pyroelectric conversion: harvesting energy from - upcommons

35
1 Pyroelectric conversion: Harvesting Energy from Temperature Fluctuations Dr. Àngel Cuadras Instrumentation, Sensors and Interfaces Group Castelldefels School of Technology Universitat Politècnica de Catalunya (UPC)

Upload: others

Post on 11-Feb-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Pyroelectric conversion: Harvesting Energy from - UPCommons

1

Pyroelectric conversion: Harvesting Energy from

Temperature Fluctuations

Dr. Àngel Cuadras

Instrumentation, Sensors and Interfaces GroupCastelldefels School of Technology

Universitat Politècnica de Catalunya (UPC)

Page 2: Pyroelectric conversion: Harvesting Energy from - UPCommons

2

COLLABORATIONS

• University of Brescia. (Dept. Electronics for Automation and INFM)– A. Ghisla, V. Ferrari, M. Ferrari

• Instrumentation, Sensors and Interfaces GroupCastelldefels School of Technology– Dr. Gasulla, Dr. Pallàs

Page 3: Pyroelectric conversion: Harvesting Energy from - UPCommons

3

INTRODUCTIONThermal energy

•Present everywhere

•Thermodynamical restrictions

Sun

Fire

Thermal to electrical conversion– Thermoelectricity: thermal gradients– Pyroelectricity: from thermal time-dependent fluctuations

Industry Hot PipesEngines

Sources

Page 4: Pyroelectric conversion: Harvesting Energy from - UPCommons

4

OUTLINE

• History• Pyroelectric Effect• Materials• Applications: Sensors and Harvesters• Experimental harvesters• Conclusions

Page 5: Pyroelectric conversion: Harvesting Energy from - UPCommons

5

HISTORY

• Phenomenon observation– Classic Greeks: Theophrastus (314 BC)– XVIIIth and XIXth: phenomenon observation

• Description and quantification– Classical explanation: Lord Kelvin– Quantical explanation: Born

• Researchers: – Schrödinger, Röntgen and P. Curie, among others

• Applications:– Sensors: Yeou Ta…– Harvesters investigated by Olsen et al., Ikura…

Page 6: Pyroelectric conversion: Harvesting Energy from - UPCommons

6

PHYSICAL DESCRIPTION

• Crystalline structures

Cubic structure

Cations (Pb,Ti,Ca,Ta…)

Anions (O)

Page 7: Pyroelectric conversion: Harvesting Energy from - UPCommons

7

PHYSICAL DESCRIPTION

• Crystalline structures• Point symmetry

Tetragonal structure

Cations (Pb,Ti,Ca,Ta…)

Anions (O)

Page 8: Pyroelectric conversion: Harvesting Energy from - UPCommons

8

PHYSICAL DESCRIPTION

Structure Deformation ∆

•Mechanical stress

•Thermal stress

•Electrical stress

• Crystalline structures• Point symmetry

Tetragonal structure

Piezoelectric

Pyroelectric

Ferroelectric

Page 9: Pyroelectric conversion: Harvesting Energy from - UPCommons

9

PHYSICAL DESCRIPTION

Structure Deformation ∆

•Mechanical stress

•Thermal stress

•Electrical stress

• Crystalline structures• Point symmetry

Tetragonal structure

Pyroelectric

Page 10: Pyroelectric conversion: Harvesting Energy from - UPCommons

10

PHYSICAL DESCRIPTION

• Crystalline structures• Point symmetry

Structure Deformation ∆

•Mechanical stress

•Thermal stress

•Electrical stress

Tetragonal structure

+++++++++++++++++++++

- - - - - - - - - - - - - - - - - - - -Pyroelectric

∆ ∆T∆V

Ion displacement due to ∆T Induced charge

Page 11: Pyroelectric conversion: Harvesting Energy from - UPCommons

11

PHYSICAL DESCRIPTION

Structure Deformation ∆

•Mechanical stress

•Thermal stress

•Electrical stress

• Crystalline structures• Point symmetry

ParaelectricT>TC

Ion symmetry no induced chargeCubic structure

Page 12: Pyroelectric conversion: Harvesting Energy from - UPCommons

12

PYROELECTRIC EFFECT

300 305 310 3150

50

100

150

200

250

p

T (K)

p (1

0-4 C

m-2 K

-1)

-25

-20

-15

-10

-5

0

TCurie

P(µ

C m

-2)

P

s ss

dQ dP dTI Spdt dt dt

= = =

ss

dPpdT

=

•Temperature increase•Polarization

•Dependence of p on T

•Maximum temperature Curie temperature, phase transition

•Induced current as a function of T

TGS

Page 13: Pyroelectric conversion: Harvesting Energy from - UPCommons

13

PYROELECTRIC MATERIALS

LiTaO3

• Crystal materials – CaTiO3,LiTaO3,PbTiO3– Triglycine sulfate (TGS)– Growth methods: Czochralki, water dissolution

• Ceramics – PZT - Lead zirconate titanate – Growth methods: Screen printing– Poling

