and for the spatial wave for a proton Ep+maxland an electron Eeminusmaxl

Emaxtasymp EP lanck = 122 1028eV Emaxl

= 138 1020 1

meV

Ep+maxl= 794 1046eV Eeminusmaxl

= 146 1050eV

Remark that these are non-relativistic effects We can study also the change in the amplitudefor the right and left correspondences The factor of expansion or contraction is

An(l) =

(

secl

(

l

))n

≃(

1 +2π2

l

)n

where l is the number of points into the wave length and n is the number of wave lengths alongthe wave For the temporal part of the wave function of a particle which travel into the LEPthat is during 910minus5s with an energy of 1991014eV we find that the factor is An(l) sim 10105

Forthe spatial part of the same particle an electron the factor is of order An(l) sim 3 These factorsgrow a lot with the energy or the mass of the particle As at this energy the relativistic effectsare important and we are using now non relativistic quantum mechanics it is comprehensibleto find these too big numbers

62 Infinite potential well

A little more complicated is the infinite potential well although it is very similar to a constantpotential it reduces the space to a finite region and due to this fact new differences will appearbetween the continuous and the discrete case The potential is

V (x) =

0 if x isin [0 L]

infin if x isin [0 L]

The wave functions must obey the boundary conditions ψ(0) = ψ(L) = 0 which lead to acountable number of solutions

ψn(x) = sin(

nπx

L

)

k =nπ

L n isin Z

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

12

in the same way we apply the boundary conditions to all our discretizations We can find thequantum rule for both the right and left correspondences following the computation of (15) So

k+n =

1

σtanπ

n

M

where L = Mσ Therefore there are only M2 possible states instead of the infinite states ofthe continuous case with a degeneration relative to the parity The energy is En = k2

n and it isbounded at n = (M minus 1)2 So the maximum energy is

E+max =

~2

2mσ2tan2

(

π

[

M minus 1

2M

])

At n = M2 we find a non physical state of infinite energy and infinite wave function amplitudeWe can do a small computation finding that an electron in an infinite well of wide the Bohrradius (M sim 1027) will have a maximum state energy of E+

max sim 1077eV The maximum energygrows when increasing the number of pointsM and also when decreasing the mass of the particleBut the wave function as we saw previously has a convergence range that limits the numberof states to n isin (minusM4M4) because k lt 1σ Hence the maximum energy is much moresmaller

We have that the quantum rule for the S-correspondence is

ksn =

1

σsinπ

n

M

Again we have a finite number of states M2 rounding down with a degeneration relative to theparity also The energy is always bounded by ~(2mσ2) just as we found with the convergencecondition

Esn = (ks

n)2 =1

σ2sin2 π

n

M

In Figure 3 are drawn the energy levels and the wave functions of the ground state and thetwo first excited states for the continuous case and the three discretizations We can see thegreat fit of the symmetric one for the first excited states but remarking that as its number ofstates is finite M2 then upper these wave functions there are not more states The right andthe left ones have an asymmetry to the left and right directions of the space and then are muchmore different to the continuous wave functions

7 Conclusions

In this paper we have shown how to apply the techniques of the Umbral Calculus for thediscretization of equations preserving the point symmetries We can see the advantage of a toolthat may be used not only on the equations but also over their solutions Due to this fact wehave not to solve difference equations because we alternatively can sum series Moreover in themost difficult cases we can use numerical methods to get a solution

In the umbral discretization we can choose between infinite umbral representations Howeverstill in the simplest cases they present very different behaviours We can separate all of them intwo classes one preserving the parity of the equations and solutions (like the S-representation)and the other one that does not (like the right and left representations) From the point of view ofthe local symmetries in Ref ([2]ndash[9] [26]) it was proved that independently of the correspondencewe get the same discrete point symmetries

The study of the discrete Schrodinger equation together with other potentials (Coulombharmonic oscillator ) are in progress [31]ndash[32] and the results will be published elsewhere

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

13

02 04 06 08 10

1

2

3

4

5

6

oacuteoacuteoacuteoacuteoacuteoacute oacuteoacute oacute oacute

oacuteoacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacute oacute oacute oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacute oacute oacute

oacute

oacute

oacute

oacute

oacuteccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilaacute

aacuteaacuteaacuteaacute aacuteaacute aacute aacute aacute

aacuteaacuteaacuteaacuteaacuteaacuteaacute aacute aacute aacute aacute aacute aacute

aacute aacuteaacuteaacuteaacute aacuteaacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

1 2 3 4

4

5

6

7

8

oacuteoacuteoacuteoacuteoacuteoacuteoacute oacuteoacute oacute oacute oacute oacute oacute oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute oacute oacute oacute oacute oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilaacute

aacuteaacuteaacuteaacute aacuteaacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute

aacuteaacuteaacuteaacuteaacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

aacute aacuteaacute aacuteaacute aacuteaacute

1 2 3 4

10

15

20

30

35

oacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacute oacute

oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacuteccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilaacute aacute

aacute aacuteaacute aacuteaacute aacuteaacute aacuteaacute aacute aacute

aacute aacute aacute aacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

1 2 3 4

081012141618

Figure 3 Energy levels and wave functions of the infinite well The energy levels are in theleft ones in solid line for the continuous case and dashed for the discrete case the shorter redlines are the rightleft case energies and the longer blue lines are the symmetric case energiesWave functions are in the right in black solid line are for the continuous case blue circled pointsare for the S-correspondence red triangled ones for the right correspondence and green squaredones the left correspondence

Acknowledgments

We thank to D Levi for stimulating interesting discussions and the Physics Dp of RomaTre Univ for their hospitality This work was partially supported by the Ministerio deEducacion y Ciencia of Spain (Projects FIS2005-03989 and by the Junta de Castilla y Leon(Project VA013C05) JLS thanks the Universidad de Valladolid and the Banco SantanderCentral Hispano by the PhD grant of the program ldquoAyudas de la Universidad de Valladolidcofinanciadas por el BSCHrdquo

References[1] Gibbs P 1995 The small scale structure of space-time a bibliographical review hep-th9506171[2] Dimakis A Muler-Hoissen F and Striker T 1996 Umbral calculus discretization and quantum mechanics on

a lattice J Phys A 29 6861[3] Levi D Vinet L and Winternitz P 1997 Lie group formalism for difference equations J Phys A 30 633[4] Levi D Negro J and del Olmo M A 2001 Discrete derivatives and symmetries of difference equations J Phys

A 34 2023[5] Levi D Negro J and del Olmo M A 2001 Lie symmetries of difference equations Czech J Phys 51 341[6] Senosiain M J 2002 Teorıa de las Ecuaciones Genericas Una Introduccion al Calculo Umbral Memoria de

Grado Universidad de Salamanca[7] Levi D Negro J and del Olmo M A 2004 Discrete q-derivatives and symmetries of q-difference equations J

Phys A 37 3459ndash3473[8] Levi D Tempesta P and Winternitz P 2004 Umbral calculus difference equations and the discrete Schrodinger

equation J Math Phys 45 4077[9] Salgado E 2004 Mecanica Cuantica Discreta Trabajo Fin de Carrera de Fısicas Univ de Valladolid

[10] Mullin R and Rota G C 1970 On the foundations of combinatorial theory III Theory of binomial enumeration(Graph theory and its applications) Ed B Harris (Academic Press) p 167-213

[11] Blissard J 1861 Theory of generic equations Quart J Pure Appl Math 4 279[12] Blissard J 1862 Theory of generic equations Quart J Pure Appl Math 5 58 184

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

14

[13] Bell E T 1938 The history of Blissardrsquos symbolic calculus with a sketch of the inventorrsquos life Amer MathMonthly 45 414

[14] Appell P 1880 Sur une classe de polynomes Ann Sci Ecole Norm Sup (2) 9 119[15] Pincherle S and Amaldi S 1901 Le Operazioni Distributive e le loro Applicazioni allrsquoAnalisi (Bologna N

Zanichelli)[16] Davis H T 1936 The Theory of Linear Operators (Bloomington Principia Press)[17] Sheffer I M 1939 Some properties of polynomial sets of type zero Duke Math J 5 590[18] Rota G C Kahaner D and Odlyzko A 1973 On the foundations of combinatorial theory VII Finite operator

calculus J Math Anal Appl 42 684[19] Rota G C 1975 Finite Operator Calculus (San Diego Academic)[20] Roman S M 1982 The theory of umbral calculus I J Math Anal Appl 87 58[21] Roman S M 1982 The theory of umbral calculus II J Math Anal Appl 89 290[22] Roman S M 1983 The theory of umbral calculus III J Math Anal Appl 95 528[23] Roman S M 1975 The Umbral Calculus (San Diego Academic)[24] Di Bucchianico A and Loeb D 2000 A selected survey of umbral calculus Electr J Combin DS3[25] Zachos C K 2007 Umbral deformations on discrete spacetime Preprint hep-th07102306[26] Levi D and Winternitz P 2005 Continuous symmetries of difference equations J Phys A 39 R1ndashR63[27] Levi D and Petrera M 2007 Continuous symmetries of the lattice potential KdV equation J Phys A 40

4141ndash4159[28] Levi D Tremblay S and Winternitz P 2007 Lie point symmetries of difference equations and lattices Preprint

math-ph07093112[29] Levi D Tremblay S and Winternitz P 2007 Lie symmetries of multidimensional difference equations Preprint

math-ph07093238[30] Hernandez Heredero R Levi D Petrera M and Scimiterna C 2007 Multiscale expansion on the lattice and

integrability of partial difference equations Preprint math-ph07105299[31] Lopez-Sendino J E Negro J del Olmo M A and Salgado E 2008 Discretizing quantum mechanics using

umbral calculus Preprint[32] Lopez-Sendino J E Negro J and del Olmo M A 2008 Discrete harmonic oscillator and umbral calculus

