quantum dynamics in low dimensional spin systems

90
Quantum dynamics in low dimensional spin systems University of Tokyo Seiji MIYASHITA YKIS2007 Kyoto 29 Nov. 2007

Upload: others

Post on 16-Jul-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Quantum dynamics in low dimensional spin systems

Quantum dynamics in low dimensional spin systems

University of TokyoSeiji MIYASHITA

YKIS2007 Kyoto29 Nov. 2007

Page 2: Quantum dynamics in low dimensional spin systems

Topics• Quantum dynamics under time-dependent fields

Quantum hysteresis in single molecular magnetsLandau-Zener process + Magnetic Foehn effects (Sweep)

Nontrivial Resonance and Coherent Destruction of Tunneling (AC)Quantum mechanical reentrant phenomena Quantum annealing

• Quantum dynamics between macroscopic statesQuantum spinodal phenomena of quantum phase transitionNagaoka magnetism

• Quantum ResponseESR in pure quantum dynamicESR in dissipative dynamics

• Related topicsOrigin of the energy gap and Gap control Potential trap

Page 3: Quantum dynamics in low dimensional spin systems

Quantum dynamics of magnetization

Molecular magnets

V6 Cu3 Ni4

V15Mn12 Fe8

Page 4: Quantum dynamics in low dimensional spin systems

Temperature dependence

Quantum tunneling+

Thermal effects

Resonant tunnelingL. Thomas, et al. Nature 383 (1996) 167.

Page 5: Quantum dynamics in low dimensional spin systems

Resonance tunneling

Page 6: Quantum dynamics in low dimensional spin systems

Control of quantum states inDiscrete energy structure

(Non)-adiabatic transitionLandau-Zener-Stueckelberg Mechanism

( )⎟⎟⎠

⎞⎜⎜⎝

−Δ

−−=vMM

Epoutin

2

2exp1 π

C. Zener, Proc. R. Soc. (London) Ser. A137 (1932) 696.

SM, JPSJ 64(1995) 3207, 65(1996) 2734.H. De Raedt et al, PRB56 (1997) 2734

Page 7: Quantum dynamics in low dimensional spin systems

Sweeping velocity dependence

W. Wernsdorfer et al. EPL 50 (2000) 552JPSJ 69 Suppl. 375.

Quantum interferenceBerry phase

W.Wernsdorfer & R. Sessoli:Science 284 (1999) 133

Page 8: Quantum dynamics in low dimensional spin systems

NMR (H) measurement on Fe8 Effect on the resonant tunneling

K1066.9

K1052.37

9,10

710,10

−−

−−

×=Δ

×=Δ

( )⎟⎟⎠

⎞⎜⎜⎝

−Δ

−−=vMM

Epoutin

2

2exp1 π

M. Ueda, S. Maegawa and S. Kitagawa:Phys. Rev. B66 (2002) 073309

Page 9: Quantum dynamics in low dimensional spin systems

Landau-Zener transitions in magnetization process

I. Chiorescu, et alPhys. Rev. Lett. 84 (2000) 3454.

I. Rousouchazakis, et al. PRL 94 (2005) 147204

K.Y. Choi, et al. PRL 96 (2006) 107202

V15

V6 Cu3

W.Wernsdorfer & R. Sessoli:Science 284 (1999) 133

Fe8

Page 10: Quantum dynamics in low dimensional spin systems

Chiorescu, W. Wernsdorfer, A. Mueller, H. Boegge, B. Barbara,Phys. Rev. Lett. 84 (2000) 3454.

