quantum information processing with trapped electrons

52
Quantum information processing with trapped electrons Irene Marzoli Università di Camerino (Italy) International School of Physics “Enrico Fermi”

Upload: others

Post on 10-Apr-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Quantum information processing with trapped electrons

Quantum information processingwith trapped electrons

Irene Marzoli

Università di Camerino (Italy)

International School of Physics “Enrico Fermi”

Page 2: Quantum information processing with trapped electrons

Motivations

• Quantized external (motional) and internal (spin) degrees of freedom;

• Lighter mass brings to higher trapping frequencies;• Microwave and radiofrequency radiation;• Ground state cooling of cyclotron motion;• Electron spin states are very long lived;• Extremely good isolation from the environment

(negligible damping and reduced thermal fluctuations);• High-fidelity detection of the quantum state (spin and

cyclotron) via observation of quantum jumps.

Page 3: Quantum information processing with trapped electrons

Overview

• Basic properties of Penning traps• Qubit encoding and manipulation • Scalability • New trap geometries• Coupling qubits• Outlook and applications

Page 4: Quantum information processing with trapped electrons

STATIC electric and magneticFIELDS:

Homogeneous magnetic field →radial confinement (cyclotron motion)

Quadrupole potential → axial confinement and slow circular driftin the radial plane (magnetron motion)

How Penning traps workL. S. Brown and G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986)

F. G. Major, V. Gheorghe, and G. Werth, Charged particle traps (Springer, Heidelberg, 2005)

2

222

0 22),,(

dzyxVzyxV −+

=

B

Page 5: Quantum information processing with trapped electrons

Illustration of electron motion in a Penning trap

Fast radial oscillation: modified cyclotron motionSlow radial oscillation: magnetron motionRed: axial oscillation

Page 6: Quantum information processing with trapped electrons

Electron motion inside the trap

frequencycyclotron free thebeing ||with

motion axial 2

motionmagnetron 2

2

motioncyclotron 2

2

c

20

22cc

22cc

mBe

mdeV

z

z

z

−−≡

−+≡

+

ω

ω

ωωωω

ωωωω

For a trap size of 1 cm, a voltage V0 ~ 10 V, a magnetic field B ~ 3 T:• ω+/(2π) ~ 100 GHz modified cyclotron frequency,• ωz/(2π) ~ 100 MHz axial frequency,• ω-/(2π) ~ 10 kHz magnetron frequency.

Page 7: Quantum information processing with trapped electrons

Energy level structure

snklE sz 22

121

21 ωωωω h

hhh +⎟⎠⎞

⎜⎝⎛ ++⎟

⎠⎞

⎜⎝⎛ ++⎟

⎠⎞

⎜⎝⎛ +−= +−

with l, k,n = 0,1,2,Kand s = ±1

mBeg

s||

2≡ω n=0

n=2

n=1

s=-1

s=1

k=0k=1k=2k=3

l=2l=1l=0

Page 8: Quantum information processing with trapped electrons

The DiVincenzo’s criteria D. P. DiVincenzo, The Physical Implementation of Quantum Computation,

Fortschritte der Physik 48, 771 (2000).

• A scalable physical system with well defined qubits;

• The ability to initialize the state of the qubits;

• A universal set of quantum gates;

• Decoherence times much longer than the gate operation time;

• A qubit-specific measurement;

• Interconverting stationary and flying qubits;

• Transmitting qubits over long distances.

Page 9: Quantum information processing with trapped electrons
Page 10: Quantum information processing with trapped electrons