Preprint

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

15

We can see that the symmetric discrete trigonometric functions maintain the periodicbehaviour of the continuous ones However the period λs is different to the continuous functionλ = 2πk We find it easier in the case of the sine function through sins(k lσ) = sins(k 0σ)We have fixed λ = lσ with l isin Z but it can be generalized without problems to l isin R

sins(k lσ) =1

2i

(

(

radic

1minus (kσ)2 + ikσ)l

minus(

radic

1minus (kσ)2 minus ikσ)l

)

= 0 = sins(k 0σ)

rArr(

radic

1minus (kσ)2 + ikσ)l

=(

radic

1minus (kσ)2 minus ikσ)l

to solve this identity we define

radic

1minus (kσ)2 + ikσ = reiθ rArr

θ = arctan

(

kσradic1minus(kσ)2

)

r = 1

and this guide us to the solution

sin(θl) = 0rArr θn =nπ

lrArr kn =

1

σsin

l

As there are two zeros in each period of the function we can find the relation between thenumber of waves and the wave length We have added an superscript to remark that theserelations are different for each representation then

ks =1

σsin

(

l

)

λs =2πσ

arcsin(ksσ) (15)

It is easy to demonstrate the periodic behaviour of the symmetric trigonometric functions infact introducing (15) into de symmetric sinus

sins(ksmσ) = sin

(

m2π

l

)

For the right and left correspondences the trigonometric functions are not periodic Howeverthe extremums of the functions and the intersection points with the abscissa axis appearperiodically and then we can define a wave function through this property With a similarcomputation than in the symmetric case we find

k+ =1

σtan

(

l

)

λ+ =2πσ

arctan(k+σ) (16)

The wave length is bigger in the right and left discretizations and smaller in thesymmetric discretization than in the continuous trigonometric functions Also in thesethree correspondences the trigonometric functions have a minimum period it appears in theconvergence limit when kσ = 1 For the right and the left discretizations we have λ+

min = 8σin fact it is a 8 point wave and for the symmetric one λs

min = 4σ in fact it is a 4 point waveWe set λ = lσ and without loss of generality we fix l integer Then it is easy to calculate the

change in the amplitude in the right and left correspondences through (16)

sin+(k+mσ) =1

2i

(

(1 + ik+σ)m minus (1minus ik+σ)m)

= cosminusm

(

l

)

sin

(

m2π

l

)

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

9

andsin+(kmσ)An(l) = sin+(k (m + nl)σ)

Hence the non periodic part is then the multiplicative factor

An(l) =

(

secl

(

l

))n

(17)

This is also true for the cosine function and for any l isin R Although we have a wave lengthλ = lσ for the trigonometric functions in the right and left representations we can see that theyare not periodic

ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedilccedil ccedil ccedil

ccedil ccedilccedil ccedil

ccedilccedilccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

oacute oacute oacute oacute oacute oacute oacute oacute oacute oacuteoacute oacute oacute

oacute oacuteoacute oacute

oacute oacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

-2 -1 1 2

5

10

15

ccedil ccedil ccedil ccedil ccedilccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

oacute oacute oacute oacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

-25 -20 -15 -10 -05

02

04

06

08

10

(a) Exponential function with σ = 02

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

-20 -10 10 20

-2

-1

1

(b) Sinus function with σ = 03

Figure 2 We represent here the continuous functions with a black solid line and the discrete ones with redtriangles the right correspondences and with blue circles the symmetric ones

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

10

It is important to note that all the properties that obey the exponential and the trigonometricfunctions are maintained after the discretization with an exception any property that includestwo or more different constants k because they give similar effects than a different lattice spacingσ nor a different x like in the continuous case Thus for example

expU (kmσ) expU (k nσ) = expU (k (m + n)σ)

expU (kmσ) expU(kprimemσ) 6= expU (k + kprimemσ)

6 Umbral Schrodinger equation

Let us go to discretize the Schrodinger equation with a potential V (x) We will profit the wellknown fact that if the potential is independent of the time then the continuous Schrodingerequation is separable Thus from the Schrodinger equation

i~parttφ(x t) = minus ~2

2mpart2

xφ(x t) + V (x)φ(x t)

and considering φ(x t) = ψ(x)ϕ(t) we obtain two uncoupled ordinary differential equations

minus ~2

2mpart2

xψ(x) + V (x)ψ(x) = Eψ(x)

i~parttϕ(t) = Eϕ(t)

that we can rewrite with natural units as

part2xψ(x) + V (x)ψ(x) = Eψ(x)

minusiparttϕ(t) = Eϕ(t)(18)

The solution of the equation (18b) is

ϕ(t) = CeiEt (19)

61 Constant potential

In relation with the first equation of (18) the simplest case appears when the potential isconstant (V (x) = V0) The solution is

ψ(x) = Aeikx +Beminusikx if E gt V0

ψ(x) = Aekx +Beminuskx if E lt V0(20)

with k =radic

|E minus V0| Therefore the solution φ(x t) is a linear combination of trigonometric orexponential functions and hence their discretizations have been studied in section 5

The energy for a fixed momentum k is the same than in the continuous case for anydiscretization as we can see

Hψ =(

minus∆2 + V0

)

infinsum

n=0

(ik)n

n(A+ (minus1)nB) ξn =

=(

k2 + V0

)

infinsum

n=0

(ik)n

n(A+ (minus1)nB) ξn =

(

k2 + V0

)

ψ

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

11

In spite of this result the relation between the momentum and the wave length λ = lσ is differentin the discrete case

k =2π

λ kplusmn =

1

σtan

(

l

)

ks =1

σsin

(

l

)

Then the phase velocity changes although the group velocity is the same as in the continuouscase and for this reason the relation between the energy and the velocity

Let be t = nτ where n isin Z the discrete time and τ the fundamental time length Followingthe limits of convergence of the discrete exponentials we find two upper limits for the energyone in relation with the temporal part of the wave function (19) and the other one in relationwith the spatial part of the wave function (20)

Emaxt=

~

τ Emaxl

=~

2

2mσ2 (21)

In fact we have to take the minor of them in each situation Taking σ asymp lP lanck = 162 10minus35mand τ asymp tP lanck = 539 10minus44s we find values of the maximum energy for the time wave Emaxt

and for the spatial wave for a proton Ep+maxland an electron Eeminusmaxl

Emaxtasymp EP lanck = 122 1028eV Emaxl

= 138 1020 1

meV

Ep+maxl= 794 1046eV Eeminusmaxl

= 146 1050eV

Remark that these are non-relativistic effects We can study also the change in the amplitudefor the right and left correspondences The factor of expansion or contraction is

An(l) =

(

secl

(

l

))n

≃(

1 +2π2

l

)n

where l is the number of points into the wave length and n is the number of wave lengths alongthe wave For the temporal part of the wave function of a particle which travel into the LEPthat is during 910minus5s with an energy of 1991014eV we find that the factor is An(l) sim 10105

Forthe spatial part of the same particle an electron the factor is of order An(l) sim 3 These factorsgrow a lot with the energy or the mass of the particle As at this energy the relativistic effectsare important and we are using now non relativistic quantum mechanics it is comprehensibleto find these too big numbers

62 Infinite potential well

A little more complicated is the infinite potential well although it is very similar to a constantpotential it reduces the space to a finite region and due to this fact new differences will appearbetween the continuous and the discrete case The potential is

V (x) =

0 if x isin [0 L]

infin if x isin [0 L]

The wave functions must obey the boundary conditions ψ(0) = ψ(L) = 0 which lead to acountable number of solutions

ψn(x) = sin(

nπx

L

)

k =nπ

L n isin Z

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

12

in the same way we apply the boundary conditions to all our discretizations We can find thequantum rule for both the right and left correspondences following the computation of (15) So

k+n =

1

σtanπ

n

M

where L = Mσ Therefore there are only M2 possible states instead of the infinite states ofthe continuous case with a degeneration relative to the parity The energy is En = k2

n and it isbounded at n = (M minus 1)2 So the maximum energy is

E+max =

~2

2mσ2tan2

(

π

[

M minus 1

2M

])

At n = M2 we find a non physical state of infinite energy and infinite wave function amplitudeWe can do a small computation finding that an electron in an infinite well of wide the Bohrradius (M sim 1027) will have a maximum state energy of E+

max sim 1077eV The maximum energygrows when increasing the number of pointsM and also when decreasing the mass of the particleBut the wave function as we saw previously has a convergence range that limits the numberof states to n isin (minusM4M4) because k lt 1σ Hence the maximum energy is much moresmaller

We have that the quantum rule for the S-correspondence is

ksn =

1

σsinπ

n

M

Again we have a finite number of states M2 rounding down with a degeneration relative to theparity also The energy is always bounded by ~(2mσ2) just as we found with the convergencecondition

Esn = (ks

n)2 =1

σ2sin2 π

n

M

In Figure 3 are drawn the energy levels and the wave functions of the ground state and thetwo first excited states for the continuous case and the three discretizations We can see thegreat fit of the symmetric one for the first excited states but remarking that as its number ofstates is finite M2 then upper these wave functions there are not more states The right andthe left ones have an asymmetry to the left and right directions of the space and then are muchmore different to the continuous wave functions

7 Conclusions

In this paper we have shown how to apply the techniques of the Umbral Calculus for thediscretization of equations preserving the point symmetries We can see the advantage of a toolthat may be used not only on the equations but also over their solutions Due to this fact wehave not to solve difference equations because we alternatively can sum series Moreover in themost difficult cases we can use numerical methods to get a solution

In the umbral discretization we can choose between infinite umbral representations Howeverstill in the simplest cases they present very different behaviours We can separate all of them intwo classes one preserving the parity of the equations and solutions (like the S-representation)and the other one that does not (like the right and left representations) From the point of view ofthe local symmetries in Ref ([2]ndash[9] [26]) it was proved that independently of the correspondencewe get the same discrete point symmetries

The study of the discrete Schrodinger equation together with other potentials (Coulombharmonic oscillator ) are in progress [31]ndash[32] and the results will be published elsewhere