Heat bath

sample

Phonon Bottleneck phenomenain V15

Plateau induced by thermal effect

Heat flow

Page 11: Quantum dynamics in low dimensional spin systems

Quantum Master Equation[ ]

( )

)0(1(e )(1(e

eTr/e ,Tr

tenvironmen ofReduction

,

,

,

1)((

0

1)((

BeqBeq

B

I

BI0

BI0

00

ρρσσ

ρρρρσ

ω

λ

ρρρ

ββ

κ

p)ppp)pp

p

p)iLp)iL −+−+=∂∂

===

+=

++=

++=

++==∂∂

−−−−

−−

∑∑

stt st

HH

kkk

k kkk

iLdstiLiLLit

bbH

XbbH

HHHH

HHHi

iLt η

HB

H0

HI

e.g. Photon dissipation and pumping : (SM., H. Ezaki, and E. Hanamura PRA 57 (1998) 2046)

[ ] ( )bbbbbbHit

+++ +−−=∂∂ σσσκσσ 2,0η

Lindblad form Stochastic Schrodinger Equation (antibunching, squeezingphoto emission)

Page 12: Quantum dynamics in low dimensional spin systems

General formulation

K. Saito, S. Takesue and SM. Phys. Rev. B61 (2000) 2397

[ ] [ ] [ ]( )++−−= ρρλρρ RXRXHidtd ,,,

( ) ( ) ( )ωωωζ

ζ β

−−=

−⎟⎠⎞

⎜⎝⎛ −

=

II

mXkEEnEEmRk mkmk ,)(

η

[ ]

{

}

( ) ( ) ( )

( ) ( ) ( ) density spectral the:0

1e)(e)(

)( operators sreservoie' theoffunction n correlatio time)()()()(e

)()(e)()()(e

,1

02

2

02

2

>==

−−−

=Φ=Φ

Φ−−−+

−−−Φ−

=

∫ ∫

∞−

∞−

ωωωωγω

ωωωγω

ρρ

ρρωωλ

ρρ

α

ωβω

ωβ

ωβω

IDI

DDtdt

tXtsXXsXt

sXtXtsXXdds

Hidt

d

ti

tti

  

         

  

η

η

η

η

η

η

No feedback effects

Page 13: Quantum dynamics in low dimensional spin systems

Adiabatic transition andRelaxation

K. Saito, SM, H.de Raedt, Phys. Rev. B60 (1999) 14553

0→T

Pure Quantum

+ Thermal Bath

Page 14: Quantum dynamics in low dimensional spin systems

Field sweeping with thermal bathFast sweeping Slow sweeping

vv <AD ADTH vvv <<ADv

K. Saito & SM. JPSJ (2001) 3385.

MagneticFoehn EffectLZS

Page 15: Quantum dynamics in low dimensional spin systems

Nonadiabatic Tr. & Heat-inflow

Magnetic Foehn Effect

LZ transition

Page 16: Quantum dynamics in low dimensional spin systems

Fe-rings

H. Nakano & SM, JPSJ 70(2001) 2151

Y. Ajiro & Y. Inagaki

Y. Narumi & K. Kindo

Fe2 Y. Shapira, et al PRB59 (1999) 1046

dHdM

dHdM

Page 17: Quantum dynamics in low dimensional spin systems

Fast Magnetization Tunneling in Tetranicke(II) SMM

En-Che Yang,et al: Inorg. Chem. 45 (2006) 529

V=0.002, ..... , 0.28T/s

[Ni(hmp)(dmb)Cl]4

Page 18: Quantum dynamics in low dimensional spin systems

LZ transition + Thermal relaxation + MFE

v=0.0512, ...., 0.0002

[ ] [ ] [ ]( )++−−= ρρρρ RXRXzHidtd ,,,

Page 19: Quantum dynamics in low dimensional spin systems

Two different types of sites ?Adiabatic change

Thermal relaxation

x 3/4

x 1/4

Page 20: Quantum dynamics in low dimensional spin systems

Possible magnetic process

Page 21: Quantum dynamics in low dimensional spin systems

Quantum dynamics under an AC field Non-trivial Resonance

( )∑−=i

ziSthtH ωcos)( W

( )( )

( ) ⎟⎠⎞

⎜⎝⎛

+Ω=

Δ

Δ−−=

−=Ω

Mc

Ep

p

tMtM

4

2exp1

cos12

0 ,cos)(

π

απω

δ

SM, K. Saito, H. De Daedt, Phys. Rev. Lett. 80 (1998) 1525.

