quantifying resilience of electricity distribution networks to...

44
Quantifying Resilience of Electricity Distribution Networks to Cyberphysical Disruptions Devendra Shelar Joint work with Saurabh Amin and Ian Hiskens December 14, 2017

Upload: others

Post on 02-Mar-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

QuantifyingResilienceofElectricityDistributionNetworkstoCyberphysical Disruptions

Devendra ShelarJointworkwithSaurabh AminandIanHiskens

December14,2017

Page 2: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

Outline

•Motivation•Modeling• Networkmodel• Generalizeddisruptionmodel• Multi-regimeSystemOperator(defender)model

• Grid-connected,cascade,islanding

• Bilevel formulation• Bendersdecomposition

• Resourcedispatch• ControllableDGs,islandingcapabilities• Trilevelformulation– solutionapproach

2

Page 3: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

Cyberphysical disruptions

HurricaneMaria(September2017)• Customersfacing

blackoutsformonths

3

MetcalfSubstation(April2013)• Sniperattackon17

transformers• Telecommunicationcablescut• 15million$worthofdamage• 100mn $forsecurityupgrades

Ukraineattack(Dec2015-2016)• Firsteverblackouts

causedbyhackers• Controllersdamagedfor

months

Page 4: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

Attackscenarios

8

=>supply-demandimbalance(sudden/prolonged)

Page 5: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

ThreeregimesofSOoperation

Distributionsubstation

𝑃"#, 𝑄"#

𝑉"#

𝑃"', 𝑄"'

𝑉"'

Transmissionnetwork

−Δ𝑉

TNleveldisturbance

Attack-inducedDNlevelsupply-demandimbalance

SOresponse

DERdisconnect-- cascade

loaddisconnect

Microgridislanding

WhenTNandDNleveldisturbancesclear,thesystemcanreturntoitsnominalregime

5

Grid-connectedregime• Canabsorbtheimpactof

disturbances

Islandingmoderegime• Largerdisturbancesmay

forcemicrogrid islanding

Cascaderegime• Highseverityvoltage

excursions,thenmoreDERdisconnects(cascades),moreloadshedding

Page 6: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

Ourapproach

Mostattacker-defenderinteractionscanbemodeledas• Supply-demandimbalanceinducedbyattacker• Control(reactiveandproactive)bythesystemoperator

• Abstraction:Bilevel (ormultilevel)optimizationproblems• Flexibletoallowforbothcontinuousanddiscretevariables• Goodsolutionapproaches:Duality,KKTconditions,Benderscut,MILP• Providepracticallyusefulinsightstodeterminecriticalscenarios

• Supplementssimulationbasedapproaches• Forexample,co-simulationofcyberandpowersimulators

Page 7: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

Ourcontributions

Bilevel problem

Regime?

7

[1]Shelar D.andAmin.S- "SecurityassessmentofelectricitydistributionnetworksunderDERnodecompromises”[2]Shelar D.,Amin.SandHiskens I.– “TowardsResilience-AwareResourceAllocationandDispatchinElectricityDistributionNetworks”[3]Shelar D.,SunP.,Amin.SandZonouz S.- “CompromisingSecurityofEconomicDispatchsoftware”

Attackermodel Regulationobjectives

Defendermodel

Grid-Connected regime Cascade/Islanding regimes

DERdisruptions• GreedyApproach• IEEETCNS2016[1]

DNvulnerability tosimultaneousEVovercharging [2]

SecurityofEconomicDispatch• KKTbasedreformulation• DSN2017[3]

Multiple regimes• Innerproblem:mixed-integervars• Bendersdecomposition

Page 8: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

RelatedWork(partial)(T1)Interdictionandcascadingfailureanalysisofpowergrids• R.Baldick,K.Wood,D.Bienstock:NetworkInterdiction,Cascades• A.Verma,D.Bienstock:N-kvulnerabilityproblem• D.Papageorgiou,R.Alvarez,etal.:Powernetworkdefense• X.Wu,A.Conejo:GridDefensePlanning