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

13

02 04 06 08 10

1

2

3

4

5

6

oacuteoacuteoacuteoacuteoacuteoacute oacuteoacute oacute oacute

oacuteoacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacute oacute oacute oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacute oacute oacute

oacute

oacute

oacute

oacute

oacuteccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilaacute

aacuteaacuteaacuteaacute aacuteaacute aacute aacute aacute

aacuteaacuteaacuteaacuteaacuteaacuteaacute aacute aacute aacute aacute aacute aacute

aacute aacuteaacuteaacuteaacute aacuteaacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

1 2 3 4

4

5

6

7

8

oacuteoacuteoacuteoacuteoacuteoacuteoacute oacuteoacute oacute oacute oacute oacute oacute oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute oacute oacute oacute oacute oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilaacute

aacuteaacuteaacuteaacute aacuteaacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute

aacuteaacuteaacuteaacuteaacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

aacute aacuteaacute aacuteaacute aacuteaacute

1 2 3 4

10

15

20

30

35

oacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacute oacute

oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacuteccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilaacute aacute

aacute aacuteaacute aacuteaacute aacuteaacute aacuteaacute aacute aacute

aacute aacute aacute aacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

1 2 3 4

081012141618

Figure 3 Energy levels and wave functions of the infinite well The energy levels are in theleft ones in solid line for the continuous case and dashed for the discrete case the shorter redlines are the rightleft case energies and the longer blue lines are the symmetric case energiesWave functions are in the right in black solid line are for the continuous case blue circled pointsare for the S-correspondence red triangled ones for the right correspondence and green squaredones the left correspondence

Acknowledgments

We thank to D Levi for stimulating interesting discussions and the Physics Dp of RomaTre Univ for their hospitality This work was partially supported by the Ministerio deEducacion y Ciencia of Spain (Projects FIS2005-03989 and by the Junta de Castilla y Leon(Project VA013C05) JLS thanks the Universidad de Valladolid and the Banco SantanderCentral Hispano by the PhD grant of the program ldquoAyudas de la Universidad de Valladolidcofinanciadas por el BSCHrdquo

References[1] Gibbs P 1995 The small scale structure of space-time a bibliographical review hep-th9506171[2] Dimakis A Muler-Hoissen F and Striker T 1996 Umbral calculus discretization and quantum mechanics on

a lattice J Phys A 29 6861[3] Levi D Vinet L and Winternitz P 1997 Lie group formalism for difference equations J Phys A 30 633[4] Levi D Negro J and del Olmo M A 2001 Discrete derivatives and symmetries of difference equations J Phys

A 34 2023[5] Levi D Negro J and del Olmo M A 2001 Lie symmetries of difference equations Czech J Phys 51 341[6] Senosiain M J 2002 Teorıa de las Ecuaciones Genericas Una Introduccion al Calculo Umbral Memoria de

Grado Universidad de Salamanca[7] Levi D Negro J and del Olmo M A 2004 Discrete q-derivatives and symmetries of q-difference equations J

Phys A 37 3459ndash3473[8] Levi D Tempesta P and Winternitz P 2004 Umbral calculus difference equations and the discrete Schrodinger

equation J Math Phys 45 4077[9] Salgado E 2004 Mecanica Cuantica Discreta Trabajo Fin de Carrera de Fısicas Univ de Valladolid

[10] Mullin R and Rota G C 1970 On the foundations of combinatorial theory III Theory of binomial enumeration(Graph theory and its applications) Ed B Harris (Academic Press) p 167-213

[11] Blissard J 1861 Theory of generic equations Quart J Pure Appl Math 4 279[12] Blissard J 1862 Theory of generic equations Quart J Pure Appl Math 5 58 184

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

14

[13] Bell E T 1938 The history of Blissardrsquos symbolic calculus with a sketch of the inventorrsquos life Amer MathMonthly 45 414

[14] Appell P 1880 Sur une classe de polynomes Ann Sci Ecole Norm Sup (2) 9 119[15] Pincherle S and Amaldi S 1901 Le Operazioni Distributive e le loro Applicazioni allrsquoAnalisi (Bologna N

Zanichelli)[16] Davis H T 1936 The Theory of Linear Operators (Bloomington Principia Press)[17] Sheffer I M 1939 Some properties of polynomial sets of type zero Duke Math J 5 590[18] Rota G C Kahaner D and Odlyzko A 1973 On the foundations of combinatorial theory VII Finite operator

calculus J Math Anal Appl 42 684[19] Rota G C 1975 Finite Operator Calculus (San Diego Academic)[20] Roman S M 1982 The theory of umbral calculus I J Math Anal Appl 87 58[21] Roman S M 1982 The theory of umbral calculus II J Math Anal Appl 89 290[22] Roman S M 1983 The theory of umbral calculus III J Math Anal Appl 95 528[23] Roman S M 1975 The Umbral Calculus (San Diego Academic)[24] Di Bucchianico A and Loeb D 2000 A selected survey of umbral calculus Electr J Combin DS3[25] Zachos C K 2007 Umbral deformations on discrete spacetime Preprint hep-th07102306[26] Levi D and Winternitz P 2005 Continuous symmetries of difference equations J Phys A 39 R1ndashR63[27] Levi D and Petrera M 2007 Continuous symmetries of the lattice potential KdV equation J Phys A 40

4141ndash4159[28] Levi D Tremblay S and Winternitz P 2007 Lie point symmetries of difference equations and lattices Preprint

math-ph07093112[29] Levi D Tremblay S and Winternitz P 2007 Lie symmetries of multidimensional difference equations Preprint

math-ph07093238[30] Hernandez Heredero R Levi D Petrera M and Scimiterna C 2007 Multiscale expansion on the lattice and

integrability of partial difference equations Preprint math-ph07105299[31] Lopez-Sendino J E Negro J del Olmo M A and Salgado E 2008 Discretizing quantum mechanics using

umbral calculus Preprint[32] Lopez-Sendino J E Negro J and del Olmo M A 2008 Discrete harmonic oscillator and umbral calculus

Preprint

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

15

andsin+(kmσ)An(l) = sin+(k (m + nl)σ)

Hence the non periodic part is then the multiplicative factor

An(l) =

(

secl

(

l

))n

(17)

This is also true for the cosine function and for any l isin R Although we have a wave lengthλ = lσ for the trigonometric functions in the right and left representations we can see that theyare not periodic

ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedil ccedilccedil ccedil ccedil

ccedil ccedilccedil ccedil

ccedilccedilccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

oacute oacute oacute oacute oacute oacute oacute oacute oacute oacuteoacute oacute oacute

oacute oacuteoacute oacute

oacute oacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

-2 -1 1 2

5

10

15

ccedil ccedil ccedil ccedil ccedilccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

oacute oacute oacute oacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

-25 -20 -15 -10 -05

02

04

06

08

10

(a) Exponential function with σ = 02

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedil

ccedilccedilccedil

ccedil

ccedil

ccedil

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

-20 -10 10 20

-2

-1

1

(b) Sinus function with σ = 03

Figure 2 We represent here the continuous functions with a black solid line and the discrete ones with redtriangles the right correspondences and with blue circles the symmetric ones

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

10

It is important to note that all the properties that obey the exponential and the trigonometricfunctions are maintained after the discretization with an exception any property that includestwo or more different constants k because they give similar effects than a different lattice spacingσ nor a different x like in the continuous case Thus for example

expU (kmσ) expU (k nσ) = expU (k (m + n)σ)

expU (kmσ) expU(kprimemσ) 6= expU (k + kprimemσ)

6 Umbral Schrodinger equation

Let us go to discretize the Schrodinger equation with a potential V (x) We will profit the wellknown fact that if the potential is independent of the time then the continuous Schrodingerequation is separable Thus from the Schrodinger equation

i~parttφ(x t) = minus ~2

2mpart2

xφ(x t) + V (x)φ(x t)

and considering φ(x t) = ψ(x)ϕ(t) we obtain two uncoupled ordinary differential equations

minus ~2

2mpart2

xψ(x) + V (x)ψ(x) = Eψ(x)

i~parttϕ(t) = Eϕ(t)

that we can rewrite with natural units as

part2xψ(x) + V (x)ψ(x) = Eψ(x)

minusiparttϕ(t) = Eϕ(t)(18)

The solution of the equation (18b) is

ϕ(t) = CeiEt (19)

61 Constant potential

In relation with the first equation of (18) the simplest case appears when the potential isconstant (V (x) = V0) The solution is

ψ(x) = Aeikx +Beminusikx if E gt V0

ψ(x) = Aekx +Beminuskx if E lt V0(20)

with k =radic

|E minus V0| Therefore the solution φ(x t) is a linear combination of trigonometric orexponential functions and hence their discretizations have been studied in section 5

The energy for a fixed momentum k is the same than in the continuous case for anydiscretization as we can see

Hψ =(

minus∆2 + V0

)

infinsum

n=0

(ik)n

n(A+ (minus1)nB) ξn =

=(

k2 + V0

)

infinsum

n=0

(ik)n

n(A+ (minus1)nB) ξn =

(

k2 + V0

)

ψ

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

11

In spite of this result the relation between the momentum and the wave length λ = lσ is differentin the discrete case

k =2π

λ kplusmn =

1

σtan

(

l

)

ks =1

σsin

(

l

)

Then the phase velocity changes although the group velocity is the same as in the continuouscase and for this reason the relation between the energy and the velocity

Let be t = nτ where n isin Z the discrete time and τ the fundamental time length Followingthe limits of convergence of the discrete exponentials we find two upper limits for the energyone in relation with the temporal part of the wave function (19) and the other one in relationwith the spatial part of the wave function (20)

Emaxt=

~

τ Emaxl

=~

2

2mσ2 (21)

In fact we have to take the minor of them in each situation Taking σ asymp lP lanck = 162 10minus35mand τ asymp tP lanck = 539 10minus44s we find values of the maximum energy for the time wave Emaxt

and for the spatial wave for a proton Ep+maxland an electron Eeminusmaxl

Emaxtasymp EP lanck = 122 1028eV Emaxl

= 138 1020 1

meV

Ep+maxl= 794 1046eV Eeminusmaxl

= 146 1050eV

Remark that these are non-relativistic effects We can study also the change in the amplitudefor the right and left correspondences The factor of expansion or contraction is