)(tH

Page 22: Quantum dynamics in low dimensional spin systems

Amplitude dependence(Coherent destruction of tunneling)

F. Grossman, et al. Phys. Rev. Lett. 67 (1991) 516.Y. Kayamuma, PRB 47 (1993) 9940.SM, K. Saito, H. De Daedt, Phys. Rev. Lett. 80 (1998) 1525.

Page 23: Quantum dynamics in low dimensional spin systems

Eigenstates of Floquet operator and Hamiltonian

( ) ( )

jjj

ji

j

EH

TeTF

dssHiF

j

φφ

ε

ωπ

=

Ψ=Ψ

⎟⎠⎞⎜

⎝⎛ −=

∫/2

0)(expT

Page 24: Quantum dynamics in low dimensional spin systems

Switching by AC field

Y.Teranishi and H. Nakamura:PRL81(1998) 2032

Page 25: Quantum dynamics in low dimensional spin systems

0 1000

0

1

0 1000

0

1

Time

1p2p

Probability of the Level k Energy level as a function of time

With appropriate oscillation,We may change the state bya single operation.

K.Saito and Y. KayanumaPRB 70 201304(R) (2004)

Page 26: Quantum dynamics in low dimensional spin systems

AC field trap by Coherent Destruction of Tunneling (CDT)

∑∑ −−= +

iii

ij

tiji nxEecctH ω

E=0 diffusion CDT localization

Y. Kayanuma and K. Saito: arXiv:0708.3570

tieE ω

Page 27: Quantum dynamics in low dimensional spin systems

Reentrant behavior in quantum fluctuation

Page 28: Quantum dynamics in low dimensional spin systems

Ground state search:Quantum annealing

Page 29: Quantum dynamics in low dimensional spin systems

Quantum dynamics in TI model

XH=Γ

quantum tunneling: LZ in TI modelquantum nucleationquantum spinodal decomposition?collective motion?

Quantum fluctuation[ ] [ ] ,0, ,0,

)(

)()(1

≠≠

=

Γ−−−= ∑∑∑ +

HM

tHdtdi

tthJH

xi

zi

ii

x

ii

zi

z

i

zi

σσ

ψψ

σσσσ

η

Page 30: Quantum dynamics in low dimensional spin systems

∑∑ Γ−−= xi

z

jziJH σσσ

T

Γ

Ground state Phase transition

Thermal fluctuation

T. Ikegami, SM, H. Rieger: JPSJ 67 (1998) 2671

Quantum fluctuation

dim-)1(dim- +⇔ dd

Order phase

Page 31: Quantum dynamics in low dimensional spin systems

Phase diagram of Transverse Ising model

Hx

Hz

Hxc

Quantum disorder

Quantum Critical Point

Symmetry broken ordered state

M > 0

M < 0

T=0Field sweepMetastability,nucleationSpinodal decomposition

Order-disorder transition

J. Dziarmaga: PRL 95 (2005) 245701

Remaining DWs after quench

η/221

τπ Jn =

Page 32: Quantum dynamics in low dimensional spin systems

Critical phenomena in Energy spectrum E(H)

small gap: quantum tunneling-M M E1

level crossings: nucleation

collective motion?

symmetry breakinggap: E2

Page 33: Quantum dynamics in low dimensional spin systems

Landau-Zener-Stueckerberg scatteringat each crossings

H. De Raedt, S. Miyashita, K. Saito, D. Garcia-Pablos and N. Garcia:Phys. Rev. B56 (1997) 11761

Non-adiabatic transition at the avoided level crossing points

Page 34: Quantum dynamics in low dimensional spin systems

Field sweep

Hz-jump

Page 35: Quantum dynamics in low dimensional spin systems

Size-independent phenomenaa kind of collective motion(?)

