quantum magnetism with 7li - bec 5 poster.pdf · quantum magnetism with 7li niklas jepsen, ivana...

1
Quantum Magnetism with 7 Li Niklas Jepsen, Ivana Dimitrova, Jesse Amato-Grill, Michael Messer, Graciana Puentes, David Weld, David Pritchard, Wolfgang Ketterle MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics Department of Physics, Massachusetts Institute of Technology, Cambridge Introduction The Need 4 Speed Two-component Bose-Hubbard Hamiltonian H = - X hij i=, t σ a i σ a j σ + h .c . + 1 2 X i =,U σ n i σ (n i σ - 1)+ U ↑↓ X i n i n i Super-exchange dominated spin-interactions J = t 2 /U (a) Neighboring atoms U T (b) Virtual Excitation of energy U T (c) Particle tunnels back are enabled by (1) Light mass of Li-7 (2) Green optical lattice (3) Feshbach resonance E R = 2 k 2 2m U a · 8 π k (V 0 /E R ) 3/4 E R t E R · 4 π (V 0 /E R ) 3/4 e V 0 /E R Higher critical temperature for magnetic ordering (k B T c t 2 /U ) Faster spin dynamics within experimentally relevant timescales Possible Experiments Spin Dynamics I Spin transport by super-exchange interactions (d) Prepare a 50-50 spin mixture (e) Separate spins by magnetic field gradient (f) Apply optical lattice (g) Allow spins to mix (by decreasing magnetic field gradient) Quantum Simulation I Realization of 2-component Spin Hamiltonians I Anisotropic Heisenberg Model (XXZ model) H = X <i ,j > [λ z s z i s z j - λ xy (s x i s x j + s y i s y j )] - B z X i s z i λ z = t 2 t 2 2U ↑↓ - t 2 U ↑↑ - t 2 U ↓↓ λ xy = t t 2U ↑↓ I Magnetic phase diagram L.-M. Duan, E. Demler, and M. Lukin, Phys. Rev. Lett. Anti-Ferromagnet Z-Ferromagnet XY-Ferromagnet z ? Magnetic field gradient Particle Interactions U "# <U "" ,U ## U "" ,U ## <U "# λ z ? Magnetic field h z /6λ xy λ z xy L.-M. Duan, E. Demler, and M. Lukin, Phys. Rev. Lett. 91, 090402 (2003) Experimental Realization Experimental Model I Two-component Hamiltonian realized by 7 Li atoms in two hyperfine states placed in an optical lattice I Freely tunable experimental parameters: I Energy ratio t /U by optical lattice depth I On-site interaction energy U by a Feshbach resonance I Spin separating potential by a magnetic field gradient I Temperature by evaporation time Experimental Sequence 1. Zeeman-slowing and Magneto-optical trapping 2. Evaporative cooling in a plug trap 3. BEC in a dipole trap supported by a Feshbach resonance 4. Green lattice plus dipole trap Machine Table Design Realization Performance of the Magneto-optical Trap I Atom number: 3 · 10 10 I Loading time: 5s I Decay constants: 13s , 75s I Temperature: 10mK I Velocity: 1ms -1 0 5 10 15 20 0 0.2 0.4 0.6 0.8 1 Time in seconds Trapped fraction Loading 0 20 40 60 80 100 120 140 160 180 200 0 0.2 0.4 0.6 0.8 1 Time in seconds Trapped fraction Lifetime Funding Acknowledgements

Upload: others

Post on 28-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Quantum Magnetism with 7Li - BEC 5 poster.pdf · Quantum Magnetism with 7Li Niklas Jepsen, Ivana Dimitrova, Jesse Amato-Grill, Michael Messer, Graciana Puentes, David Weld, David

Quantum Magnetism with 7LiNiklas Jepsen, Ivana Dimitrova, Jesse Amato-Grill, Michael Messer, Graciana Puentes, David Weld, David Pritchard, Wolfgang Ketterle

MIT-Harvard Center for Ultracold Atoms, Research Laboratory of ElectronicsDepartment of Physics, Massachusetts Institute of Technology, Cambridge

IntroductionThe Need 4 Speed

Two-component Bose-Hubbard Hamiltonian

H = −∑

〈ij〉,σ=↑,↓

(tσa†iσajσ + h.c.

