q: why do the sun and planets have magnetic fields? · •liquid iron (terrestrial planets)...

53
Q: Why do the Sun and planets have magnetic fields? Dana Longcope Montana State University w/ liberal “borrowing” from Bagenal, Stanley, Christensen, Schrijver, Charbonneau, …

Upload: others

Post on 29-Jan-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

  • Q: Why do the Sun and planets have magnetic fields?

    Dana LongcopeMontana State University

    w/ liberal “borrowing” from Bagenal, Stanley, Christensen, Schrijver, Charbonneau, …

  • Q: Why do the Sun and planets have magnetic fields?

    A: They all have dynamos

  • • Plasma (stars)• Liquid iron (terrestrial planets)• Metallic hydrogen (gas giants)• Ionized water (ice giants)

    • Complex turbulent flows• Rotation: breaks mirror-symmetry

    not required, but needed for large-scale, organized fields

    From Stanley 2013

    • Figure of merit: Magnetic Reynold’s #

    Rm = velocity × size × conductivity

  • A Toy w/ all ingredientsVdisk = vBdr =

    0

    ∫ Ωr( )Bdr =0

    ∫ 12π ΩΦdiskconducting fluidmulti-partconductor

    complex motions

    differentialmotion of parts

    lack of mirror symmetry

    vE

    E = v×B• No magnets• No batteries• No (net) charge

  • A Toy w/ all ingredientsVdisk = vBdr =

    0

    ∫ Ωr( )Bdr =0

    ∫ 12π ΩΦdisk

    IR = Ω2π

    Φdisk − LdIdt=Ω2π

    Mw,d I − LdIdt

    dIdt=

    Ω2π

    Mw,dL

    −RL

    #

    $%

    &

    '(I = γ I

    motionalEMF

    backEMF

    I(t) = I0eγt

    γ > 0 ⇔ Ω > 2π RMw,d

    Growth:

    v> 2π 1/σ

    µ0=

    2πµ0σ

    2

    Rm = µ0σ v > 2π

    generation dissipation

    Growth:

    conducting fluidmulti-partconductor

    complex motions

    differentialmotion of parts

    lack of mirror symmetry

  • v v I(t) = I0eγt

    Toy dynamo amplifies fields of either sign:two attracting states

    I0 > 0 I0 < 0

    • Reverse velocity AND reflect in mirror è still amplifies• Do one and not the other è no amplification

  • Will I grow forever?

    τ = Frdr =0

    ∫ IBr dr =0

    ∫ 12π IΦdisk

    FF = I×B I

    Torque on disk carrying current:

    =Mw,d2π

    I 2

    PΩ =Ωτ =Ω2π

    Mw,d I2

    Power needed to turn disk:

    PΩ − I2R = Ω

    2πMw,d − R

    #

    $%

    &

    '(I 2 = γLI 2

    Subtracting Ohmic losses

    =ddt

    12 LI

    2( )Stored in energy of B

    IW

    Wcr

  • Reality: Conducting fluid – MHD

    ∂B∂t

    = −∇×E =∇× v×B - 1σJ

    %

    &'(

    )*

    ∂ρ∂t

    = −∇⋅ (ρv)

    Fluid dynamics

    Faraday s+ Ohm s laws

    η =1µ0σ

    magnetic diffusivity

    Effect of B on conducting fluid

    Lorentz force

    Ohmic heat

    J = 1µ 0

    ∇×B

    ρcv∂T∂t

    + v ⋅∇T$

    %&

    '

    ()= − 23T∇⋅ v +∇v :

    !σ + "Q+ 1

    σJ 2

    ρ∂v∂t+ρ(v ⋅∇)v = -∇p+ ρg +∇⋅

    !σ + J×B

    ∇× −1σJ

    $

    %&'

    ()=∇× −

    1σµ0

    ∇×B$

    %&

    '

    ()=η∇

    2B

  • ρcv∂T∂t

    + v ⋅∇T$

    %&

    '

    ()= − 23T∇⋅ v +∇v :

    !σ + "Q+ 1

    σJ 2

    Fluid dynamics

    Faraday s+ Ohm s laws

    If B is weak: kinematic equations

    Linear equation for B(x,t) – solve w/ known v(x,t)

    Reality: Conducting fluid – MHD

    ∂B∂t

    + (v ⋅∇)B = (B ⋅∇)v−B(∇⋅ v)+η∇2B

    ρ∂v∂t+ρ(v ⋅∇)v = -∇p+ ρg +∇⋅

    !σ + J×B

    Traditional (neutral) fluid –solve first

    ∂ρ∂t

    = −∇⋅ (ρv)