Hsp

Page 36: Quantum dynamics in low dimensional spin systems

Hx=0.5 L=10,12,14,16

E2

E1 Hzc Hzc

HzcHzc

Page 37: Quantum dynamics in low dimensional spin systems

General structure

Densely populated levels

LEH /2ZC Δ=

Page 38: Quantum dynamics in low dimensional spin systems

Sweep velocity dependence

Page 39: Quantum dynamics in low dimensional spin systems

Dependence on Hx

Page 40: Quantum dynamics in low dimensional spin systems

Metastability and Spinodal decomposition

Mean field theory : classical spin

Page 41: Quantum dynamics in low dimensional spin systems

Quantum spinodal decomposition

( )

( ) 2/33/2SP

2/13/2

2

22

12

2J

,1 0

01

1

γ

γ

γσσ

σσσ

σ

σσσ

−=

Γ=

−=⇒=

=+−

Γ+−=

+−Γ−−=

JH

ddH

HJddE

HJE

0 1 20

1

2 Hsp(Hx) J=1 M(Hsp)=−0.5

Hx

Page 42: Quantum dynamics in low dimensional spin systems

Itinerant ferromagnetism and its dynamics

Y. Watanabe and SM: JPSJ 68 (1999) 3086.66 (1997) 2123,

Page 43: Quantum dynamics in low dimensional spin systems

Transition between AF and Nagaoka-Ferromagnetic state

Ground state change

Page 44: Quantum dynamics in low dimensional spin systems

Dynamics after decimation

( )

23

)22(:

0)22(:

2

2

=

=

=++

=+

↓↑∑

tS

initialet

initialGcc

GS

iHti

ii

( ) ( )( )'

')22(:11

0)22(:

'

2

initialet

initialGcc

GS

iHti

iiii

↓↑

=

=++++

=+

∑ δδ

Page 45: Quantum dynamics in low dimensional spin systems

Adiabatic decimation

( ) ( )↓↑↓↑++ +−++−= ∑ ∑ 55 nnnnUcccctH

ij iiiijjiij μ

σσσσσ

Page 46: Quantum dynamics in low dimensional spin systems

Quantum response inpure quantum and dissipative

environments

collaborators: Akira Ogasahara, Keiji Saito,Chikako Uchiyama, and Mizuhiko Saeki

Page 47: Quantum dynamics in low dimensional spin systems

ESR line shape in strongly interacting spin systemsTemperature-dependence of the shift and width in low-dimensional quantum spin systems

Y. Ajiro, et al: JPSJ 63 (1994) 859.

Spin trimer: 3CuCl2 ・2Dioxane

F F AF

Page 48: Quantum dynamics in low dimensional spin systems

Microscopic expression of the line shape from Hamiltonian

Kubo Formula

dttMM tixxxx

ωβωωχ −∞

∞−

− ∫−= e )()0()e1(21)("

R. Kubo: JPSJ 12 (1957) 570R. Kubo & K.Tomita JPSJ (1954) 888

ηη //)( )0()( iHtiHttiL MeeMetM −⇒=>>= mEmH m ||

( ) ))(()(" mnmn

mn EED −−= ∑ ωδωωχ

( ) ( ) )( ,ee

2

mn

x

EEmn EE

Z

nMmD nm −=−= −− ωπω ββ

Pure quantum dynamics

Page 49: Quantum dynamics in low dimensional spin systems

Shift from the PMR

( )∑∑

∑−−

⋅−=><

i

xi

i

zi

jiij

ij

StHSH

JH

ωcos

2

10

SS

Β== μγγω gη2

1 ,R HParamagnetic Resonance

Isotropic models

( )( )

Λ

Λ

+×⋅+

+⎟⎟⎠

⎞⎜⎜⎝

⎛ ⋅⋅−

⋅+

++−=

><

><

><

ijji

mn mn

mnnmnm

mn

nm

zj

ziz

yj

yi

xj

ij

xi

rrD

SSJSSSSJH

SSD

rSrSSS53

onperturbati

3

])([2

Perturbation

Page 50: Quantum dynamics in low dimensional spin systems

Studies on the line shape• F. Bloch: PR 70 (1946) 460. Nuclear Induction (Bloch equation)• J. H. Van Vleck: PR 74 (1948) 1168.