An(l) =

(

secl

(

l

))n

≃(

1 +2π2

l

)n

where l is the number of points into the wave length and n is the number of wave lengths alongthe wave For the temporal part of the wave function of a particle which travel into the LEPthat is during 910minus5s with an energy of 1991014eV we find that the factor is An(l) sim 10105

Forthe spatial part of the same particle an electron the factor is of order An(l) sim 3 These factorsgrow a lot with the energy or the mass of the particle As at this energy the relativistic effectsare important and we are using now non relativistic quantum mechanics it is comprehensibleto find these too big numbers

62 Infinite potential well

A little more complicated is the infinite potential well although it is very similar to a constantpotential it reduces the space to a finite region and due to this fact new differences will appearbetween the continuous and the discrete case The potential is

V (x) =

0 if x isin [0 L]

infin if x isin [0 L]

The wave functions must obey the boundary conditions ψ(0) = ψ(L) = 0 which lead to acountable number of solutions

ψn(x) = sin(

nπx

L

)

k =nπ

L n isin Z

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

12

in the same way we apply the boundary conditions to all our discretizations We can find thequantum rule for both the right and left correspondences following the computation of (15) So

k+n =

1

σtanπ

n

M

where L = Mσ Therefore there are only M2 possible states instead of the infinite states ofthe continuous case with a degeneration relative to the parity The energy is En = k2

n and it isbounded at n = (M minus 1)2 So the maximum energy is

E+max =

~2

2mσ2tan2

(

π

[

M minus 1

2M

])

At n = M2 we find a non physical state of infinite energy and infinite wave function amplitudeWe can do a small computation finding that an electron in an infinite well of wide the Bohrradius (M sim 1027) will have a maximum state energy of E+

max sim 1077eV The maximum energygrows when increasing the number of pointsM and also when decreasing the mass of the particleBut the wave function as we saw previously has a convergence range that limits the numberof states to n isin (minusM4M4) because k lt 1σ Hence the maximum energy is much moresmaller

We have that the quantum rule for the S-correspondence is

ksn =

1

σsinπ

n

M

Again we have a finite number of states M2 rounding down with a degeneration relative to theparity also The energy is always bounded by ~(2mσ2) just as we found with the convergencecondition

Esn = (ks

n)2 =1

σ2sin2 π

n

M

In Figure 3 are drawn the energy levels and the wave functions of the ground state and thetwo first excited states for the continuous case and the three discretizations We can see thegreat fit of the symmetric one for the first excited states but remarking that as its number ofstates is finite M2 then upper these wave functions there are not more states The right andthe left ones have an asymmetry to the left and right directions of the space and then are muchmore different to the continuous wave functions

7 Conclusions

In this paper we have shown how to apply the techniques of the Umbral Calculus for thediscretization of equations preserving the point symmetries We can see the advantage of a toolthat may be used not only on the equations but also over their solutions Due to this fact wehave not to solve difference equations because we alternatively can sum series Moreover in themost difficult cases we can use numerical methods to get a solution

In the umbral discretization we can choose between infinite umbral representations Howeverstill in the simplest cases they present very different behaviours We can separate all of them intwo classes one preserving the parity of the equations and solutions (like the S-representation)and the other one that does not (like the right and left representations) From the point of view ofthe local symmetries in Ref ([2]ndash[9] [26]) it was proved that independently of the correspondencewe get the same discrete point symmetries

The study of the discrete Schrodinger equation together with other potentials (Coulombharmonic oscillator ) are in progress [31]ndash[32] and the results will be published elsewhere

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

13

02 04 06 08 10

1

2

3

4

5

6

oacuteoacuteoacuteoacuteoacuteoacute oacuteoacute oacute oacute

oacuteoacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacute oacute oacute oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacute oacute oacute

oacute

oacute

oacute

oacute

oacuteccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilaacute

aacuteaacuteaacuteaacute aacuteaacute aacute aacute aacute

aacuteaacuteaacuteaacuteaacuteaacuteaacute aacute aacute aacute aacute aacute aacute

aacute aacuteaacuteaacuteaacute aacuteaacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

1 2 3 4

4

5

6

7

8

oacuteoacuteoacuteoacuteoacuteoacuteoacute oacuteoacute oacute oacute oacute oacute oacute oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute oacute oacute oacute oacute oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilaacute

aacuteaacuteaacuteaacute aacuteaacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute

aacuteaacuteaacuteaacuteaacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

aacute aacuteaacute aacuteaacute aacuteaacute

1 2 3 4

10

15

20

30

35

oacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacute oacute

oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacuteccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilaacute aacute

aacute aacuteaacute aacuteaacute aacuteaacute aacuteaacute aacute aacute

aacute aacute aacute aacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

1 2 3 4

081012141618

Figure 3 Energy levels and wave functions of the infinite well The energy levels are in theleft ones in solid line for the continuous case and dashed for the discrete case the shorter redlines are the rightleft case energies and the longer blue lines are the symmetric case energiesWave functions are in the right in black solid line are for the continuous case blue circled pointsare for the S-correspondence red triangled ones for the right correspondence and green squaredones the left correspondence

Acknowledgments

We thank to D Levi for stimulating interesting discussions and the Physics Dp of RomaTre Univ for their hospitality This work was partially supported by the Ministerio deEducacion y Ciencia of Spain (Projects FIS2005-03989 and by the Junta de Castilla y Leon(Project VA013C05) JLS thanks the Universidad de Valladolid and the Banco SantanderCentral Hispano by the PhD grant of the program ldquoAyudas de la Universidad de Valladolidcofinanciadas por el BSCHrdquo

References[1] Gibbs P 1995 The small scale structure of space-time a bibliographical review hep-th9506171[2] Dimakis A Muler-Hoissen F and Striker T 1996 Umbral calculus discretization and quantum mechanics on

a lattice J Phys A 29 6861[3] Levi D Vinet L and Winternitz P 1997 Lie group formalism for difference equations J Phys A 30 633[4] Levi D Negro J and del Olmo M A 2001 Discrete derivatives and symmetries of difference equations J Phys

A 34 2023[5] Levi D Negro J and del Olmo M A 2001 Lie symmetries of difference equations Czech J Phys 51 341[6] Senosiain M J 2002 Teorıa de las Ecuaciones Genericas Una Introduccion al Calculo Umbral Memoria de

Grado Universidad de Salamanca[7] Levi D Negro J and del Olmo M A 2004 Discrete q-derivatives and symmetries of q-difference equations J

Phys A 37 3459ndash3473[8] Levi D Tempesta P and Winternitz P 2004 Umbral calculus difference equations and the discrete Schrodinger

equation J Math Phys 45 4077[9] Salgado E 2004 Mecanica Cuantica Discreta Trabajo Fin de Carrera de Fısicas Univ de Valladolid

[10] Mullin R and Rota G C 1970 On the foundations of combinatorial theory III Theory of binomial enumeration(Graph theory and its applications) Ed B Harris (Academic Press) p 167-213

[11] Blissard J 1861 Theory of generic equations Quart J Pure Appl Math 4 279[12] Blissard J 1862 Theory of generic equations Quart J Pure Appl Math 5 58 184

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

14

[13] Bell E T 1938 The history of Blissardrsquos symbolic calculus with a sketch of the inventorrsquos life Amer MathMonthly 45 414

[14] Appell P 1880 Sur une classe de polynomes Ann Sci Ecole Norm Sup (2) 9 119[15] Pincherle S and Amaldi S 1901 Le Operazioni Distributive e le loro Applicazioni allrsquoAnalisi (Bologna N

Zanichelli)[16] Davis H T 1936 The Theory of Linear Operators (Bloomington Principia Press)[17] Sheffer I M 1939 Some properties of polynomial sets of type zero Duke Math J 5 590[18] Rota G C Kahaner D and Odlyzko A 1973 On the foundations of combinatorial theory VII Finite operator

calculus J Math Anal Appl 42 684[19] Rota G C 1975 Finite Operator Calculus (San Diego Academic)[20] Roman S M 1982 The theory of umbral calculus I J Math Anal Appl 87 58[21] Roman S M 1982 The theory of umbral calculus II J Math Anal Appl 89 290[22] Roman S M 1983 The theory of umbral calculus III J Math Anal Appl 95 528[23] Roman S M 1975 The Umbral Calculus (San Diego Academic)[24] Di Bucchianico A and Loeb D 2000 A selected survey of umbral calculus Electr J Combin DS3[25] Zachos C K 2007 Umbral deformations on discrete spacetime Preprint hep-th07102306[26] Levi D and Winternitz P 2005 Continuous symmetries of difference equations J Phys A 39 R1ndashR63[27] Levi D and Petrera M 2007 Continuous symmetries of the lattice potential KdV equation J Phys A 40

4141ndash4159[28] Levi D Tremblay S and Winternitz P 2007 Lie point symmetries of difference equations and lattices Preprint

math-ph07093112[29] Levi D Tremblay S and Winternitz P 2007 Lie symmetries of multidimensional difference equations Preprint

math-ph07093238[30] Hernandez Heredero R Levi D Petrera M and Scimiterna C 2007 Multiscale expansion on the lattice and

integrability of partial difference equations Preprint math-ph07105299[31] Lopez-Sendino J E Negro J del Olmo M A and Salgado E 2008 Discretizing quantum mechanics using

umbral calculus Preprint[32] Lopez-Sendino J E Negro J and del Olmo M A 2008 Discrete harmonic oscillator and umbral calculus

Preprint

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

15

It is important to note that all the properties that obey the exponential and the trigonometricfunctions are maintained after the discretization with an exception any property that includestwo or more different constants k because they give similar effects than a different lattice spacingσ nor a different x like in the continuous case Thus for example

expU (kmσ) expU (k nσ) = expU (k (m + n)σ)

expU (kmσ) expU(kprimemσ) 6= expU (k + kprimemσ)