Qubits in the electron spin and cyclotron motion

{ }11,10,01,00

00

01

0210

11

12

cs ωω −

S. Stortini and I. M., Eur. Phys. J. D 32, 209 (2005)

Page 11: Quantum information processing with trapped electrons

Single qubit operations

Spin: resonant pulses at the spin transition frequencysω

)sincos(2

)(2

)(int tωttgtH yxs

B ωσσμ +Ω

=⋅=⋅−=hbσbμ

⎟⎠⎞

⎜⎝⎛ Ω−⎟

⎠⎞

⎜⎝⎛ Ω=

⎟⎠⎞

⎜⎝⎛ Ω−⎟

⎠⎞

⎜⎝⎛ Ω=

2sin0

2cos11

2sin1

2cos00

ss

ss

tit

tit

( ) ( ) ( )[ ]ytxtbt ˆsinˆcos0 ωω +=b

00

11

10

01

Page 12: Quantum information processing with trapped electrons

( ) ( )φω += tItI dcos

Cyclotron qubit manipulation

cs ωω −

( ) ( ) ( )φω += ttbt dcos1ρb

( ) 2/522

2

14/

3dac

daIb+

( ) ( )[ ] ( )φωσσμ++= tbtytxgH dyx

B cos2 1int

( ) ( )φφ σσω

μ ic

ic

c

BIP eaeam

bgH +−

−+ +≈ ~22

1int

h

in RWA

cωsω

00

11

10

01

22 2~zcc ωωω −≡

Page 13: Quantum information processing with trapped electrons

Unitary evolution operator

⎟⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜⎜

−=

CDDC

ABBA

M

*

*

000000

00000000001

),( φθ( )

⎟⎟⎠

⎞⎜⎜⎝

⎛−=

h

tiHtUIP

intexp)(

tm

bgc

B ωμθ ~21

h≡where

( )

( )( )2/sine

2/cos

)2/sin(e2/cos

θ

θ

θ

θ

φ

φ

i

i

iD

C

iBA

−≡

Page 14: Quantum information processing with trapped electrons

Composite pulse technique

A. M. Childs and I. L. Chuang, PRA 63, 012306 (2001); S. Gulde et al., Nature 421, 48 (2003)

Cyclotron: 1) Swap the cyclotron and spin qubits

2) Operate on the spin qubit

3) Swap back the cyclotron and spin qubits

⎟⎠⎞

⎜⎝⎛ 0,

2πM ⎟

⎠⎞

⎜⎝⎛ 0,

2πM⎟

⎠⎞

⎜⎝⎛

sM φπ ,2

2

⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛=

2cotarccos 2 πφs

⎟⎠⎞

⎜⎝⎛ ππ ,

2M ⎟

⎠⎞

⎜⎝⎛ + sM φππ ,

22

⎟⎠⎞

⎜⎝⎛ ππ ,

2M

SWAPPING

( ) 1−SWAPPING

Page 15: Quantum information processing with trapped electrons

Two-qubit gate: Conditional phase shift

11100100 δγβα +++

( ) ( )

⎟⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜⎜

−−

−−

=⎟⎠⎞

⎜⎝⎛××⎟

⎠⎞

⎜⎝⎛×

1000001000001000001000001

2,

20,

2,

20, ππππππ MMMM

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

==−

1000010000100001

)( πφPSC

11e100100 i δγβα φ+++C-PS

Page 16: Quantum information processing with trapped electrons

Towards electron‐electron entanglement

( )2

212

2222122

2122

21

)(with

)(~

zc

iizizii yxmzmmV

ωωωωω

δωωρω

ρ

ρ

−−=

−−+=x

L. Lamata et al., PRA 81, 022301 (2010)

Two electrons in a Penning trap with a weak rotating wall potential

Equilibrium position at x = ± x0/2 with

3/1

220

2

0 )(2 ⎥⎥⎦

⎢⎢⎣

−=

δωωπε ρ zmex

Page 17: Quantum information processing with trapped electrons

Two‐electron gate

⎥⎦

⎤⎢⎣

⎡−⎟⎟

⎞⎜⎜⎝

⎛−=Δ

Δ+=

ρzxB 2 zz

tzz a

ˆ2

)(

)cos(2

2

0CM

ρβ

ω

Axial drive at the anomaly frequency + magnetic bottle

Hamiltonian in interaction picture

( ) 4/12202

CM,2,1

CM,gate

242

)(

zc

B

tici

ti

iciI

mzg

eaeaH

ωωβμ

σσ

−=Ω

+Ω= Δ+−Δ−

=

+∑

h

h

For z0 ~ 100 μm, Ω/(2π) ~ 10 Hz

Page 18: Quantum information processing with trapped electrons

Applications

( ) acc

cc

ωπ at pulse- 02

11

drivecyclotron resonant weak 10

CM, CM,

CM,CM,

↓↑+↑↓⇒↓↓

↓↓⇒↓↓

[ ]∑ +−−+ ++−ΔΩ

=ji

jijiI nnH,

2off )1( σσσσh

Spin-spin entanglement

Two-qubit gates (off-resonance regime Δ>>Ω)