Dipolar broadening, and exchange narrowing• N. Bloembergen, E. M. Purcell and R. V. Pound: PR 73 (1948) 679.

Relaxation Effects in Nuclear Magnetic Resonance Absorption.• I. Solomon: PR 99 (1955) 559.

Relaxation processes in a system of two spins• F. Bloch: PR 105 (1957) 1206. General theory of relaxation

• A. Abragam: The principles of Nuclear Magnetism, Oxford Univ. Press (1978)

Page 51: Quantum dynamics in low dimensional spin systems

Shift & Width

Peak position

Peak width ( ) ( ))(

,ee

2

mn

x

EEmn

EEZ

nMmD nm

−=

−= −−

ω

πω ββ

τω /2 0)()0( ttixx emtMM −−≅

( )( ) 2Γ+−

Γ∝ 2

0

"ωω

ωχ

δωωω += R0

Page 52: Quantum dynamics in low dimensional spin systems

Nagata-Tazuke Dependence

(J. Kanamori & M.TachikiJPSJ 48 (1962) 50)

K. Nagata and Y. Tazuke: JPSJ 32 (1972) 337

1D Heisenberg model withDipole-dipole interaction

Page 53: Quantum dynamics in low dimensional spin systems

Frequency sweep abd Field sweep

( ) ( )( )00

00

" of smany value

"given :,"0

HH

HH

xx

Hxxxx

ωχ

ωχωχ

Page 54: Quantum dynamics in low dimensional spin systems

Line shape as an ensemble

of delta-function

( ) ( ))(

,ee

2

mn

x

EEmn

EEZ

nMmD nm

−=

−= −−

ω

πω ββ

N=8

Page 55: Quantum dynamics in low dimensional spin systems

Shift1D Heisenberg AF

Temperature Dependence

Angle Dependence

SM, T. Yoshino, A. OgasaharaJPSJ 68 (1999) 655

2/πθ =

0=θ

Page 56: Quantum dynamics in low dimensional spin systems

Width

Magic Angle R.E. Dietz, et al. PRL 26 (1971) 1186.T.T. Cheung, et al. PRB 17 (1978) 1266

SM, T. Yoshino, A. OgasaharaJPSJ 68 (1999) 655

parallelmagic angleperpendicular

Page 57: Quantum dynamics in low dimensional spin systems

Zigzag Chain

A. Ogasahara and S. MiyashitaJ. Phys. Soc. Jpn. Suppl. B 72,44-52 (2003).

Page 58: Quantum dynamics in low dimensional spin systems

Spiral structure Dipole-dipole interaction

r

r=0.1 parallel r=0.2

Page 59: Quantum dynamics in low dimensional spin systems

Response in dissipative dynamics

dttMM tixxxx

ωβωωχ −∞

∞−

− ∫−= e )()0()e1(21)("

pure quantum dynamicsηη //)( iHtxiHtx eMetM −=

quantum dynamics with dissipationRelaxation effects:

I. Solomon: PR 99 (1955) 559.Relaxation processes in a system of two spins

F. Bloch: PR 105 (1957) 1206.General theory of relaxation

Y. Hamano and F. Shibata: JPSJ 51 (1982) 1727,2721,2728.M. Saeki: Prog. Theor. Phys. 67 (1982) 1313. : relaxation method

Prog. Theor. Phys. 115 (2006) 1. : TCLE method

Page 60: Quantum dynamics in low dimensional spin systems

Dissipative dynamicsQuantum Master equation method

dttMM tixxxx

ωβωωχ −∞

∞−

− ∫−= e )()0()e1(21)("

Quantum master equation

( ) ( ) ηη //BTr)( tHHHixtHHHix BISBIS eMetM ++++=quantum dynamics with dissipation