  • Dynamo action in MHD

    DBDt MBvIvB ⋅=⋅∇−∇⋅ )]([

    If M has a positive eigenvalue l > 0 B can grow exponentially: DYNAMO ACTION

    ∂B∂t

    + (v ⋅∇)B = (B ⋅∇)v−B(∇⋅ v)+η∇2B

    λ η∇2

    γ ~ v−η2=v1− ηv

    "

    #$

    %

    &' Rm =

    vη= µ0vσ > 1Growth:

    • B à -B : same e-vector è same l• Reverse velocity AND reflect in mirror è l à l• Do one and not the other è l à -l

  • Q: What kind of flow has l > 0? y

    x

    v(x, y) = v0xx̂− yŷ( )

    M =∂vx /∂x ∂vx /∂y∂vy /∂x ∂vy /∂y

    "

    #

    $$

    %

    &

    ''=v0

    1 00 −1

    "

    #$

    %

    &'

    M ⋅ B00

    "

    #$$

    %

    &''=v0⋅

    B00

    "

    #$$

    %

    &''

    λ = +v0

  • Q: What kind of flow has l > 0? y

    x

    v(x, y) = v0xx̂− yŷ( )

    M =∂vx /∂x ∂vx /∂y∂vy /∂x ∂vy /∂y

    "

    #

    $$

    %

    &

    ''=v0

    1 00 −1

    "

    #$

    %

    &'

    A: stretching flow

    B = B0x̂

    M ⋅ B00

    "

    #$$

    %

    &''=v0⋅

    B00

    "

    #$$

    %

    &''

    λ = +v0

  • Q: What kind of flow has l > 0? y

    x

    v(x, y) = v0xx̂− yŷ( )

    M =∂vx /∂x ∂vx /∂y∂vy /∂x ∂vy /∂y

    "

    #

    $$

    %

    &

    ''=v0

    1 00 −1

    "

    #$

    %

    &'

    A: stretching flow

    B = B0x̂

    M ⋅ B00

    "

    #$$

    %

    &''=v0⋅

    B00

    "

    #$$

    %

    &''

    λ = +v0

    Aspect ratio growth~ Lyapunov exponent

  • Q: What kind of flow has l > 0? • Turbulent flows have pos. Lyapunov exponent: l > 0• tend to stretch balls into strands• tend to amplify fields

    • Conditions for turbulence:• driving: e.g. Rayleigh-Taylor instability• viscosity fights driving – must be small

    • Rotation can organize turbulence:align stretching direction à azimuthal(toroidal) – known as W-effect– must be significant w.r.t. fluid motion

    Re = vυ>>1

    h [m2/s] u [m2/s] L [m] v [m/s] W [rad/s] Rm Re RoSun (CZ) 1 10-2 108 1 10-6 108 1010 10-2

    Earth (core) 1 10-5 106 10-4 10-4 102 107 10-6

    Ro = vΩ

  • • Plasma (stars)• Liquid iron (terrestrial planets)• Metallic hydrogen (gas giants)• Ionized water (ice giants)

    • Complex turbulent flows• Rotation: breaks mirror-symmetry

    not required, but needed for large-scale, organized fields

    From Stanley 2013

    • Figure of merit: Magnetic Reynold’s #

    Rm = velocity × size × conductivity

  • How this works for Earth

    Turbulent conducting fluid: DYNAMO

    Non-conducting mantle

    ∇×B = µ0J ≠ 0

    ∇×B = µ0J = 0B = −∇χ ∇⋅B = −∇2χ = 0

    χ (r,θ,φ) = g,m,m∑ Ym (θ,φ)

    R⊕r

    #

    $%

    &

    '(+1

    Br (r,θ,φ) = −∂χ∂r

    = (+1) g,m,m∑ Ym (θ,φ)

    R⊕r

    %

    &'

    (

    )*+2

    Complex flows – complex field

    simplifies w/ increasing r

    Chris

    tens

    en

  • A Spherical Harmonic Refresherl = 1dipole

    Y10 (θ,ϕ ) ~ cosθ Y1

    ±1(θ,ϕ ) ~ sinθ e±iϕ

    !g1,±1 ~ g1,1 ∓ ih1,1 (g1,0,g1,1,h1,1)↔!µ dipole moment

    l = 2quadrupole Y2

    0 (θ,ϕ ) ~ 34 cos2θ + 14 Y2±2 (θ,ϕ ) ~ sinθ e±2iϕ

    (g2,0,g2,1,h2,1,g2,2,h2,2 )↔!Q

    quadrupoletensor

    higher l: Yℓ0 (θ,ϕ ) ~ cosℓθ +" Yℓ

    ±ℓ(θ,ϕ ) ~ sinθ e±ℓiϕ

    Finer scale: l periods around circleMore components: 2l +1 real coefficients

  • !gℓ,m

    Br (r,θ,φ) = (ℓ+1) "gℓ,mℓ,m∑ Yℓm (θ,φ)