6 Umbral Schrodinger equation

Let us go to discretize the Schrodinger equation with a potential V (x) We will profit the wellknown fact that if the potential is independent of the time then the continuous Schrodingerequation is separable Thus from the Schrodinger equation

i~parttφ(x t) = minus ~2

2mpart2

xφ(x t) + V (x)φ(x t)

and considering φ(x t) = ψ(x)ϕ(t) we obtain two uncoupled ordinary differential equations

minus ~2

2mpart2

xψ(x) + V (x)ψ(x) = Eψ(x)

i~parttϕ(t) = Eϕ(t)

that we can rewrite with natural units as

part2xψ(x) + V (x)ψ(x) = Eψ(x)

minusiparttϕ(t) = Eϕ(t)(18)

The solution of the equation (18b) is

ϕ(t) = CeiEt (19)

61 Constant potential

In relation with the first equation of (18) the simplest case appears when the potential isconstant (V (x) = V0) The solution is

ψ(x) = Aeikx +Beminusikx if E gt V0

ψ(x) = Aekx +Beminuskx if E lt V0(20)

with k =radic

|E minus V0| Therefore the solution φ(x t) is a linear combination of trigonometric orexponential functions and hence their discretizations have been studied in section 5

The energy for a fixed momentum k is the same than in the continuous case for anydiscretization as we can see

Hψ =(

minus∆2 + V0

)

infinsum

n=0

(ik)n

n(A+ (minus1)nB) ξn =

=(

k2 + V0

)

infinsum

n=0

(ik)n

n(A+ (minus1)nB) ξn =

(

k2 + V0

)

ψ

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

11

In spite of this result the relation between the momentum and the wave length λ = lσ is differentin the discrete case

k =2π

λ kplusmn =

1

σtan

(

l

)

ks =1

σsin

(

l

)

Then the phase velocity changes although the group velocity is the same as in the continuouscase and for this reason the relation between the energy and the velocity

Let be t = nτ where n isin Z the discrete time and τ the fundamental time length Followingthe limits of convergence of the discrete exponentials we find two upper limits for the energyone in relation with the temporal part of the wave function (19) and the other one in relationwith the spatial part of the wave function (20)

Emaxt=

~

τ Emaxl

=~

2

2mσ2 (21)

In fact we have to take the minor of them in each situation Taking σ asymp lP lanck = 162 10minus35mand τ asymp tP lanck = 539 10minus44s we find values of the maximum energy for the time wave Emaxt

and for the spatial wave for a proton Ep+maxland an electron Eeminusmaxl

Emaxtasymp EP lanck = 122 1028eV Emaxl

= 138 1020 1

meV

Ep+maxl= 794 1046eV Eeminusmaxl

= 146 1050eV

Remark that these are non-relativistic effects We can study also the change in the amplitudefor the right and left correspondences The factor of expansion or contraction is

An(l) =

(

secl

(

l

))n

≃(

1 +2π2

l

)n

where l is the number of points into the wave length and n is the number of wave lengths alongthe wave For the temporal part of the wave function of a particle which travel into the LEPthat is during 910minus5s with an energy of 1991014eV we find that the factor is An(l) sim 10105

Forthe spatial part of the same particle an electron the factor is of order An(l) sim 3 These factorsgrow a lot with the energy or the mass of the particle As at this energy the relativistic effectsare important and we are using now non relativistic quantum mechanics it is comprehensibleto find these too big numbers

62 Infinite potential well

A little more complicated is the infinite potential well although it is very similar to a constantpotential it reduces the space to a finite region and due to this fact new differences will appearbetween the continuous and the discrete case The potential is

V (x) =

0 if x isin [0 L]

infin if x isin [0 L]

The wave functions must obey the boundary conditions ψ(0) = ψ(L) = 0 which lead to acountable number of solutions

ψn(x) = sin(

nπx

L

)

k =nπ

L n isin Z

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

12

in the same way we apply the boundary conditions to all our discretizations We can find thequantum rule for both the right and left correspondences following the computation of (15) So

k+n =

1

σtanπ

n

M

where L = Mσ Therefore there are only M2 possible states instead of the infinite states ofthe continuous case with a degeneration relative to the parity The energy is En = k2

n and it isbounded at n = (M minus 1)2 So the maximum energy is

E+max =

~2

2mσ2tan2

(

π

[

M minus 1

2M

])

At n = M2 we find a non physical state of infinite energy and infinite wave function amplitudeWe can do a small computation finding that an electron in an infinite well of wide the Bohrradius (M sim 1027) will have a maximum state energy of E+

max sim 1077eV The maximum energygrows when increasing the number of pointsM and also when decreasing the mass of the particleBut the wave function as we saw previously has a convergence range that limits the numberof states to n isin (minusM4M4) because k lt 1σ Hence the maximum energy is much moresmaller

We have that the quantum rule for the S-correspondence is

ksn =

1

σsinπ

n

M

Again we have a finite number of states M2 rounding down with a degeneration relative to theparity also The energy is always bounded by ~(2mσ2) just as we found with the convergencecondition

Esn = (ks

n)2 =1

σ2sin2 π

n

M

In Figure 3 are drawn the energy levels and the wave functions of the ground state and thetwo first excited states for the continuous case and the three discretizations We can see thegreat fit of the symmetric one for the first excited states but remarking that as its number ofstates is finite M2 then upper these wave functions there are not more states The right andthe left ones have an asymmetry to the left and right directions of the space and then are muchmore different to the continuous wave functions

7 Conclusions

In this paper we have shown how to apply the techniques of the Umbral Calculus for thediscretization of equations preserving the point symmetries We can see the advantage of a toolthat may be used not only on the equations but also over their solutions Due to this fact wehave not to solve difference equations because we alternatively can sum series Moreover in themost difficult cases we can use numerical methods to get a solution

In the umbral discretization we can choose between infinite umbral representations Howeverstill in the simplest cases they present very different behaviours We can separate all of them intwo classes one preserving the parity of the equations and solutions (like the S-representation)and the other one that does not (like the right and left representations) From the point of view ofthe local symmetries in Ref ([2]ndash[9] [26]) it was proved that independently of the correspondencewe get the same discrete point symmetries

The study of the discrete Schrodinger equation together with other potentials (Coulombharmonic oscillator ) are in progress [31]ndash[32] and the results will be published elsewhere

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

13

02 04 06 08 10

1

2

3

4

5

6

oacuteoacuteoacuteoacuteoacuteoacute oacuteoacute oacute oacute

oacuteoacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacute oacute oacute oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacute oacute oacute

oacute

oacute

oacute

oacute

oacuteccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilaacute

aacuteaacuteaacuteaacute aacuteaacute aacute aacute aacute

aacuteaacuteaacuteaacuteaacuteaacuteaacute aacute aacute aacute aacute aacute aacute

aacute aacuteaacuteaacuteaacute aacuteaacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

1 2 3 4

4

5

6

7

8

oacuteoacuteoacuteoacuteoacuteoacuteoacute oacuteoacute oacute oacute oacute oacute oacute oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute oacute oacute oacute oacute oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilaacute

aacuteaacuteaacuteaacute aacuteaacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute

aacuteaacuteaacuteaacuteaacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

aacute aacuteaacute aacuteaacute aacuteaacute

1 2 3 4

10

15

20

30

35

oacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacute oacute

oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacuteccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilaacute aacute

aacute aacuteaacute aacuteaacute aacuteaacute aacuteaacute aacute aacute

aacute aacute aacute aacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

1 2 3 4

081012141618

Figure 3 Energy levels and wave functions of the infinite well The energy levels are in theleft ones in solid line for the continuous case and dashed for the discrete case the shorter redlines are the rightleft case energies and the longer blue lines are the symmetric case energiesWave functions are in the right in black solid line are for the continuous case blue circled pointsare for the S-correspondence red triangled ones for the right correspondence and green squaredones the left correspondence

Acknowledgments

We thank to D Levi for stimulating interesting discussions and the Physics Dp of RomaTre Univ for their hospitality This work was partially supported by the Ministerio deEducacion y Ciencia of Spain (Projects FIS2005-03989 and by the Junta de Castilla y Leon(Project VA013C05) JLS thanks the Universidad de Valladolid and the Banco SantanderCentral Hispano by the PhD grant of the program ldquoAyudas de la Universidad de Valladolidcofinanciadas por el BSCHrdquo

References[1] Gibbs P 1995 The small scale structure of space-time a bibliographical review hep-th9506171[2] Dimakis A Muler-Hoissen F and Striker T 1996 Umbral calculus discretization and quantum mechanics on

a lattice J Phys A 29 6861[3] Levi D Vinet L and Winternitz P 1997 Lie group formalism for difference equations J Phys A 30 633[4] Levi D Negro J and del Olmo M A 2001 Discrete derivatives and symmetries of difference equations J Phys

A 34 2023[5] Levi D Negro J and del Olmo M A 2001 Lie symmetries of difference equations Czech J Phys 51 341[6] Senosiain M J 2002 Teorıa de las Ecuaciones Genericas Una Introduccion al Calculo Umbral Memoria de

Grado Universidad de Salamanca[7] Levi D Negro J and del Olmo M A 2004 Discrete q-derivatives and symmetries of q-difference equations J

Phys A 37 3459ndash3473[8] Levi D Tempesta P and Winternitz P 2004 Umbral calculus difference equations and the discrete Schrodinger

equation J Math Phys 45 4077[9] Salgado E 2004 Mecanica Cuantica Discreta Trabajo Fin de Carrera de Fısicas Univ de Valladolid

[10] Mullin R and Rota G C 1970 On the foundations of combinatorial theory III Theory of binomial enumeration(Graph theory and its applications) Ed B Harris (Academic Press) p 167-213

[11] Blissard J 1861 Theory of generic equations Quart J Pure Appl Math 4 279[12] Blissard J 1862 Theory of generic equations Quart J Pure Appl Math 5 58 184

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

14

[13] Bell E T 1938 The history of Blissardrsquos symbolic calculus with a sketch of the inventorrsquos life Amer MathMonthly 45 414