[ ] [ ] [ ]( )++−−= ρρπλρρ RXRXHidtd ,,,

2

ηηF. Bloch: PR 105 (1957) 1206.S. Nakajima: PTP 20 (1958) 987, R. Zwanzig: J. Chem. Phys. 33 (1960) 1338.A. G. Redfield: Adv. Magn. Reson. 1 (1965) 1.H. Mori: PTP 33 (1965) 423. M. Tokuyama and H. Mori: PTP 55 (1976) 411.N. Hashitsume, F. Shibata and M. Shingu: J. Stat. Phys. 17 (1977) 155 & 171.T. Arimitsu and H. Umezawa: PTP 77 (1987) 32.

Page 61: Quantum dynamics in low dimensional spin systems

Formulation of line-shape with dissipative dynamics

( ) ( ) ( )

( ) ( )

[ ] [ ] [ ]( )

( )[ ] ( )[ ]

( )[ ] ( )[ ] )0(e)(

)(

),(,),(,,1

cf.

TrTr

00

00

/0

/0

/0

/0

//

tAttA

tALttAt

LtRXtRXHit

etett

etAAetAAeeAtA

Lt

iHtiHt

iHtiHtiHtiHt

ρρ

ρρ

ρρργρρ

ρρ

ρρ

=

=∂∂

≡+−=∂∂

=+

==

+

−−

η

ηη

ηηηη

K. Saito, S. Takesue and SM. Phys. Rev. B61 (2000) 2397.

Page 62: Quantum dynamics in low dimensional spin systems

Eigenmode of time-evolution operator

[ ] [ ] [ ]( )

( )

[ ]

)0( , ,)(

)0(e)( )( )(

)1,),(( , vector

)1,,( , ),(matrix

),(,),(,,1

21

2

→→

→→→→

==

=

=

==∂∂

=

=

+−=∂∂

+

ρφφφφρ

φφ

φεφ

ρρρρ

ρρ

ρ

ρργρρ

ε

ε

cect

et

iL

ttLtt

Nkk

Njiji

tRXtRXHit

Mmti

mm

mti

m

mim

Lt

i

i

Λ

Λ

Λη

I. Knezevic and D. K. Ferry: Phys. Rev. E66(2003) 016131,Phys. Rev.A 69 (2004) 012104.

S. Miyashita and K. Saito: Physica B 329-333 (2003) 1142.

Page 63: Quantum dynamics in low dimensional spin systems

Explicit form of the autocorrelation

( ) ( )[ ] ( ) ikMmti

M

mm

M

ikik

ki

M

ikik

iecAttAAAtA +−

∑∑∑ =⎟⎠⎞

⎜⎝⎛= )1(0 )(

2

φρ ε

( )( )

( ) ( )

( ) ( ) ikMm

M

mmik

i

M

ik

ikMm

M

mmik

i

iM

ik

ti

cAi

cAi

edteAtAi

+−

+−

∞−∞ −

∑∑

∑∑∫

−−=

−−

=

)1(

)1(0

1

1

2

2

φωε

φωε

ωεω

( )[ ] [ ] ( )[ ]→→

== ∑ 0210 , )( tAcecttA Mmti

mm

i ρφφφφρ ε Λ

( ) ( )[ ]

( ) ( ) ( )