(T2)Cyber-physicalsecurityofnetworkedcontrolsystems• E.Bitar,K.Poolla,AGiani:Dataintegrity,Observability• H.Sandberg,K.Johansson:Securecontrol,networkedcontrol• B.Sinopoli,J.Hespanha:Secureestimationanddiagnosis• T.Basar,C.Langbort:Networksecuritygames

8

Page 9: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

NetworkmodelPowerflowontreenetworks- Baran andWumodel(1989):• 𝒢 = (𝒩, ℰ)– treenetworkofnodesandedges• 𝑝𝑐2 , 𝑞𝑐2 - realandreactivenominalpowerdemandatnode𝑖• 𝑝𝑔2, 𝑞𝑔2 - realandreactivenominalpowerfromuncontrollablegenerationatnode𝑖

• 𝑉2- voltagemagnitudeatnode𝑖• z28 = r28 + 𝐣x28 - impedanceonline(𝑖, 𝑗)• 𝑃28, 𝑄28 - realandreactivepowerfromnode𝑖 to node𝑗• 𝑝2, 𝑞2 - netrealandreactivepowerconsumedatnode𝑖

9

Page 10: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

GeneralizeddisruptionmodelAttackerstrategy:𝑎 = 𝛿, 𝑝𝑑A,𝑞𝑑A, Δ𝑉"• 𝛿:attackvector,with𝛿2 = 1 ifnode𝑖 isattackedand0otherwise• Satisfy∑ 𝛿22 ≤ 𝑀 (attacker’sresourcebudget)

• 𝑝𝑑2A, 𝑞𝑑2A - attacker’sactive/reactivepowerdisturbanceatnode𝑖(generalmodel:capturesvariousattackscenarios)

• Δ𝑉": voltagedropatsubstationnode• DuetophysicaldisturbanceortemporaryfaultintheTN

Attackerstrategy:• Whichnodestocompromise?• Whatset-pointstochoose?

10

Page 11: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

Defendermodel:Grid-connectedregime

Defenderresponse:𝑑 = 𝛽

• 𝛽2 ∈ 𝛽2,1 :loadcontrolparameteratnode𝑖• 𝑝𝑐2 = 𝛽2𝑝𝑐2, 𝑞𝑐2 = 𝛽2𝑞𝑐2

Defenderresponse:Howmuchloadcontrolshouldbeexercised? 11

𝑝𝑐2 , 𝑞𝑐2 - nominalpowerdemandatnode𝑖

Page 12: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

Defendermodel:Cascaderegime

Defenderresponse:𝑑 = 𝛽, 𝑘𝑐, 𝑘𝑔

• 𝑘𝑐2 =0ifloadisconnected,1otherwise.• 𝑘𝑔2 =0ifuncontrolledDGisconnected,1otherwise.

• Voltageconstraintsforconnectivity:𝑘𝑐2 = 0 ⟹ 𝑉2 ∈ 𝑉'2,𝑉'

L2

𝑘𝑔2 = 0 ⟹ 𝑉2 ∈ 𝑉M2, 𝑉ML 2

Defenderresponse:

WhichloadsandDGstodisconnect? 12

voltageboundsforload(resp.generation)connectivity

Page 13: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

Defendermodel:Islandingregime

Defenderresponse:𝑑 = 𝛽, 𝑘𝑐, 𝑘𝑔, 𝑝𝑟, 𝑞𝑟, 𝑘𝑚

• 𝑝𝑟, 𝑞𝑟 - dispatchofresources(DERs)• 𝑘𝑚28 =1,ifline 𝑖, 𝑗 ∈ 𝜒isopen,0otherwise.

