q 2-31 min 3a + 4b s.t. 1a + 3b ≧ 6 1a + 1b ≧ 4 a, b ≧ 0 b = - 1/3a + 2 b = - a + 4

60
Q 2-31 Min 3A + 4B s.t. 1A + 3B 6 1A + 1B 4 A, B 0 B = - 1/3A + 2 B = - A + 4

Post on 19-Dec-2015

243 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Q 2-31

Min 3A + 4B

s.t.

1A + 3B ≧ 6

1A + 1B ≧ 4

A, B ≧ 0

B = - 1/3A + 2

B = - A + 4

Page 2: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Feasible Region

A

B

B = - 1/3A + 2

B = - A + 4

Objective Function = 3A + 4BOptimal Solution A = 3, B = 1

Objective Function Value = 3(3) + 4(1) = 13

Page 3: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Q 2-38 a.

Let

S = yards of the standard grade material / frame

P = yards of the professional grade material / frameMin 7.50S + 9.00Ps.t.

0.10S + 0.30P ≧ 6 carbon fiber (at least 20% of 30 yards)

0.06S + 0.12P ≦ 3 kevlar (no more than 10% of 30 yards)

S + P = 30 totalS, P ≧ 0

Page 4: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Total

Carbon fiberKevlar

Feasible region is the line segment

Extreme PointS = 10, P = 20

S

P

Extreme PointS = 15, P = 15

Page 5: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Q 2-38 c.

Extreme Point Cost

(15, 15) 7.50(15) + 9.00(15) = 247.50

(10, 20) 7.50(10) + 9.00(20) = 255.00

255.00 > 247.50

Therefore, the optimal solution is

S = 15, P = 15

Page 6: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Q 2-38 d.

Min 7.50S + 8.00Ps.t.

0.10S + 0.30P ≧ 6 carbon fiber (at least 20% of 30 yards)

0.06S + 0.12P ≦ 3 kevlar (no more than 10% of 30 yards)

S + P = 30 totalS, P ≧ 0

Changing is only this value(From 9.00 to 8.00)

Therefore, optimal solution does not change: S = 15, and P =15New optimal solution value = 7.50(15) + 8(15) = $232.50

Page 7: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Q 2-38 e.

At $7.40 per yard, the optimal solution is S = 10,

P = 20.

So, the optimal solution is changed.

The value of the optimal solution is reduced to

7.50 (10) + 7.40 (20) = 223.00.

A lower price for the professional grade will

change the optimal solution.

Page 8: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Q 3-7 a.

From figure 3.14,

Optimal solution: U = 800, H = 1200

Estimated Annual Return

3(800) + 5(1200) = $8400

Page 9: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Q 3-7 b.

Constraints 1 and 2 because of 0 at

Slack/Surplus column. All funds available

are being fully utilized and the maximum

risk is being incurred.

Page 10: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Q 3-7 c.

Constraint Dual Prices

Funds Avail 0.09

Risk Max 1.33

U.S. Oil Max 0

A unit increase in the RHS of Funds Avail makes 0.09

improvement in the value of the objective function. Risk Max

also makes 1.33 improvement in the value of the objective

function. A unit increase in the RHS of U.S. Oil Max makes

no improvement in the objective function value.

Page 11: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Q 3-7 d.

NO

A unit increase in the RHS of U.S. Oil Max

makes no improvement in the objective

function value.

Page 12: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Q 3-10 a.

From figure 3.16,

Optimal solution: S = 4,000, M = 10,000

Estimated total risk =

8(4,000) + 3(10,000) = 62,000

Page 13: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Q 3-10 b.

Variable Range of Optimality

S 3.75 to No Upper Limit

M No Lower Limit to 6.4

Page 14: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Q 3-10 c, d, e, f

(c) 5(4,000) + 4(10,000) = $60,000

(d) 60,000/1,200,000 = 0.05

(e) 0.057

(f) 0.057(100) = 5.7

Page 15: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Theory of Simplex Method

Page 16: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

For any LP problem with n decision variables, each CPF (Corner Point Feasible) solution lies at the intersection of n constraint boundaries; i.e., the simultaneous solution of a system of n constraint boundary equations.

,53 21 xxZ

1x

0,0

1823

21

21

xx

xx122 2 x4

and

Max

s.t.