)+

12

i ,σ=↑,↓Uσniσ(niσ−1)+U↑↓

i

ni↑ni↓

Super-exchange dominated spin-interactions J = t2/U

(a) Neighboring atoms

U

T

(b) Virtual Excitation of energy U

T

(c) Particle tunnels back

are enabled by

(1) Light mass of Li-7

(2) Green optical lattice

(3) Feshbach resonance

ER =�2k2

2m

U ≈ a ·�

8

πk(V0/ER)3/4ER

t ≈ ER · 4√π

(V0/ER)3/4e−√

V0/ER

⇒ Higher critical temperature for magnetic ordering (kBTc ∼ t2/U)⇒ Faster spin dynamics within experimentally relevant timescales

Possible ExperimentsSpin Dynamics

ISpin transport by super-exchange interactions

(d)Prepare a 50-50 spinmixture

(e) Separate spins bymagnetic field gradient

(f)Apply optical lattice (g)Allow spins to mix (bydecreasing magnetic fieldgradient)

Quantum Simulation

IRealization of 2-component Spin HamiltoniansIAnisotropic Heisenberg Model (XXZ model)

H =∑

<i ,j>

[λzszi sz

j − λxy(sxi sx

j + syi sy

j )]− Bz

i

szi

λz =t2↑ + t2

↓2U↑↓

−t2↑

U↑↑−

t2↓

U↓↓λxy =

t↑t↓2U↑↓

IMagnetic phase diagram

L.-M. Duan, E. Demler, and M. Lukin, Phys. Rev. Lett. 91, 090402 (2003)

Anti-Ferromagnet

Z-Ferromagnet

XY-Ferromagnet

hz/6�?Magnetic field gradient

Part

icle

Inte

ract

ions

U"# < U"", U##

U"", U## < U"#

�z/�

?

L.-M. Duan, E. Demler, and M. Lukin, Phys. Rev. Lett. 91, 090402 (2003)

Anti-Ferromagnet

Z-Ferromagnet

XY-Ferromagnet

hz/6�?Magnetic field gradient

Part

icle

Inte

ract

ions

U"# < U"", U##

U"", U## < U"#

�z/�

?

hz/6�xy

�z/�

xy

L.-M. Duan, E. Demler, and M. Lukin, Phys. Rev. Lett. 91, 090402 (2003)

Anti-Ferromagnet

Z-Ferromagnet

XY-Ferromagnet

hz/6�?Magnetic field gradient

Part

icle

Inte

ract

ions

U"# < U"", U##

U"", U## < U"#

�z/�

?

Experimental RealizationExperimental Model

ITwo-component Hamiltonian realized by 7Li atoms in two hyperfine statesplaced in an optical lattice

IFreely tunable experimental parameters:IEnergy ratio t/U by optical lattice depthIOn-site interaction energy U by a Feshbach resonanceISpin separating potential by a magnetic field gradientITemperature by evaporation time

Experimental Sequence

1. Zeeman-slowing and Magneto-optical trapping2. Evaporative cooling in a plug trap3. BEC in a dipole trap supported by a Feshbach resonance4. Green lattice plus dipole trap

Machine Table

Design Realization

Performance of the Magneto-optical Trap

I Atom number: 3 · 1010

I Loading time: 5s

I Decay constants: 13s, 75s

I Temperature: 10mK

I Velocity: 1ms−1

0 5 10 15 200

0.2

0.4

0.6

0.8

1

Time in seconds

Tra

pped fra

ction

Loading

0 20 40 60 80 100 120 140 160 180 2000

0.2

0.4

0.6

0.8

1

Time in seconds

Tra

pped fra

ction

Lifetime

Funding Acknowledgements