( ) ( ) ( )( ) ikMm

M

mmmik

i

M

ikAA

ikMm

M

mmik

i

M

ik

ti

tiAA

dcA

dAidtetAA

dtetAAAtAi

+−

+−

∞ −

∞ −

∑∑

∑∑∫

−−

=

−−=

−=

)1(

)1(0

0

1ReIm

1

2

2

φωε

χ

φωε

χ

ω

ω

η

Line shape

Page 64: Quantum dynamics in low dimensional spin systems

Paramagnetic Resonance

( ) ( )ωωω

γβα

βωβω

−Φ=−

++=

−=

eeI

SSSX

SHH

zii

yii

i

xii

i

zi

1

20

1.02 =λ

01.02 =λ

( )ωχ xx

ω

∑ ∑ ⋅+−=i i

jizi SSJSHH

1.02 =λ

01.02 =λ

( )ωχ xx

ω

Exchange narrowing

Page 65: Quantum dynamics in low dimensional spin systems

Dipole-dipole interaction

1.02 =λ

01.02 =λ

( )ωχ xx

ω

zii

yii

i

xii

i iji

zi

SSSX

SSJSHH

γβα ++=

+⋅+−=

∑ ∑ DD

Page 66: Quantum dynamics in low dimensional spin systems

(Motional narrowing)Quantum narrowing effect

H. Onishi and SM: JPSJ 72(2003) 392

H = J 1+ α ui+1 − ui( )[ ]Si ⋅ Si+1i=1

N

∑ +1

2mpi

2 +k2

ui +1 − ui( )2⎡ ⎣

⎤ ⎦ i=1

N

◆ effects of quantum lattice fluctuationbecomes small when m small

uniform

dim erizat ion

Spin-Peierls systems

0

0.05

0.1

0.15

0.2

0 0.2 0.4 0.6 0.8 1 1.2

magnetic susceptibility

adiabaticm=10000m=100m=1uniform

χ / N

T

N=64

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

magnetic excitation spectrum

m=10000m=100m=1uniform

q / 2 π

E(q)

N=64

-1 0 1 2 3 4 5 6 70

10

20

30

40

50

lattice position i

imag

inar

y tim

e τ

m=1, T=0.02, N=64

Page 67: Quantum dynamics in low dimensional spin systems

Origin of the adiabatic change

etc.))()(( ))()((

)(

44

22

2

+−+

−+

−−=

−+ SSCSSEhSSDH

yx

zz

S: even Large S (S=10) Mn12, Fe8

S: odd (S=1/2) V15 No anisotropy & Kramers doublet

Dzyloshinskii-Moriya interaction

SM, &. N. Nagaosa, Prog. Theor. Phys. 106 (2001) 533

( ) D ∑ ×=ij

jiij SSDH

Page 68: Quantum dynamics in low dimensional spin systems

Energy structure with DM

|3/2,3/2>

|3/2,-1/2>

|1/2,a>

|1/2,b>

No adiabatic changeat H=0

ο0=θ

ο45=θ

ο90=θ

H. De Raedt, SM, K. Michielsen & M. Machida: PRB 70 (2004) 064401

I.Chiorescu, W. Wernsdorfer, A. Mueller, SM, and B. Barbara: PRB 67 (2003) 020402

Anisotropy of DM interaction

Page 69: Quantum dynamics in low dimensional spin systems

Nontrivial coherence

V=0.01 V=0.001

Page 70: Quantum dynamics in low dimensional spin systems

K.Y. Choi, et al. PRL 96 (2006) 107202

Cu3

H. De Raedt, SM, K. Michielsen,M. Machida: PRB 70 (2004) 064401

Page 71: Quantum dynamics in low dimensional spin systems

Directionally independent energy gap due toHyperfine interaction

SM, H.de Raedt and K. Michielsen:Prog. Thor. Phys.. 110 (2003) No.11

hgSgSAH zNB

zB )'( σμμσ +−⋅−=

Page 72: Quantum dynamics in low dimensional spin systems

Triangle case

hgSgSAH zNB

zB )'( σμμσ +−⋅−=

Page 73: Quantum dynamics in low dimensional spin systems

M(t) from the ground state

2

0 )()( ftHGP Ψ=

π/)1log(2

)()(2

0

PvE

tHGP f

−−=Δ

Ψ=

Apparent LZS relation

Page 74: Quantum dynamics in low dimensional spin systems

Gap control using hidden symmetries

Quantum interferenceBerry phase

Nontrivial control( ) ( )( ) xxyxz ShSSCSSEDSH −++−+−= −+ 44222 )(

W.Wernsdorfer & R. Sessoli:Science 284 (1999) 133

|'|2 mmxxxz hEShDSH −∝Δ⇒−−=

Transverse field

Page 75: Quantum dynamics in low dimensional spin systems

Non-monotonic gap due to Hx

( ) ( ) StHSSCSSEDSH yxz ⋅−++−+−= −+ )(2 44222

( )