• Microgrid formationaffectspowerflowsandvoltages:

𝑘𝑚28 = 1 ⟹ Q𝑃28 = 𝑄28 = 0𝑉8 = 𝑉RST

𝑘𝑚28 = 0 ⟹ 𝑝𝑟8 = 0, 𝑞𝑟8 = 0

Defenderresponse:

Whichlinestodisconnect? 13

𝜒 - setoflineswhichcanbedisconnectedtoformmicrogrids

Page 14: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

Powerflowconstraintsbeforedisruption

• Netpowerconsumedatanode

• LinearPowerflows(LPF)

• Voltagedropequation

14

𝑃28 = U 𝑃8VV:8→V

+ 𝑝2

𝑄28 = U 𝑄8VV:8→V

+ 𝑞2

𝑉8 = 𝑉2 − (r28𝑃28 + x28𝑄28)

𝑝2 = 𝑝𝑐2 − 𝑝𝑔2𝑞2 = 𝑞𝑐2 − 𝑞𝑔2

𝑉" = 𝑉"RST

Page 15: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

Powerflowconstraintsafterdisruption

• Netpowerconsumedatanode

• LinearPowerflows(LPF)

• Voltagedropequation

15

𝑃28 = U 𝑃8VV:8→V

+ 𝑝2

𝑄28 = U 𝑄8VV:8→V

+ 𝑞2

𝑉8 = 𝑉2 − (r28𝑃28 + x28𝑄28)

𝑝2 = 𝑝𝑐2 − 𝑝𝑔2 + 𝛿2𝑝𝑑A2⋆

𝑞2 = 𝑞𝑐2 − 𝑞𝑔2 + 𝛿2𝑞𝑑A2⋆

𝑉" = 𝑉"RST − Δ𝑉"

Page 16: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

PowerflowconstraintsafterSOdispatch

• Netpowerconsumedatanode

• LinearPowerflows(LPF)

• Voltagedropequation

16

𝑃28 = U 𝑃8VV:8→V

+ 𝑝2

𝑄28 = U 𝑄8VV:8→V

+ 𝑞2

𝑉8 = 𝑉2 − (r28𝑃28 + x28𝑄28)

𝑝2 = 𝑝𝑐2 − 𝑝𝑔2 + 𝛿2𝑝𝑑A2⋆ − 𝑝𝑟2

𝑞2 = 𝑞𝑐2 − 𝑞𝑔2 + 𝛿2𝑞𝑑A2⋆ − 𝑞𝑟2

𝑉" = 𝑉"#YZ − Δ𝑉"

Page 17: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

Losses

Costofactivepowersupply:

Lossofvoltageregulation:where𝑡2 ≥ 𝑉2 − 𝑉RST

Costincurredduetoloadcontrol:

LossinGrid-Connectedregime:

17

𝐿^_ 𝑥 ≡ 𝑊cd𝑃"

𝐿ef 𝑥 ≡ 𝑊efU𝑡22∈g

,

𝐿h_ 𝑥 ≡U𝑊h_,2(1 − 𝛽2)2∈g

𝐿idjkM2Zk 𝑥 = 𝐿^_ 𝑥 + 𝐿ef 𝑥 + 𝐿h_(𝑥)

Page 18: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

Attacker-Defenderproblem[AD] - Bilevel formulation

AD ℒ ∶= maxA∈𝒜

minw∈𝒟

𝐿y_z{|}T{ 𝑥 𝑎, 𝑑

• Powerflows,DERcapabilities,voltagebounds• Defendermodel(resourcesandcapabilities)• Attackermodel(resourcesandcapabilities)

18

SystemState𝑥 = (𝑝, 𝑞, 𝑃, 𝑄, 𝑉)

Page 19: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

Attacker-Defenderproblem[AD] – Cascaderegime

AD ℒ ∶= maxA∈𝒜

minw∈𝒟

𝐿_~z{|}T{ 𝑥 𝑎, 𝑑

• Powerflows,DERcapabilities,voltagebounds• Defendermodel(resourcesandcapabilities)• Attackermodel(resourcesandcapabilities)

19

Where 𝐿_~z{|}T{ 𝑥 ≡ 𝐿y_z{|}T{ 𝑥 + 𝐿~� 𝑥• Costofloadshedding

𝐿~� 𝑥 ≡ U𝑊~�,2𝑘𝑐22∈𝒩

• 𝑊~�,2 :costofunitloadshedding

Page 20: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

Attacker-Defenderproblem[AD] – Islandingregime

AD ℒ ∶= maxA∈𝒜

minw∈𝒟

𝐿��z{|}T{ 𝑥 𝑎, 𝑑

• Powerflows,DERcapabilities,voltagebounds• Defendermodel(resourcesandcapabilities)• Attackermodel(resourcesandcapabilities)