A two-variable linear programming problem

Page 17: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

0

x

bAx

cx

,

0

0

0

0,,,,,, 2

1

2

1

21

nn

n

b

b

b

b

x

x

x

xcccc

Max

s.t.

mnmm

n

n

aaa

aaa

aaa

A

21

22221

11211

Page 18: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Original Form Augmented Form

Max s.t. bAX

0x

Maxs.t.

cX Z

0,0

0

001

S

S

S

XX

bIXAXZ

XcXZ

Matrix Form

b

X

X

Z

IA

c

S

00

0

1

(1)

(2)

Page 19: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Matrix Form (2) is

Max

s.t.

bIXAX

XcXZ

Z

S

S

00

(3)

orMax

s.t.

bXA

XcZ

Z

ˆˆ

0ˆˆ(4)

where

IAAX

XXcc

S

,ˆˆ0,ˆ

Page 20: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

matrix nonbasic a :N

matrix basic a :B

)X (to tscoefficien

objective ingcorrespond theseof vector a :c

)X (to tscoefficien

objective ingcorrespond theseof vector a :c

variablesbasicnon of vector a :X

variablesbasic of vector a :X

N

N

B

B

N

B

Page 21: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Max

s.t.

bNXBX

XcXcZ

Z

NB

NNBB

0

Then, we have

(5)

(6)

where

NBAcccX

XX NB

N

B ,ˆ,ˆˆ

Page 22: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Eq. (6) becomes

bBNXBX NB11

Putting Eq. (7) into (5), we have

0)( 11 NNNB XcNXBbBcZ

(7)

(8)So,

bBcXcNBcXZ BNNBB11 )(0 (9)

become (9) Eq. and (7) Eq. ,0 Currently, NX

bBcZbBX BB11 , (10)

Page 23: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

bB

bBc

bB

Bc

X

Z BB

B1

1

1

1 0

0

1

Eq. (10) can be expressed by

(11)

From Eq. (2),

bB

bBc

X

X

Z

BAB

BccABc

bB

bBc

X

X

Z

IA

c

B

Bc

X

Z

B

S

BB

B

S

B

B

1

1

11

11

1

1

1

1

0

1

0

01

0

1

(12)

Page 24: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Thus, initial and later simplex tableau are

IterationBVZOriginalVariables

SlackVariables

RHS

Z1 -c 0 00

BX0 A I b

IterationBVZOriginalVariables

SlackVariables

RHS

Z 1 cABcB 1 1BcB bBcB1

AnyBX 0 AB1 1B bB1

Page 25: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

1. Initialization:

Same as for the original simplex method.

2. Iteration:

Step 1

Determine the entering basic variable:

Same as for the Simplex method.

The Overall Procedure

Page 26: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Step 2

Determine the leaving basic variable:

Same as for the original simplex method,

except calculate only the numbers required to

do this [the coefficients of the entering basic

variable in every equation but Eq. (0), and

then, for each strictly positive coefficient, the

right-hand side of that equation].

Page 27: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Step 3

Determine the new BF solution:

Derive and set

3. Optimality test:

Same as for the original simplex method, except

calculate only the numbers required to do this test,

i.e., the coefficients of the nonbasic variables in

Eq. (0).

1B .1bBxB

Page 28: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Fundamental Insight

Z

Z

RHS

Row0

Row1~N

1BcB

1B

bBcB1

bB 1

X

BX

SX

1

0 AB 1

cABcB 1

Page 29: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

0

5x4x3x

RightSideBVIteration 3x 4x 5x2x1x

18

12

4

)(,

100

010

001

)(,

2

2

0

3

0

111 bBbBIA

-3 -5 0 0 0 0 1 0 1 0 0 4 0 2 0 1 0 12 3 2 0 0 1 18

Coefficient of:

,0,0,0,5,3,

5

4

3

SB cc

x

x

x

x

Page 30: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

BVIteration

1

5x2x3x 1 0 1 0 0 4

0 1 0 0 6

3 0 0 -1 1 6

,

110

00

001

,0,5,0

21 ,

6

6

4

18

12

4

110

00

001

1B bB 1

Bc

21

21

RightSide3x 4x 5x2x1x

Coefficient of:

0 0 0

Page 31: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

BVIteration

25

1

5x2x3x 1 0 1 0 0 4

0 1 0 0 6

3 0 0 -1 1 62

1

RightSide3x 4x 5x2x1x

Coefficient of:

-3 0 0 0

0

0

1

0

110

00

001

0,5,0

33

3

0

1

110

00

001

0,5,0

2

1

21

11 cZ 111 caBcB

44 cZ 441 caBcB 2

5

Page 32: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

BVIteration

25

1

5x2x3x 1 0 1 0 0 4

0 1 0 0 6

3 0 0 -1 1 62

1

RightSide3x 4x 5x2x1x

Coefficient of:

-3 0 0 0

0

1

0

3

0

1

2

2

0

3

0

1

110

00

001

AB 12

1

Page 33: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

BVIteration

25

1

5x2x3x 1 0 1 0 0 4

0 1 0 0 6

3 0 0 -1 1 62

1

RightSide3x 4x 5x2x1x

Coefficient of:

-3 0 0 0 30

30

6

6

4

0,5,01

bBcB

so

Page 34: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

BVIteration

25

1

5x2x3x 1 0 1 0 0 4

0 1 0 0 6

3 0 0 -1 1 62

1

RightSide3x 4x 5x2x1x

Coefficient of:

-3 0 0 0 30

minimum

The most negative coefficient

23

6

41

4

4

6

Page 35: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

BVIteration

2

1x2x3x 0 0 1 2

0 1 0 0 6

1 0 0 2

21

RightSide3x 4x 5x2x1x

Coefficient of:

0 0 0

,

0

00

1

,3,5,0Bc

21 ,

2

6

2

18

12

4

0

00

1

2

13

13

1

31

31

31

31

31

31

1B bB 1

31

31

31

31

Page 36: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

BVIteration

2

1x2x3x 0 0 1 2

0 1 0 0 6

1 0 0 2

21

RightSide3x 4x 5x2x1x

Coefficient of:

0 0 0 1

31

31

31

31

10

1

0

0

0

0

0

1

3,5,0

230

0

1

0

0

0

0

1

0,5,0

44

144 caBccZ B

551

55 caBccZ B

23

21

31

31

31

31

21

31

31

31

31

Page 37: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

BVIteration

2

1x2x3x 0 0 1 2

0 1 0 0 6

1 0 0 2

21

RightSide3x 4x 5x2x1x

Coefficient of:

0 0 0 1 36

31

31

31

31

36

2

6

2

3,5,01

bBcB

so

23

Page 38: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Duality Theory

Page 39: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

One of the most important discoveries in the early development of linear programming was the concept of duality.

Every linear programming problem is associated with another linear programming problem called the dual.

The relationships between the dual problem and the original problem (called the primal) prove to be extremely useful in a variety of ways.

Page 40: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

The dual problem uses exactly the same parameters as the primal problem, but in different location.

Primal and Dual Problems

Primal Problem Dual Problem

Max

s.t.

Min

s.t.

n

jjj xcZ

1

,

m

iii ybW

1

,

n

1jijij ,bxa

m

ijiij cya

1,

for for.,,2,1 mi .,,2,1 nj

for .,,2,1 mi for .,,2,1 nj ,0jx ,0iy

Page 41: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

In matrix notation

Primal Problem Dual Problem

Maximize

subject to

.0x .0y

Minimize

subject tobAx cyA

,cxZ ,ybW

Where and are row vectors but and are column vectors.

c myyyy ,,, 21 b x

Page 42: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Example

Maxs.t.

Min

s.t.

Primal Problem Dual Problem

,53 21 xxZ ,18124 321 yyyW

1823 21 xx

122 2 x41x

0x,0x 21

522 32 yy

33 3 y1y

0y,0y,0y 321

Page 43: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Max

s.t.

Primal Problem in Matrix Form

Dual Problem in Matrix Form

Min

s.t.

,5,32

1

x

xZ

18

12

4

,

2

2

0

3

0

1

2

1

x

x

.0

0

2

1

x

x .0,0,0,, 321 yyy

5,3

2

2

0

3

0

1

,, 321

yyy

18

12

4

,, 321 yyyW

Page 44: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Primal-dual table for linear programmingPrimal Problem

Coefficient of: RightSide

Rig

ht

Sid

eDu

al P

rob

lem

Co

effi

cien

to

f:

my

y

y

2

1

21

11

a

a

22

12

a

a

n

n

a

a

2

1

1x 2x nx

1c 2c ncVI VI VI

Coefficients forObjective Function

(Maximize)

1b

mna2ma1ma

2b

mb

Coe

ffic

ient

s fo

r O

bjec

tive

Fun

ctio

n(M

inim

ize)

Page 45: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

One Problem Other Problem

Constraint Variable

Objective function Right sides

i i

Relationships between Primal and Dual Problems

Minimization Maximization

Variables

Variables

Constraints

Constraints

0

0

0

0

Unrestricted

Unrestricted

Page 46: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

The feasible solutions for a dual problem are

those that satisfy the condition of optimality for

its primal problem.

A maximum value of Z in a primal problem

equals the minimum value of W in the dual

problem.