    R⊕r

    #

    $%

    &

    '(ℓ+2

    Dominated by low l

    More even distribution over l

    Chris

    tens

    en

    Simplifies w/ radius

    @ surface

    @ core-mantle boundary

    2ℓ+2 "gℓ,m

    dipole

    e-1.26 l

  • Observation: what Br looks like today@ core-mantle boundary: lower boundary of potential region

  • Simplifies w/ increasing rBr (r,θ,φ) = −

    ∂χ∂r

    = (+1) g,m,m∑ Ym (θ,φ)

    R⊕r

    %

    &'

    (

    )*+2

  • Evolution of field@ surface for 100 years

  • Evolution of field@ core-mantle boundary for 100 years

  • ∂B∂t

    + (v ⋅∇)B = (B ⋅∇)v−B(∇⋅ v)+η∇2B

    Use evolution to infer fluid velocity

    ∂Br∂t

    +∇⋅ (vBr ) = 0

    ∇⋅ v = 0

    Subsonic flow,Ignore stratification

    Ignore diffusion

    v ~ 3 X 10-4 m/s èDx = 1,000 km è in 100 years

    known

    Chris

    tens

    en

  • Longer-term evolution

    normal reversed

    Like toy dynamo, Earth works in 2 modes. Flips between them seemingly at random

    Chris

    tens

    en

  • Model geodynamo

    • Glatzmaier & Roberts 1995

    • Numerical solution of MHD

    • Toroidal structure inside convectingcore

    http

    ://w

    ww.

    es.u

    csc.

    edu/

    ~gla

    tz/g

    eody

    nam

    o.ht

    ml

  • Other planets

    Chris

    tens

    en

  • Other planetsChristensen

  • What that means

    Christensen

  • Stanley

  • Stanley

  • Level of saturation

    B saturates(exp growth ends) when driving power – thermal conduction q0 –balances Ohmicdissipation

    Rc = 0.4 R

    Rc = 0.6 R

    from Christensen

    dimensionless factors

  • How it works in the Sun

    • Entire Star: H/He plasma• Convection Zone (CZ)• Outer 200,000 km• Turbulence:

    Re = 1010• Thermally driven• Good conductor

    Rm = 108• Rotation effective

    Ro = 10-2• Corona – conductive but

    tenuous:J smaller (~0?)

  • Evidence of the dynamoMagnetic field where there are sunspots

    Field outside sunspots and elsewhere too

  • Evidence of the dynamo

    Field is fibril

  • Evidence of the dynamo

    +

    +

    +(-)

    (-)

    (-)

    Field orientation: mostly toroidal

  • Synoptic plot: unwrapped view built up over time

  • Dynamo comparison: Sun vs. Earth

    Rm = 108

    Rm = 102

    Ro = 10-2

    Ro = 10-6

  • ∇×B = µ0J = 0Assume corona has small (negligible) current: B = −∇χ

    ∇⋅B = −∇2χ = 0 χ (r,θ,φ) = g,m,m∑ Ym (θ,φ)

    R⊕r

    #

    $%

    &

    '(+1

  • r = R⨀

    r = 2.5 R⨀

  • Cliver et. al 2013

  • Stanley

  • Convection zones

    7000 6000 5000 40008000

    R⨀

    2 R⨀

    F0 F5 G0 G5 K0 K5

    R*

    dce

    Fullyradiative

  • Other stars

    Activity on mainsequence:types F à M

    B-V > 0.4

    Evidence ofmagnetic activity

    (From Linsky 1985)

  • Explaining Activity Levels

    IndividualVariation

    Variancewithinclass

  • The Dynamo Number

    2

    4dyn 'h

    a dND

    W=

    ( ) dW´Ñ׺ ~dyn vvta

    c

    dt

    hh2

    turb ~=

    Parker sDynamo #

    Dynamo is linear inst-ability for ND > Ncrit

    Dynamo a-effect:

    ddrd WW

    =W ~'

    22obs

    2 )/(~)(~ -- =W RoPN ccD tt

  • Activity vs. Rossby Number

    (from Noyes et al. 1984)

    41 Local stars Pobs from S(t)

    young stars

    old stars

  • (from Patten and Simon 1996)

    • Stars in open cluster 2391 (30My old)• RX from ROSAT observations• Rotation periods Pobs from optical photometry• NR = Ro = Pobs/tc

    Activity vs. Rossby Number

  • Summary

    • Magnetic fields – all from dynamos– Conducting fluid– Complex motions w/ enough umph

    • Create complex fields• Fields evolve in time – reverse occasionally• Differences from different parameters:

    Rm, Re, Ro