20

Where𝐿��z{|}T{ 𝑥 ≡ 𝐿y_z{|}T{ 𝑥 + 𝐿�y 𝑥• Costofmicrogrid islanding

𝐿�y 𝑥 ≡ U 𝑊�y,28𝑘𝑚28(2,8)∈�

• 𝑊�y,28 :costofasinglemicrogrid islandformationatnode𝑗

Page 21: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

Benderscutapproach

2

5

6

7

8 12

11

9

1

0

3

4

10

21

Page 22: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

ComputationalresultsforCascaderegime

22

𝑝𝑑A⋆

𝑠𝑟L

Page 23: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

Loadsheddingvs����

23

Page 24: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

Noresponse- (multi-round)cascade

Worst-caselossundernodefenderresponse

Analgorithm• Initialcontingency• Forr=1,2,…• Computenewpowerflows• DetermineasingleloadsorDGthatmaximallyviolatesitsvoltagebounds• Disconnectthatdeviceaccordingly

24

Page 25: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

OnlinevsSequentialvsIslanding

25

ValueoftimelydisconnectionsValueoftimelyIslanding

Page 26: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

DefenderResponseandAllocation:Diversification

• SomeDERscontributeto𝐿efmorethan𝐿^_,andviceversa

26

2

5

6

7

8 12

11

9

1

0

3

4

10

Left lateral (l)

AC > V R

Right lateral (r)

V R > AC

Attacked

nodes

Specialcaseof𝜒 = 0,1

Page 27: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

DefenderResponseandAllocation:Diversification

• Diversificationholdsfor“heterogeneousallocation”withdownstreamDERswithmorereactivepower

27

2

5

6

7

8 12

11

9

1

0

3

4

10

Left lateral (l)

AC > V R

Right lateral (r)

V R > AC

Attacked

nodes

Page 28: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

• Post-contingencylossesarethesameforuniformvs.heterogeneousresourceallocations

• Pre-contingencyvoltageprofileisbetterforheterogeneousresourceallocation

Heterogeneousresourceallocationcansupportmoreloadsthanuniformone.

DefenderResponseandAllocation:Diversification

28

2

5

6

7

8 12

11

9

1

0

3

4

10

Left lateral (l)

AC > V R

Right lateral (r)

V R > AC

Attacked

nodes

Page 29: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

Bigpicture:Wheredoesitallfit?

minj∈ℛ

𝐶A��Y' 𝑥Y 𝑟 + maxA∈𝒜

minw∈𝒟

𝐿 𝑥' 𝑟, 𝑎, 𝑑

• Powerflows,DERcapabilities,voltagebounds• Defendermodel(resourcesandcapabilities)• Attackermodel(resourcesandcapabilities)

Resilience-AwareOptimalPowerFlow(RAOPF)

29

Page 30: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

Voltagedeviationmodel𝑉#YZ − 𝑉"' = −𝑉jkM 𝑃"Y − 𝑃"'

Frequencydeviationmodel𝑓#YZ − 𝑓' = −𝑓jkM 𝑄"Y − 𝑄"'

Pre-contingencyresourceallocation𝑟 = (𝑝𝑟Y, 𝑞𝑟Y)

30

Resiliency-AwareOPF- Trilevelformulation

Page 31: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

Finalexample:DNresiliencyisindeedimportant

31

DN1

DN2

DN3

DN4

60MW

60MW

60MW

60MW

𝐺�

𝐺� 240MW

120MW

DN1

DN2

DN3

DN4

60MW

60MW

60MW

60MW

𝐺�

𝐺�

120MW

120MW

0MW

𝑃� = 80MW

𝑃� = 80MW

DN1

DN2

DN3

DN4

30MW

30MW

30MW

30MW

𝐺�

𝐺�

40MW

80MW

• Normaloperatingscenario

• Lightningstrikes- recloser openstemporarily

• VoltagedropsattheDNsubstations

• Microgrid islandingreducesnetload

• InfeasiblepowerflowinTN

Page 32: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

Summary• ResourceallocationanddispatchinelectricityDNs

• understrategiccyber-physicalfailures• trilevelmixed-integerformulation

• Multi-regimedefenderresponse• ApplicationofBenderscutapproachforsolvingbilevel MILPs• Structuralresultsonworst-caseattacksandtradeoffsfordefenderresponse