Page 47: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Rationale: Primal to Dual Reformulation

Max cxs.t. Ax b x 0

L(X,Y) = cx - y(Ax - b) = yb + (c - yA) x

Min yb

s.t. yA c

y 0

Lagrangian Function )],([ YXL

X

YXL

)],([

= c-yA

Page 48: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

The following relation is always maintained

yAx yb (from Primal: Ax b)

yAx cx (from Dual : yA c)

From (1) and (2), we have

cx yAx yb

At optimality

cx* = y*Ax* = y*b

is always maintained.

(1)

(2)

(3)

(4)

Page 49: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

“Complementary slackness Conditions” are

obtained from (4)

( c - y*A ) x* = 0

y*( b - Ax* ) = 0

xj* > 0 y*aj = cj , y*aj > cj xj* = 0

yi* > 0 aix* = bi , ai x* < bi yi* = 0

(5)

(6)

Page 50: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Any pair of primal and dual problems can be

converted to each other.

The dual of a dual problem always is the primal

problem.

Page 51: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Min W = yb,

s.t. yA c

y 0.

Dual ProblemMax (-W) = -yb,

s.t. -yA -c

y 0.

Converted to Standard Form

Min (-Z) = -cx,

s.t. -Ax -b

x 0.

Its Dual Problem

Max Z = cx,

s.t. Ax b

x 0.

Converted toStandard Form

Page 52: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Mins.t.

64.06.0

65.05.0

7.21.03.0

21

21

21

xx

xx

xx

0,0 21 xx

21 5.04.0 xx

Mins.t.

][y 64.06.0

][y 65.05.0

][y 65.05.0

][y 7.21.03.0

321

-221

221

121

xx

xx

xx

xx

0,0 21 xx

21 5.04.0 xx

Page 53: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Maxs.t.

.0,0,0,0

5.04.0)(5.01.0

4.06.0)(5.03.0

6)(67.2

3221

3221

3221

3221

yyyy

yyyy

yyyy

yyyy

Maxs.t.

.0, URS:,0

5.04.05.01.0

4.06.05.03.0

667.2

321

321

321

321

yyy

yyy

yyy

yyy

Page 54: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Home Work

• Ch 4: Problem 1

• Ch 4: Problem 10

• Additional Problems: A-1 and A-2

• (See the proceeding PPS)

• Due Date: September 16

Page 55: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Theory of Simplex Method: Consider the following

problem.

0x&0x,0x,0x

4xx2xx3

5xxx2x4

,x2xx3x4Z

4321

4321

4321

4321

to subject

Maximize

Let x5 and x6 denote slack variables for the two constraints.

After you apply the simplex method, a portion of the final

simplex tableau is as follows:

A – 1

Page 56: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

A – 1 cont’d

Basic Variable

Coefficient of:Right SideEq. Z x1 x2 x3 x4 x5 x6

Z (0) 1 1 1

x2 (1) 0 1 -1

x4 (2) 0 -1 2

• Solve the problem.

• What is B-1 ? How about B-1b and CBB-1b ?

• If the right hand side is changed from (5, 4) to (5, 5),

how is and optimal solution changed? How about an

optimal objective value?

Page 57: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

Linear Programming: Slim-Down Manufacturing makes

a line of nutritionally complete, weight-reduction

beverages. One of their products is a strawberry shake

which is designed to be a complete meal. The

strawberry shake which is designed to be a complete

meal. The strawberry shake consists of several

ingredients. Some information about each of these

ingredients is given below.

A – 2

Page 58: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

A – 2 cont’d

IngredientCalories from Fat (per tbsp)

Total Calories (per tbsp)

Vitamin Content (mg/tbsp)

Thickeners (mg/tbsp)

Cost (¢/tbsp)

Strawberry flavoring

1 50 20 3 10

Cream 75 100 0 8 8

Vitamin supplement

0 0 50 1 25

Artificial sweetener

0 120 0 2 15

Thickening agent

30 80 2 25 6

Page 59: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

The nutritional requirements are as follows. The beverage must

total between 380 and 420 calories (inclusive). No more than

20 percent of the total calories should come from fat. There

must be at least 50 milligrams (mg) of vitamin content. For

taste reasons, there must be at least 2 tablespoons (tbsp) of

strawberry flavoring for each tablespoon of artificial sweetener.

Finally, to maintain proper thickness, there must be exactly 15

mg of thickeners in the beverage.

Management would like to select the quantity of each

ingredient for the beverage which would minimize cost while

meeting the above requirements.

A – 2 cont’d

Page 60: Q 2-31 Min 3A + 4B s.t. 1A + 3B ≧ 6 1A + 1B ≧ 4 A, B ≧ 0 B = - 1/3A + 2 B = - A + 4

• Formulate a linear programming model for this problem.

• Show its dual formulation.

• Solve this model by your computer and confirm

complementary slackness condition.

A – 2 cont’d