Entanglement of the spin and motional degrees of freedom (spin-cyclotron GHZ states useful for quantum metrology)

( )cc CM,CM,

202

1↓↓+↑↑=Ψ

Page 19: Quantum information processing with trapped electrons

Hyperbolical trap

Page 20: Quantum information processing with trapped electrons

From a cylindrical Penning trap…

• Microwave cavity [J. N. Tan &

G. Gabrielse, PRL 67, 3090

(1991)];

• Well defined cavity modes;

• Quality factor

• Cavity-induced suppression of spontaneous emission bysynchrotron radiation.

Q ≈ 5×1044105×=Q

S. Peil and G. Gabrielse, Phys. Rev. Lett. 83, 1287 (1999)

Page 21: Quantum information processing with trapped electrons

… to a planar Penning trap

S. Stahl, F. Galve, J. Alonso, S. Djekic, W. Quint, T. Valenzuela, J. Verdú, M. Vogel, and G. Werth, Eur. Phys. J. D 32, 139 (2005)

Electrodes printed on aninsulating substrate (Al2O3):• easily produced and miniaturized (thick- and thin-film technology)• open geometry for easy access with radiation• more traps on the same substrate to form a two-dimensional array

B

Page 22: Quantum information processing with trapped electrons

Silver plated Al2O3 ceramic disk with electrodes of

R0=2.5 mm, R1=5.8 mm, R2=9.1 mm and d=3 mm

Page 23: Quantum information processing with trapped electrons

Axial potential

R0=300 μm, R1=600 μm, and R2=900 μm

U0 =0 V, U1 =0.5 V, U2 =0 V (compensation voltage –0.417 V)

ωz/(2π) = 89.9 MHz (99.0 MHz solid line)

Page 24: Quantum information processing with trapped electrons

Operation of mm-sized planar trapsF. Galve and G. Werth, Proc. 2006 Non-Neutral Plasma Workshop, Åarhus (2006);

F. Galve, PhD thesis, Johannes-Gutenberg-Universität Mainz (2006)

Planar trap with D = 4.8 cm, operated at room temperature

Optimized parameters:U0=0 V, U1= -13.6 V, U2=33.6 Vωz/2π ~ 35 MHz

Cloud of electrons@ T = 100 mK

Planar trap with D = 2.0 cm, U0=0 V, U1= 0.5 V, U2= - 0.417 Vωz/2π ~ 100 MHzP. Bushev et al., Eur. Phys. J. D 50, 97 (2008)

Page 25: Quantum information processing with trapped electrons

Microscopic planar Penning trap withmultiple ring electrodes

Adjusting the control voltages:

from a large trap size withR0/1/2 = 1.5 / 3 / 4.5 mm

to a small trap withR0/1/2 = 50 / 100 / 150 μm

Change the distance of the electron to the electrode surfacefrom 6 mm to 50 μm

Page 26: Quantum information processing with trapped electrons

Microscopic planar Penning trap withmultiple ring electrodes

Adjusting the control voltages:variable size of the effectivecentral disc and ring electrodes

Change the distance of the electron to the electrode surfacefrom 6 mm to 50 μm

Page 27: Quantum information processing with trapped electrons

0 200 400 600 800 1000 12000

250

500

750

dist

ance

[µm

]

trap radius [µm]

Microscopic planar Penning trap withmultiple ring electrodes

Investigation of decoherenceeffects depending on theelectron-surface distance

Page 28: Quantum information processing with trapped electrons

Microscopic planar Penning trap withmultiple ring electrodes

Larger trap volumefor easier loading

Page 29: Quantum information processing with trapped electrons

Varying the coupling between spin state and axial motion

Place a small nickelpiece under the central

electrode

Large distance:homogeneous B field

for long coherence andsingle qubit operations

Short distance:inhomogeneous B field

for analysis and two-qubitoperations

Page 30: Quantum information processing with trapped electrons

Planar electron micro-trap arrays

10.5 mm

Interconnectedmicro traps withR0 = 300 μmR1 = 600 μmR2 = 900 μm

Flexible variationof the connectionsusing bonding padson the gold surface

Drawing courtesy of Michael Hellwig (University of Ulm/Mainz)