Futurework• Designofdecentralizeddefenderresponseusingmessagepassing• Powerrestorationovermultipletimeperiods

32

Page 33: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

Optimalattackerset-pointsTypically,

• Smalllinelosses:incomparisontopowerflows

• Smallimpedances:sufficientlysmalllineresistances

Assumeforsimplicity:

• Noreversepowerflows:powerflowsfromsubstationtodownstream

33

Whatareoptimalattackerset-points?

Proposition:Foradefenderaction𝜙,andgivenattackerchoiceof𝛿,theoptimalattackerdisturbanceisgivenby:

𝑝𝑑A⋆ = 𝑝𝑔2Y, 𝑞𝑑A⋆ = 𝑞𝑔2Y + 𝒔𝒈𝒊 (incaseofattackonDERs)

𝑝𝑑A⋆ = 𝑝𝑐𝑒2Y, 𝑞𝑑A⋆ = 𝑞𝑐𝑒2Y (incaseofattackonEVs)

Page 34: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

Benderscutapproach

Proposition(Bienstock 2009)Optimalvalueattackproblemforafixedattack cardinality isequivalenttoaminimumcardinalityattackproblemforafixedtargetlossvalue.

34

Page 35: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

Benderscutapproach

AttackerMasterproblem• Initializewithnocuts

min U𝛿22

s. t. cuts𝛿2 ∈ {0,1}

Defenderproblem

minw∈𝒟

𝐿(𝑥)s.t.• Powerflows,DERcapabilities,voltagebounds• Defendermodel(resourcesandcapabilities)

Optimalvalueattack problemforafixedattackcardinality isequivalenttoaminimumcardinalityattack problemforafixedtargetloss value.

𝐿�AjMk� :minimumlossthattheattackerwantstoinflictuponthedefender

35

Page 36: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

Benderscut• Let𝛿2�kj befixedattackerstrategyforcurrentiteration• Let𝜙�(resp.𝜙d)denoteadefenderresponsewithfixedintegervariables• Thentheinnerproblembecomesalinearprogram(LP)

min 𝑐�𝑦

𝐶𝑦 = 𝑑 + 𝑄𝛿2�kj𝑠. 𝑡. 𝐴𝑦 ≥ 𝑏

𝐿𝑃 𝛿2�kj, 𝜙� ≡

• Let(𝜆⋆, 𝛼⋆)betheoptimaldualvariablesolutiontothisLP.Benderscutisgivenby:𝜆⋆�𝑏 + 𝛼⋆� 𝑑 + 𝑄𝛿 ≥ 𝐿�AjMk�

• Thiscuteliminates𝛿2�kj fromfeasiblespaceofattackerstrategies 36

Page 37: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

Controllabledistributedgenerationmodel

pr

qr

qr

Reactive power

Real

power

Reactive power

pr

qr

qr

Real

power

sr

37

0 ≤ 𝑝𝑟2 ≤ 𝑝𝑟2,𝑝𝑟2� + 𝑞𝑟2� ≤ 𝑠𝑟L2�𝑝𝑟2 - maximumactivepowercapacity𝑠𝑟L2 - apparentpowercapabilityofinverter