[14] Appell P 1880 Sur une classe de polynomes Ann Sci Ecole Norm Sup (2) 9 119[15] Pincherle S and Amaldi S 1901 Le Operazioni Distributive e le loro Applicazioni allrsquoAnalisi (Bologna N

Zanichelli)[16] Davis H T 1936 The Theory of Linear Operators (Bloomington Principia Press)[17] Sheffer I M 1939 Some properties of polynomial sets of type zero Duke Math J 5 590[18] Rota G C Kahaner D and Odlyzko A 1973 On the foundations of combinatorial theory VII Finite operator

calculus J Math Anal Appl 42 684[19] Rota G C 1975 Finite Operator Calculus (San Diego Academic)[20] Roman S M 1982 The theory of umbral calculus I J Math Anal Appl 87 58[21] Roman S M 1982 The theory of umbral calculus II J Math Anal Appl 89 290[22] Roman S M 1983 The theory of umbral calculus III J Math Anal Appl 95 528[23] Roman S M 1975 The Umbral Calculus (San Diego Academic)[24] Di Bucchianico A and Loeb D 2000 A selected survey of umbral calculus Electr J Combin DS3[25] Zachos C K 2007 Umbral deformations on discrete spacetime Preprint hep-th07102306[26] Levi D and Winternitz P 2005 Continuous symmetries of difference equations J Phys A 39 R1ndashR63[27] Levi D and Petrera M 2007 Continuous symmetries of the lattice potential KdV equation J Phys A 40

4141ndash4159[28] Levi D Tremblay S and Winternitz P 2007 Lie point symmetries of difference equations and lattices Preprint

math-ph07093112[29] Levi D Tremblay S and Winternitz P 2007 Lie symmetries of multidimensional difference equations Preprint

math-ph07093238[30] Hernandez Heredero R Levi D Petrera M and Scimiterna C 2007 Multiscale expansion on the lattice and

integrability of partial difference equations Preprint math-ph07105299[31] Lopez-Sendino J E Negro J del Olmo M A and Salgado E 2008 Discretizing quantum mechanics using

umbral calculus Preprint[32] Lopez-Sendino J E Negro J and del Olmo M A 2008 Discrete harmonic oscillator and umbral calculus

Preprint

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

15

In spite of this result the relation between the momentum and the wave length λ = lσ is differentin the discrete case

k =2π

λ kplusmn =

1

σtan

(

l

)

ks =1

σsin

(

l

)

Then the phase velocity changes although the group velocity is the same as in the continuouscase and for this reason the relation between the energy and the velocity

Let be t = nτ where n isin Z the discrete time and τ the fundamental time length Followingthe limits of convergence of the discrete exponentials we find two upper limits for the energyone in relation with the temporal part of the wave function (19) and the other one in relationwith the spatial part of the wave function (20)

Emaxt=

~

τ Emaxl

=~

2

2mσ2 (21)

In fact we have to take the minor of them in each situation Taking σ asymp lP lanck = 162 10minus35mand τ asymp tP lanck = 539 10minus44s we find values of the maximum energy for the time wave Emaxt

and for the spatial wave for a proton Ep+maxland an electron Eeminusmaxl

Emaxtasymp EP lanck = 122 1028eV Emaxl

= 138 1020 1

meV

Ep+maxl= 794 1046eV Eeminusmaxl

= 146 1050eV

Remark that these are non-relativistic effects We can study also the change in the amplitudefor the right and left correspondences The factor of expansion or contraction is

An(l) =

(

secl

(

l

))n

≃(

1 +2π2

l

)n

where l is the number of points into the wave length and n is the number of wave lengths alongthe wave For the temporal part of the wave function of a particle which travel into the LEPthat is during 910minus5s with an energy of 1991014eV we find that the factor is An(l) sim 10105

Forthe spatial part of the same particle an electron the factor is of order An(l) sim 3 These factorsgrow a lot with the energy or the mass of the particle As at this energy the relativistic effectsare important and we are using now non relativistic quantum mechanics it is comprehensibleto find these too big numbers

62 Infinite potential well

A little more complicated is the infinite potential well although it is very similar to a constantpotential it reduces the space to a finite region and due to this fact new differences will appearbetween the continuous and the discrete case The potential is

V (x) =

0 if x isin [0 L]

infin if x isin [0 L]

The wave functions must obey the boundary conditions ψ(0) = ψ(L) = 0 which lead to acountable number of solutions

ψn(x) = sin(

nπx

L

)

k =nπ

L n isin Z

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

12

in the same way we apply the boundary conditions to all our discretizations We can find thequantum rule for both the right and left correspondences following the computation of (15) So

k+n =

1

σtanπ

n

M

where L = Mσ Therefore there are only M2 possible states instead of the infinite states ofthe continuous case with a degeneration relative to the parity The energy is En = k2

n and it isbounded at n = (M minus 1)2 So the maximum energy is

E+max =

~2

2mσ2tan2

(

π

[

M minus 1

2M

])

At n = M2 we find a non physical state of infinite energy and infinite wave function amplitudeWe can do a small computation finding that an electron in an infinite well of wide the Bohrradius (M sim 1027) will have a maximum state energy of E+

max sim 1077eV The maximum energygrows when increasing the number of pointsM and also when decreasing the mass of the particleBut the wave function as we saw previously has a convergence range that limits the numberof states to n isin (minusM4M4) because k lt 1σ Hence the maximum energy is much moresmaller

We have that the quantum rule for the S-correspondence is

ksn =

1

σsinπ

n

M

Again we have a finite number of states M2 rounding down with a degeneration relative to theparity also The energy is always bounded by ~(2mσ2) just as we found with the convergencecondition

Esn = (ks

n)2 =1

σ2sin2 π

n

M

In Figure 3 are drawn the energy levels and the wave functions of the ground state and thetwo first excited states for the continuous case and the three discretizations We can see thegreat fit of the symmetric one for the first excited states but remarking that as its number ofstates is finite M2 then upper these wave functions there are not more states The right andthe left ones have an asymmetry to the left and right directions of the space and then are muchmore different to the continuous wave functions

7 Conclusions

In this paper we have shown how to apply the techniques of the Umbral Calculus for thediscretization of equations preserving the point symmetries We can see the advantage of a toolthat may be used not only on the equations but also over their solutions Due to this fact wehave not to solve difference equations because we alternatively can sum series Moreover in themost difficult cases we can use numerical methods to get a solution

In the umbral discretization we can choose between infinite umbral representations Howeverstill in the simplest cases they present very different behaviours We can separate all of them intwo classes one preserving the parity of the equations and solutions (like the S-representation)and the other one that does not (like the right and left representations) From the point of view ofthe local symmetries in Ref ([2]ndash[9] [26]) it was proved that independently of the correspondencewe get the same discrete point symmetries

The study of the discrete Schrodinger equation together with other potentials (Coulombharmonic oscillator ) are in progress [31]ndash[32] and the results will be published elsewhere

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

13

02 04 06 08 10

1

2

3

4

5

6

oacuteoacuteoacuteoacuteoacuteoacute oacuteoacute oacute oacute

oacuteoacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacute oacute oacute oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacute oacute oacute

oacute

oacute

oacute

oacute

oacuteccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilaacute

aacuteaacuteaacuteaacute aacuteaacute aacute aacute aacute

aacuteaacuteaacuteaacuteaacuteaacuteaacute aacute aacute aacute aacute aacute aacute

aacute aacuteaacuteaacuteaacute aacuteaacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

1 2 3 4

4

5

6

7

8

oacuteoacuteoacuteoacuteoacuteoacuteoacute oacuteoacute oacute oacute oacute oacute oacute oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute oacute oacute oacute oacute oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilaacute

aacuteaacuteaacuteaacute aacuteaacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute

aacuteaacuteaacuteaacuteaacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

aacute aacuteaacute aacuteaacute aacuteaacute

1 2 3 4

10

15

20

30

35

oacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacute oacute

oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacuteccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilaacute aacute

aacute aacuteaacute aacuteaacute aacuteaacute aacuteaacute aacute aacute

aacute aacute aacute aacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

1 2 3 4

081012141618

Figure 3 Energy levels and wave functions of the infinite well The energy levels are in theleft ones in solid line for the continuous case and dashed for the discrete case the shorter redlines are the rightleft case energies and the longer blue lines are the symmetric case energiesWave functions are in the right in black solid line are for the continuous case blue circled pointsare for the S-correspondence red triangled ones for the right correspondence and green squaredones the left correspondence

Acknowledgments

We thank to D Levi for stimulating interesting discussions and the Physics Dp of RomaTre Univ for their hospitality This work was partially supported by the Ministerio deEducacion y Ciencia of Spain (Projects FIS2005-03989 and by the Junta de Castilla y Leon(Project VA013C05) JLS thanks the Universidad de Valladolid and the Banco SantanderCentral Hispano by the PhD grant of the program ldquoAyudas de la Universidad de Valladolidcofinanciadas por el BSCHrdquo

References[1] Gibbs P 1995 The small scale structure of space-time a bibliographical review hep-th9506171[2] Dimakis A Muler-Hoissen F and Striker T 1996 Umbral calculus discretization and quantum mechanics on

a lattice J Phys A 29 6861[3] Levi D Vinet L and Winternitz P 1997 Lie group formalism for difference equations J Phys A 30 633[4] Levi D Negro J and del Olmo M A 2001 Discrete derivatives and symmetries of difference equations J Phys

A 34 2023[5] Levi D Negro J and del Olmo M A 2001 Lie symmetries of difference equations Czech J Phys 51 341[6] Senosiain M J 2002 Teorıa de las Ecuaciones Genericas Una Introduccion al Calculo Umbral Memoria de

Grado Universidad de Salamanca[7] Levi D Negro J and del Olmo M A 2004 Discrete q-derivatives and symmetries of q-difference equations J

Phys A 37 3459ndash3473[8] Levi D Tempesta P and Winternitz P 2004 Umbral calculus difference equations and the discrete Schrodinger

equation J Math Phys 45 4077[9] Salgado E 2004 Mecanica Cuantica Discreta Trabajo Fin de Carrera de Fısicas Univ de Valladolid