Page 31: Quantum information processing with trapped electrons

QUELE experimental setup

Page 32: Quantum information processing with trapped electrons

Microfabricated trap with multiple ring electrodes

The effective electrode size can vary from R0/1/2 = 1500/3000/4500 μmdown to R0/1/2 = 50/100/150 μm

Page 33: Quantum information processing with trapped electrons

Prototype planar trap (Univ. Mainz)

Page 34: Quantum information processing with trapped electrons

Onion trap (Univ. Ulm/Mainz)

Page 35: Quantum information processing with trapped electrons

Pixel trap (Univ. Ulm/Mainz)

Page 36: Quantum information processing with trapped electrons

Pixel trap

Page 37: Quantum information processing with trapped electrons

Mirror‐image planar Penning trap

r1r2

z

zc

V1

V2

V3

r2r1

r3

r3

J. Goldman and G. Gabrielse, Phys. Rev. A 81, 052335 (2010)J. Goldman and G. Gabrielse, Hyperfine Interact. 199, 279 (2011)

Page 38: Quantum information processing with trapped electrons

J. R. Castrejon-Pita and R. C. Thompson, Phys. Rev. A 32, 013405 (2005)

x

z

+

-

-+ +

+

B

y

Page 39: Quantum information processing with trapped electrons

Coplanar‐waveguide Penning trap

Page 40: Quantum information processing with trapped electrons

A planar trap at a distance x0 from the center of the substrate

Inhomogeneous magnetic field

(linear gradient)⎟⎠⎞

⎜⎝⎛ −−= jikB1 22

yxzb

F. Mintert and Ch. Wunderlich, Phys. Rev. Lett. 87, 257904 (2001)

Linear array of traps

Direct Coulomb interaction||4 0

2

,ji

Cji

eHrr −

=πε

Page 41: Quantum information processing with trapped electrons

The magnetic field gradient couples each electron internal (spin) and external (motional) degrees of freedom