Polytopicmodelusedforcomputationalsimplicity

Page 38: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

UncontrolledcascadevsSequential

38

Valueoftimelyresponse

N=37nodes

Page 39: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

Microgrid islandformation

2

5

6

7

8 12

11

9

1

0

3

4

10

2

5

6

7

8 12

11

9

1

0

3

4

10

2

5

6

7

8 12

11

9

1

0

3

4

10

• 𝜒 = 0,1 , 4,5 , 4,9• 3outof8= 2 � possibleconfigurations– 13nodenetwork

39

Page 40: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

Linearpowerflowsafterdispatch

𝑝2 = 𝑝𝑐2 − 𝑝𝑔2 − 𝑝𝑟2 + 𝛿2𝑝𝑑A2⋆

𝑞2 = 𝑞𝑐2 − 𝑞𝑔2 − 𝑞𝑟2 + 𝛿2𝑞𝑑A2⋆Netpowerconsumedatanode𝑖

Powerflowonline𝑖 → 𝑗

Voltagedropequations

40

𝑉" = 𝑉"Y − Δ𝜈

𝑃28 = U 𝑃8VV:8→V

+ 𝑝2

𝑄28 = U 𝑄8VV:8→V

+ 𝑞2

𝑉8 = 𝑉2 −(𝑟28𝑃28 + 𝑥28𝑄28)

Page 41: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

Islandingregime(cont’d)Updatedconstraints

• An(emergency)distributedgeneratorisstartedatnode𝑗 inamicrogrid island𝑝𝑟8 ≤ 𝑠𝑟L8𝑘𝑚28𝑞𝑟 ≤ 𝑠𝑟L8𝑘𝑚28

Where𝑝𝑟8 ,𝑞𝑟8 isactiveandreactivepoweroutput;𝑠𝑟L8 istheapparentpowercapabilityoftheemergencygeneratoratnode𝑗

• Thenetpowerflowintothenode𝑗 fromthesubstationis0,i.e.𝑘𝑚28 = 1 ⟹ 𝑃28 = 𝑄28 = 0

• Thenodalvoltageatnode𝑗 isthenominalvoltage,

𝑉8 = Q𝑉2 − 𝑟28𝑃28 + 𝑥28𝑄28 , if𝑘𝑚28 = 0𝑉RST, otherwise.

41

Page 42: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

What’snext?

42

•Whatisagoodresiliencymetric?• AllowableΔ 𝑉, 𝑝, 𝑞 withoutexceedingtarget20%𝐿µ¶

•Generalcase 𝜒 > 1• Diversification?• SolutionapproachforRAOPF(trilevel)?

Page 43: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

Resiliency-awareResourceAllocation

StageII- Adversarialnodedisruptionsa. Whichnodestocompromise(𝛿)?b. Set-pointmanipulation(𝑠𝑝A)?

StageI- AllocationofDERsoverradialnetworksa. Sizeandlocationb. Activeandreactivepowersetpoints (𝑥#)?

StageIII- Optimaldispatch/response(𝑥')a. Maintainvoltageb. Exerciseloadcontrolornot

Goals:1. Determinethebestresourceallocation2. Identifyvulnerable/criticalnodes3. Determineoptimaldispatchpost-contingency 43

Page 44: Quantifying Resilience of Electricity Distribution Networks to ...shelard/slides/nexus_energy_seminar...islanding When TN and DN level disturbances clear, the system can return to

Microgrid formation(cont’d)Updatedconstraints

𝑝2 = 𝑝𝑐2 − 𝑝𝑔2 − 𝑝𝑟2 + 𝛿2𝑝𝑑A2⋆ − 𝑝𝑒2

𝑞2 = 𝑞𝑐2 − 𝑞𝑔2 − 𝑞𝑟2 + 𝛿2𝑞𝑑A2⋆ − 𝑞𝑒2

|𝑃28| ≤ 𝐶𝑎𝑝28 1− 𝑘𝑚28|𝑄28 | ≤ 𝐶𝑎𝑝28 1− 𝑘𝑚28

|𝜈8 − 𝜈#YZ | ≤ 1 − 𝑘𝑚28

|𝜈8 − 𝜈2 − 2 𝑟28𝑃28 + 𝑥28𝑄28 | ≤ 𝑘𝑚28

• Anemergencygeneratorofmicrogrid isononlyifitisinislandedstate𝑝𝑒8 ≤ 𝑠𝑒8 𝑘𝑚28𝑞𝑒8 ≤ 𝑠𝑒8 𝑘𝑚28

44