[10] Mullin R and Rota G C 1970 On the foundations of combinatorial theory III Theory of binomial enumeration(Graph theory and its applications) Ed B Harris (Academic Press) p 167-213

[11] Blissard J 1861 Theory of generic equations Quart J Pure Appl Math 4 279[12] Blissard J 1862 Theory of generic equations Quart J Pure Appl Math 5 58 184

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

14

[13] Bell E T 1938 The history of Blissardrsquos symbolic calculus with a sketch of the inventorrsquos life Amer MathMonthly 45 414

[14] Appell P 1880 Sur une classe de polynomes Ann Sci Ecole Norm Sup (2) 9 119[15] Pincherle S and Amaldi S 1901 Le Operazioni Distributive e le loro Applicazioni allrsquoAnalisi (Bologna N

Zanichelli)[16] Davis H T 1936 The Theory of Linear Operators (Bloomington Principia Press)[17] Sheffer I M 1939 Some properties of polynomial sets of type zero Duke Math J 5 590[18] Rota G C Kahaner D and Odlyzko A 1973 On the foundations of combinatorial theory VII Finite operator

calculus J Math Anal Appl 42 684[19] Rota G C 1975 Finite Operator Calculus (San Diego Academic)[20] Roman S M 1982 The theory of umbral calculus I J Math Anal Appl 87 58[21] Roman S M 1982 The theory of umbral calculus II J Math Anal Appl 89 290[22] Roman S M 1983 The theory of umbral calculus III J Math Anal Appl 95 528[23] Roman S M 1975 The Umbral Calculus (San Diego Academic)[24] Di Bucchianico A and Loeb D 2000 A selected survey of umbral calculus Electr J Combin DS3[25] Zachos C K 2007 Umbral deformations on discrete spacetime Preprint hep-th07102306[26] Levi D and Winternitz P 2005 Continuous symmetries of difference equations J Phys A 39 R1ndashR63[27] Levi D and Petrera M 2007 Continuous symmetries of the lattice potential KdV equation J Phys A 40

4141ndash4159[28] Levi D Tremblay S and Winternitz P 2007 Lie point symmetries of difference equations and lattices Preprint

math-ph07093112[29] Levi D Tremblay S and Winternitz P 2007 Lie symmetries of multidimensional difference equations Preprint

math-ph07093238[30] Hernandez Heredero R Levi D Petrera M and Scimiterna C 2007 Multiscale expansion on the lattice and

integrability of partial difference equations Preprint math-ph07105299[31] Lopez-Sendino J E Negro J del Olmo M A and Salgado E 2008 Discretizing quantum mechanics using

umbral calculus Preprint[32] Lopez-Sendino J E Negro J and del Olmo M A 2008 Discrete harmonic oscillator and umbral calculus

Preprint

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

15

in the same way we apply the boundary conditions to all our discretizations We can find thequantum rule for both the right and left correspondences following the computation of (15) So

k+n =

1

σtanπ

n

M

where L = Mσ Therefore there are only M2 possible states instead of the infinite states ofthe continuous case with a degeneration relative to the parity The energy is En = k2

n and it isbounded at n = (M minus 1)2 So the maximum energy is

E+max =

~2

2mσ2tan2

(

π

[

M minus 1

2M

])

At n = M2 we find a non physical state of infinite energy and infinite wave function amplitudeWe can do a small computation finding that an electron in an infinite well of wide the Bohrradius (M sim 1027) will have a maximum state energy of E+

max sim 1077eV The maximum energygrows when increasing the number of pointsM and also when decreasing the mass of the particleBut the wave function as we saw previously has a convergence range that limits the numberof states to n isin (minusM4M4) because k lt 1σ Hence the maximum energy is much moresmaller

We have that the quantum rule for the S-correspondence is

ksn =

1

σsinπ

n

M

Again we have a finite number of states M2 rounding down with a degeneration relative to theparity also The energy is always bounded by ~(2mσ2) just as we found with the convergencecondition

Esn = (ks

n)2 =1

σ2sin2 π

n

M

In Figure 3 are drawn the energy levels and the wave functions of the ground state and thetwo first excited states for the continuous case and the three discretizations We can see thegreat fit of the symmetric one for the first excited states but remarking that as its number ofstates is finite M2 then upper these wave functions there are not more states The right andthe left ones have an asymmetry to the left and right directions of the space and then are muchmore different to the continuous wave functions

7 Conclusions

In this paper we have shown how to apply the techniques of the Umbral Calculus for thediscretization of equations preserving the point symmetries We can see the advantage of a toolthat may be used not only on the equations but also over their solutions Due to this fact wehave not to solve difference equations because we alternatively can sum series Moreover in themost difficult cases we can use numerical methods to get a solution

In the umbral discretization we can choose between infinite umbral representations Howeverstill in the simplest cases they present very different behaviours We can separate all of them intwo classes one preserving the parity of the equations and solutions (like the S-representation)and the other one that does not (like the right and left representations) From the point of view ofthe local symmetries in Ref ([2]ndash[9] [26]) it was proved that independently of the correspondencewe get the same discrete point symmetries

The study of the discrete Schrodinger equation together with other potentials (Coulombharmonic oscillator ) are in progress [31]ndash[32] and the results will be published elsewhere

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

13

02 04 06 08 10

1

2

3

4

5

6

oacuteoacuteoacuteoacuteoacuteoacute oacuteoacute oacute oacute

oacuteoacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacute oacute oacute oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacute oacute oacute

oacute

oacute

oacute

oacute

oacuteccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilaacute

aacuteaacuteaacuteaacute aacuteaacute aacute aacute aacute

aacuteaacuteaacuteaacuteaacuteaacuteaacute aacute aacute aacute aacute aacute aacute

aacute aacuteaacuteaacuteaacute aacuteaacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

1 2 3 4

4

5

6

7

8

oacuteoacuteoacuteoacuteoacuteoacuteoacute oacuteoacute oacute oacute oacute oacute oacute oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute oacute oacute oacute oacute oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilaacute

aacuteaacuteaacuteaacute aacuteaacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute

aacuteaacuteaacuteaacuteaacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

aacute aacuteaacute aacuteaacute aacuteaacute

1 2 3 4

10

15

20

30

35

oacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacute oacute

oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacuteccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilaacute aacute

aacute aacuteaacute aacuteaacute aacuteaacute aacuteaacute aacute aacute

aacute aacute aacute aacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

1 2 3 4

081012141618

Figure 3 Energy levels and wave functions of the infinite well The energy levels are in theleft ones in solid line for the continuous case and dashed for the discrete case the shorter redlines are the rightleft case energies and the longer blue lines are the symmetric case energiesWave functions are in the right in black solid line are for the continuous case blue circled pointsare for the S-correspondence red triangled ones for the right correspondence and green squaredones the left correspondence

Acknowledgments

We thank to D Levi for stimulating interesting discussions and the Physics Dp of RomaTre Univ for their hospitality This work was partially supported by the Ministerio deEducacion y Ciencia of Spain (Projects FIS2005-03989 and by the Junta de Castilla y Leon(Project VA013C05) JLS thanks the Universidad de Valladolid and the Banco SantanderCentral Hispano by the PhD grant of the program ldquoAyudas de la Universidad de Valladolidcofinanciadas por el BSCHrdquo

References[1] Gibbs P 1995 The small scale structure of space-time a bibliographical review hep-th9506171[2] Dimakis A Muler-Hoissen F and Striker T 1996 Umbral calculus discretization and quantum mechanics on

a lattice J Phys A 29 6861[3] Levi D Vinet L and Winternitz P 1997 Lie group formalism for difference equations J Phys A 30 633[4] Levi D Negro J and del Olmo M A 2001 Discrete derivatives and symmetries of difference equations J Phys

A 34 2023[5] Levi D Negro J and del Olmo M A 2001 Lie symmetries of difference equations Czech J Phys 51 341[6] Senosiain M J 2002 Teorıa de las Ecuaciones Genericas Una Introduccion al Calculo Umbral Memoria de

Grado Universidad de Salamanca[7] Levi D Negro J and del Olmo M A 2004 Discrete q-derivatives and symmetries of q-difference equations J

Phys A 37 3459ndash3473[8] Levi D Tempesta P and Winternitz P 2004 Umbral calculus difference equations and the discrete Schrodinger

equation J Math Phys 45 4077[9] Salgado E 2004 Mecanica Cuantica Discreta Trabajo Fin de Carrera de Fısicas Univ de Valladolid

[10] Mullin R and Rota G C 1970 On the foundations of combinatorial theory III Theory of binomial enumeration(Graph theory and its applications) Ed B Harris (Academic Press) p 167-213

[11] Blissard J 1861 Theory of generic equations Quart J Pure Appl Math 4 279[12] Blissard J 1862 Theory of generic equations Quart J Pure Appl Math 5 58 184

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

14

[13] Bell E T 1938 The history of Blissardrsquos symbolic calculus with a sketch of the inventorrsquos life Amer MathMonthly 45 414

[14] Appell P 1880 Sur une classe de polynomes Ann Sci Ecole Norm Sup (2) 9 119[15] Pincherle S and Amaldi S 1901 Le Operazioni Distributive e le loro Applicazioni allrsquoAnalisi (Bologna N

Zanichelli)[16] Davis H T 1936 The Theory of Linear Operators (Bloomington Principia Press)[17] Sheffer I M 1939 Some properties of polynomial sets of type zero Duke Math J 5 590[18] Rota G C Kahaner D and Odlyzko A 1973 On the foundations of combinatorial theory VII Finite operator

calculus J Math Anal Appl 42 684[19] Rota G C 1975 Finite Operator Calculus (San Diego Academic)[20] Roman S M 1982 The theory of umbral calculus I J Math Anal Appl 87 58[21] Roman S M 1982 The theory of umbral calculus II J Math Anal Appl 89 290[22] Roman S M 1983 The theory of umbral calculus III J Math Anal Appl 95 528[23] Roman S M 1975 The Umbral Calculus (San Diego Academic)[24] Di Bucchianico A and Loeb D 2000 A selected survey of umbral calculus Electr J Combin DS3[25] Zachos C K 2007 Umbral deformations on discrete spacetime Preprint hep-th07102306[26] Levi D and Winternitz P 2005 Continuous symmetries of difference equations J Phys A 39 R1ndashR63[27] Levi D and Petrera M 2007 Continuous symmetries of the lattice potential KdV equation J Phys A 40