( ) ( )iciicizziizizz

zisizizziciccimimm

NCi

aagaag

aaaaaaH

c

z,

)(,

)(~,,

,,,,,,

44

2++−+

+++

+−++

+++−≈

σσεωσεω

σωωωω

ωωhh

hhhh

zzz mmbe

mzbe

ωωωε

2|||| h

=Size of the

ground state

Page 42: Quantum information processing with trapped electrons

The Coulomb interaction couples axial and cyclotron motionof different electrons

( )( )( )jcicjcic

c

zji

jzjzizizjiC

ji

aaaa

aaaaH

,,,,,

,,,,,,

~++

++

+−

++≈

ωωξ

ξ

h

h

2

,,0

2

3,0

2

, 41

8 ⎟⎟⎠

⎞⎜⎜⎝

⎛ Δ==

jijijizji d

zd

edm

eπεωπε

ξh

Page 43: Quantum information processing with trapped electrons

Remove the coupling between internal and external

degrees of freedom with a canonical transformation

SS HeeH −→

( ) ( )∑=

++−+

⎥⎥⎦

⎢⎢⎣

⎡−+−=

N

iiciici

c

z

a

ziziz

zi aaaagS

1,

)(,

)(,, ~4

σσωω

ωωσε

csa ωωω −≡ anomaly frequency

Page 44: Quantum information processing with trapped electrons

( )[ ]∑∑<=

+−+≈N

ji

yj

yi

xj

xi

xyji

zj

zi

zji

ziis

N

is JJH σσσσσσσω ,,,

12

22hh

3,

4

2

40

422

,

2

, 1622 jizji

zji d

bm

eggJωπε

εξ h⎟⎠⎞

⎜⎝⎛=⎟

⎠⎞

⎜⎝⎛=

Effective spin-spin Hamiltonian

3,

4

2

40

426

42

,

26

, 64210

410

jicc

zji

xyji d

bm

eggJωπεω

ωεξ h⎟⎠⎞

⎜⎝⎛=⎟⎟

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛=

Dipolardecay

G. Ciaramicoli, I. M., and P. Tombesi, PRA 75, 032348 (2007)

Page 45: Quantum information processing with trapped electrons

⎟⎟⎠

⎞⎜⎜⎝

⎛+= 2

0

20,

20

,0 81

2 Bxb

mgeB i

isω

jzizji

N

jiizis

N

is JH ,,,,,0

1 22σσπσω ∑∑

>=

+≅′hh

3,

4

22

,

2

, 2 jizjiji d

bgJω

εξπ

∝=

the spin (qubit) frequencydepends on the trap position

the coupling constant dependson the magnetic gradient, the axial frequency, and the inter-

particle distance

G. Ciaramicoli, F. Galve, I.M., and P. Tombesi, Phys. Rev. A 72 , 042323 (2005)D. Mc Hugh and J. Twamley, Phys. Rev. A 71, 012315 (2005)

Array of trapped electrons as an NMR molecule

Page 46: Quantum information processing with trapped electrons

d = 100 μm d = 50 μm  d = 10 μm

b = 50 T/m 2.3 Hz 18 Hz 2300 Hz

b = 500 T/m 0.23 kHz 1.85 kHz 230 kHz

Estimate of the spin-spin coupling strength J

The axial frequency ωz /(2π) is 100 MHz

Page 47: Quantum information processing with trapped electrons

A channel for quantum communication

M. Avellino, A. J. Fisher, and S. Bose, Quantum Communication in Spin Systems with Long-Range Interactions, Phys. Rev. A 74, 012321 (2006).

( )[ ]∑∑<=

+−−=N

ji

yj

yi

xj

xi

xyji

zj

zi

zji

zis

N

is JJH σσσσσσσω ,,

12

2h

h

with Ji,jxy = Ji,j

z . Transmission fidelity, up to 20 spins, larger than 90%!The transfer time scales as the cube of the chain length.

Page 48: Quantum information processing with trapped electrons

Coupling the axial qubits with wires

Information exchange wire

The oscillating imagecharges of two electronsare coupled to each other

Coherent swappingof excitation between

the traps

1,0010,110 2121 ===→=== nnnn

J. Zurita-Sánchez and C. Henkel, PRA 73, 063825 (2006)J. Zurita-Sánchez and C. Henkel, New J. Phys. 10(08), 083021 (2008)

Page 49: Quantum information processing with trapped electrons

Coherent wire coupling

w0

3

20

2

20

20

2

12 21

2 CCRhR

mRe

z +⎟⎟⎠

⎞⎜⎜⎝

⎛+

=Ωω

where R0 is the central electrode radius and h is the height of the electron from the trap surface.

C0 ~ πε0R0 intrinsic electrode capacitanceCw capacitance of the wire

The shorter the wire and the smaller the trap, the stronger thecoherent coupling.

( )++ +Ω= 2,1,2,1,12 zzzz aaaaH h

Page 50: Quantum information processing with trapped electrons

Coupling strength

ωz/(2π)=100 MHzC0 = R0 x 100 fF mm-1 intrinsic electrode capacitanceCw = d x 66 fF mm-1 capacitance of the wire

d =100 mm 10 mm 1 mm 100 μm 10 μm

R0 =1 mm 0.12 Hz 1.0 Hz 3.2 Hz _ _

10 μm 1.3 kHz 13 kHz 130 kHz 990 kHz 3.2 MHz

Page 51: Quantum information processing with trapped electrons

• Universal quantum gates with trapped electrons;

• Scalable planar Penning traps of variable size and geometry;

• Coupling distant electrons;

• Design of an effective spin-spin interaction;

• Short distance quantum communication;

• Entanglement generation;

• Investigation of decoherence effects;

• Applications to quantum metrology;

• Integration into circuit QED.

Summary & future perspectives

Page 52: Quantum information processing with trapped electrons

• Giacomo Ciaramicoli

• Paolo Tombesi