( )( )

2,0

220 ,5.0

)1(2

0 ,5.0

22

2

222

±=Δ

−−+=

=+=+−−=

−+−−=

==

x

yxxx

xxx

xxyxz

M

SSHSDHCDE

SDSSHDS

SHSSSDHCDE

δδ

δ

Gaps open at crossing remain at (M,M+1) etc. => 2S crossings

E=0.50

E=0.40

Page 76: Quantum dynamics in low dimensional spin systems

Gap with the C term( ) ( ) StHSSCSSEDSH yxz ⋅−++−+−= −+ )(2 44222

Page 77: Quantum dynamics in low dimensional spin systems

Collapse of degeneracy?

P. Bruno: PRL 96 (2006) 117208

Page 78: Quantum dynamics in low dimensional spin systems

Temporal symmetry-breaking induced DM interaction

Charge transfer, Phonon,Orbital degree of freedom, etc.

NaV2O5 : charge fluctuation reduces the symmetry => virtual DM ESR Nojiri, et al.: JPSJ 69 (2000) 2291

Fe12 : configuration fluctuation reduces the symmetry => virtual DM M(H) H. Nakano and SM: JPSJ 71 (2002) 2580

SrCu2(BO3)2 : configuration fluctuation reduces the symmetry => Raman,ESRCepas and Zimann cond-mat 0401240SM & Ogasahara: JPSJ 72 (2003) 2350

Page 79: Quantum dynamics in low dimensional spin systems

Fluctuating DM interaction model

( ) ( )

[ ]

? 0tripletsinglet

0 ,

21

20

22112121

=

==

++++×⋅+⋅=

iH

zz

e

xipx

xdd

pm

xkSSHSSdSSJH

η

Page 80: Quantum dynamics in low dimensional spin systems

Smooth magnetization process

Page 81: Quantum dynamics in low dimensional spin systems

ポテンシャル移動による粒子運搬における量子効果

Particle trap by potential well--quantum dynamics for particle

conveyance--

S. Miyashita, Conveyance of quantum particles by a moving potential-wellJ. Phys. Soc. Jpn. {¥bf 76} (2007) 104003.

Page 82: Quantum dynamics in low dimensional spin systems

Eigenstates in moving frame

Page 83: Quantum dynamics in low dimensional spin systems

Sweep velocity dependence (flat)fast

Slow

1/V

Trap probability

Page 84: Quantum dynamics in low dimensional spin systems

Sweep velocity dependence (carry-up)fast medium slow

Page 85: Quantum dynamics in low dimensional spin systems

Adiabatic energy level as a function of the potential well

Successive Landau-Zener scattering

Page 86: Quantum dynamics in low dimensional spin systems

Adiabatic trap vs. tunneling

Y. N. Demkov and V. I. Osherov, Sov. Phys.-JEPT 26 1211 (1968)

Y. Kayanuma and S. Fukuchi, JPSJ 53 (1985) 1869,J. Phys. B18 (1985) 4089.

S. Tsuneyuki, et al. Surface Sci. 186 (1987) 26.

K. Kobayashi, et al. Physica A 265 (1999) 565.

Keiji Saito, et al., Phys. Rev. B75 (2007) 75, 214308.

Page 87: Quantum dynamics in low dimensional spin systems

Multiple free particles (fermion)N=0.1L

N=0.3L

Page 88: Quantum dynamics in low dimensional spin systems

Uniform acceleration

Page 89: Quantum dynamics in low dimensional spin systems

Adiabatic acceleration

0/

→=

aact

Page 90: Quantum dynamics in low dimensional spin systems

Thank you very much