4141ndash4159[28] Levi D Tremblay S and Winternitz P 2007 Lie point symmetries of difference equations and lattices Preprint

math-ph07093112[29] Levi D Tremblay S and Winternitz P 2007 Lie symmetries of multidimensional difference equations Preprint

math-ph07093238[30] Hernandez Heredero R Levi D Petrera M and Scimiterna C 2007 Multiscale expansion on the lattice and

integrability of partial difference equations Preprint math-ph07105299[31] Lopez-Sendino J E Negro J del Olmo M A and Salgado E 2008 Discretizing quantum mechanics using

umbral calculus Preprint[32] Lopez-Sendino J E Negro J and del Olmo M A 2008 Discrete harmonic oscillator and umbral calculus

Preprint

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

15

02 04 06 08 10

1

2

3

4

5

6

oacuteoacuteoacuteoacuteoacuteoacute oacuteoacute oacute oacute

oacuteoacute

oacute

oacute

oacute

oacute

oacute

oacuteoacuteoacute oacute oacute oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacute

oacuteoacute oacute oacute

oacute

oacute

oacute

oacute

oacuteccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilaacute

aacuteaacuteaacuteaacute aacuteaacute aacute aacute aacute

aacuteaacuteaacuteaacuteaacuteaacuteaacute aacute aacute aacute aacute aacute aacute

aacute aacuteaacuteaacuteaacute aacuteaacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

1 2 3 4

4

5

6

7

8

oacuteoacuteoacuteoacuteoacuteoacuteoacute oacuteoacute oacute oacute oacute oacute oacute oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteoacute oacute oacute oacute oacute oacute

oacuteoacuteoacuteoacuteoacuteoacuteoacuteoacuteccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilaacute

aacuteaacuteaacuteaacute aacuteaacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute

aacuteaacuteaacuteaacuteaacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

aacute aacuteaacute aacuteaacute aacuteaacute

1 2 3 4

10

15

20

30

35

oacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacuteoacute oacute oacute

oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacute oacuteccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedil

ccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilccedilaacute aacute

aacute aacuteaacute aacuteaacute aacuteaacute aacuteaacute aacute aacute

aacute aacute aacute aacute aacuteaacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute aacute

1 2 3 4

081012141618

Figure 3 Energy levels and wave functions of the infinite well The energy levels are in theleft ones in solid line for the continuous case and dashed for the discrete case the shorter redlines are the rightleft case energies and the longer blue lines are the symmetric case energiesWave functions are in the right in black solid line are for the continuous case blue circled pointsare for the S-correspondence red triangled ones for the right correspondence and green squaredones the left correspondence

Acknowledgments

We thank to D Levi for stimulating interesting discussions and the Physics Dp of RomaTre Univ for their hospitality This work was partially supported by the Ministerio deEducacion y Ciencia of Spain (Projects FIS2005-03989 and by the Junta de Castilla y Leon(Project VA013C05) JLS thanks the Universidad de Valladolid and the Banco SantanderCentral Hispano by the PhD grant of the program ldquoAyudas de la Universidad de Valladolidcofinanciadas por el BSCHrdquo

References[1] Gibbs P 1995 The small scale structure of space-time a bibliographical review hep-th9506171[2] Dimakis A Muler-Hoissen F and Striker T 1996 Umbral calculus discretization and quantum mechanics on

a lattice J Phys A 29 6861[3] Levi D Vinet L and Winternitz P 1997 Lie group formalism for difference equations J Phys A 30 633[4] Levi D Negro J and del Olmo M A 2001 Discrete derivatives and symmetries of difference equations J Phys

A 34 2023[5] Levi D Negro J and del Olmo M A 2001 Lie symmetries of difference equations Czech J Phys 51 341[6] Senosiain M J 2002 Teorıa de las Ecuaciones Genericas Una Introduccion al Calculo Umbral Memoria de

Grado Universidad de Salamanca[7] Levi D Negro J and del Olmo M A 2004 Discrete q-derivatives and symmetries of q-difference equations J

Phys A 37 3459ndash3473[8] Levi D Tempesta P and Winternitz P 2004 Umbral calculus difference equations and the discrete Schrodinger

equation J Math Phys 45 4077[9] Salgado E 2004 Mecanica Cuantica Discreta Trabajo Fin de Carrera de Fısicas Univ de Valladolid

[10] Mullin R and Rota G C 1970 On the foundations of combinatorial theory III Theory of binomial enumeration(Graph theory and its applications) Ed B Harris (Academic Press) p 167-213

[11] Blissard J 1861 Theory of generic equations Quart J Pure Appl Math 4 279[12] Blissard J 1862 Theory of generic equations Quart J Pure Appl Math 5 58 184

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

14

[13] Bell E T 1938 The history of Blissardrsquos symbolic calculus with a sketch of the inventorrsquos life Amer MathMonthly 45 414

[14] Appell P 1880 Sur une classe de polynomes Ann Sci Ecole Norm Sup (2) 9 119[15] Pincherle S and Amaldi S 1901 Le Operazioni Distributive e le loro Applicazioni allrsquoAnalisi (Bologna N

Zanichelli)[16] Davis H T 1936 The Theory of Linear Operators (Bloomington Principia Press)[17] Sheffer I M 1939 Some properties of polynomial sets of type zero Duke Math J 5 590[18] Rota G C Kahaner D and Odlyzko A 1973 On the foundations of combinatorial theory VII Finite operator

calculus J Math Anal Appl 42 684[19] Rota G C 1975 Finite Operator Calculus (San Diego Academic)[20] Roman S M 1982 The theory of umbral calculus I J Math Anal Appl 87 58[21] Roman S M 1982 The theory of umbral calculus II J Math Anal Appl 89 290[22] Roman S M 1983 The theory of umbral calculus III J Math Anal Appl 95 528[23] Roman S M 1975 The Umbral Calculus (San Diego Academic)[24] Di Bucchianico A and Loeb D 2000 A selected survey of umbral calculus Electr J Combin DS3[25] Zachos C K 2007 Umbral deformations on discrete spacetime Preprint hep-th07102306[26] Levi D and Winternitz P 2005 Continuous symmetries of difference equations J Phys A 39 R1ndashR63[27] Levi D and Petrera M 2007 Continuous symmetries of the lattice potential KdV equation J Phys A 40

4141ndash4159[28] Levi D Tremblay S and Winternitz P 2007 Lie point symmetries of difference equations and lattices Preprint

math-ph07093112[29] Levi D Tremblay S and Winternitz P 2007 Lie symmetries of multidimensional difference equations Preprint

math-ph07093238[30] Hernandez Heredero R Levi D Petrera M and Scimiterna C 2007 Multiscale expansion on the lattice and

integrability of partial difference equations Preprint math-ph07105299[31] Lopez-Sendino J E Negro J del Olmo M A and Salgado E 2008 Discretizing quantum mechanics using

umbral calculus Preprint[32] Lopez-Sendino J E Negro J and del Olmo M A 2008 Discrete harmonic oscillator and umbral calculus

Preprint

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

15

[13] Bell E T 1938 The history of Blissardrsquos symbolic calculus with a sketch of the inventorrsquos life Amer MathMonthly 45 414

[14] Appell P 1880 Sur une classe de polynomes Ann Sci Ecole Norm Sup (2) 9 119[15] Pincherle S and Amaldi S 1901 Le Operazioni Distributive e le loro Applicazioni allrsquoAnalisi (Bologna N

Zanichelli)[16] Davis H T 1936 The Theory of Linear Operators (Bloomington Principia Press)[17] Sheffer I M 1939 Some properties of polynomial sets of type zero Duke Math J 5 590[18] Rota G C Kahaner D and Odlyzko A 1973 On the foundations of combinatorial theory VII Finite operator

calculus J Math Anal Appl 42 684[19] Rota G C 1975 Finite Operator Calculus (San Diego Academic)[20] Roman S M 1982 The theory of umbral calculus I J Math Anal Appl 87 58[21] Roman S M 1982 The theory of umbral calculus II J Math Anal Appl 89 290[22] Roman S M 1983 The theory of umbral calculus III J Math Anal Appl 95 528[23] Roman S M 1975 The Umbral Calculus (San Diego Academic)[24] Di Bucchianico A and Loeb D 2000 A selected survey of umbral calculus Electr J Combin DS3[25] Zachos C K 2007 Umbral deformations on discrete spacetime Preprint hep-th07102306[26] Levi D and Winternitz P 2005 Continuous symmetries of difference equations J Phys A 39 R1ndashR63[27] Levi D and Petrera M 2007 Continuous symmetries of the lattice potential KdV equation J Phys A 40

4141ndash4159[28] Levi D Tremblay S and Winternitz P 2007 Lie point symmetries of difference equations and lattices Preprint

math-ph07093112[29] Levi D Tremblay S and Winternitz P 2007 Lie symmetries of multidimensional difference equations Preprint

math-ph07093238[30] Hernandez Heredero R Levi D Petrera M and Scimiterna C 2007 Multiscale expansion on the lattice and

integrability of partial difference equations Preprint math-ph07105299[31] Lopez-Sendino J E Negro J del Olmo M A and Salgado E 2008 Discretizing quantum mechanics using

umbral calculus Preprint[32] Lopez-Sendino J E Negro J and del Olmo M A 2008 Discrete harmonic oscillator and umbral calculus

Preprint

V International Symposium on Quantum Theory and Symmetries IOP PublishingJournal of Physics Conference Series 128 (2008) 012056 doi1010881742-65961281012056

15