• Polymers – PVDF-Polyvinylidene Difluoride– Growth methods: Chemical processing

TGS

Page 14: Pyroelectric conversion: Harvesting Energy from - UPCommons

14

MATERIALS DESCRIPTION• Pyroelectric coefficient (p)

– Thermal energy conversion to electrical conversion • Thermal capacitance (cV)

– Thermal energy stored in the lattice• Electrical permittivity (ε= ε0εr)

– Electrical energy stored in the lattice• Figure of Merit

0V r

pFoMc ε ε

=

Material p(10-4 C m-2 K-1)

εr(1 kHz)

TC(ºC)

cv(J cm-3 K-1)

TGS 3.5 35 49 2.5LiTaO3 2.3 46 665 3.2

PZT 1.6 1350 320

PVDF 0.3 12 80 2.4

Page 15: Pyroelectric conversion: Harvesting Energy from - UPCommons

15

OUTLINE

• History• Pyroelectric Effect• Materials• Applications: Sensors and

Harvesters• Experimental harvesters• Conclusions

Page 16: Pyroelectric conversion: Harvesting Energy from - UPCommons

16

APLICATIONS: SENSORS

• Proposed by Yeou Ta in 1938

• Application: IR sensors, burglar alarms

• Advantages– Wide thermal and electromagnetic

sensitivity– Fast response (0 to 10 Hz) – Low-cost– Good signal to noise ratio– Work at ambient temperature

• Scientific and commercial development

Page 17: Pyroelectric conversion: Harvesting Energy from - UPCommons

17

APPLICATIONS: HARVESTERS

R. B. Olsen, D. A. Bruno, and J. M. Briscoe,

"Pyroelectric Conversion Cycles," J. Appl. Phys. 58 (1985) 4709

Page 18: Pyroelectric conversion: Harvesting Energy from - UPCommons

18

PYROELECTRICITY: YES OR NOT?

YES?

• Low cost• Infinite thermal sources

NOT?

• Low power generation• Low conversion efficiency• Temperature fluctuations

Estimation:

S = 10 cm2

λ= 10-4 C m-2K-1 ⇒

dT/dt= 10 K s-1

I = 1 µA

Page 19: Pyroelectric conversion: Harvesting Energy from - UPCommons

19

MODELING CONVERSION

W RTCT

T VI ReCe

Thermal model Electrical model

· ·dTI S pdt

=

e

· ·S p TVC

∆∆ =

Harvester critical parameters

RT and CT : thermal conductivity and thermal capacitance

Re and Ce : electrical losses and electrical capacitance

Efficiency (< 1 %)

Page 20: Pyroelectric conversion: Harvesting Energy from - UPCommons

20

OUTLINE

• History• Pyroelectric Effect• Materials• Applications: Sensors and Harvesters• Experimental harvesters• Conclusions

Page 21: Pyroelectric conversion: Harvesting Energy from - UPCommons

21

EXPERIMENTAL SETUP

Heating– 298 K to 370 K– Warm air – Halogen lamp

Current Measurement

Voltage measurementElectrometer Keithley 616

Resistance measurementElectrometer Keithley 616

R up to 1014 Ω

RfI

VO AcquisitionSystem Agilent

Thermal measurement•SMD Thermistor

•Fast thermal response

•Sensitivity up to 0.01 K

Page 22: Pyroelectric conversion: Harvesting Energy from - UPCommons

22

PZT STUDIED HARVESTERS

Alumina Substrate

Bottom electrode PdAg (contact)

PZT Technology

•Ceramic powder

•Screen printing.

•Firing

•Poling

Sample ID Target Thickness (µm)

Poling Field (MV/m)

1 60 5

2 60 7

3 100 5

4 100 7

4 cm

4 cm

Page 23: Pyroelectric conversion: Harvesting Energy from - UPCommons

23

PZT FORMATION

Tpoling

+-

Random orientation of

dipoles

Remanent polarizationDC field application:

poling

Dipole orientation

Page 24: Pyroelectric conversion: Harvesting Energy from - UPCommons

24

PZT CONVERTERS

0 50 100 150 200 250 300

-0,1

0,0

0,1

0,2

0,3

I

I (µA

)

Time (s)

300

310

320

330

340

350

T

T(K)

-0,5

0,0

0,5

1,0 dT/dt

dT/dt (K/s)

Air Heating:

• Step function

• Large thermal inertia

Pyrocurrent follows dT/dt

Imax = 0.3 mA

Generated charge density

Q = 0.75 C·cm-2

Page 25: Pyroelectric conversion: Harvesting Energy from - UPCommons

25

PZT CONVERTERS

Air Heating:

• Step function

• Large thermal inertia

Pyrocurrent follows dT/dt

Imax = 0.3 mA

Generated charge density

Q = 0.75 C·cm-2

Page 26: Pyroelectric conversion: Harvesting Energy from - UPCommons

26

PZT CONVERTERS

Technological dependence:

• Poling Field

• Thickness

0 20 40 60 80 100

-0.1

0.0

0.1

0.2

0.3 Constant poling field5 MV/m

1 3

I (µA

)

Time (s)

Optimized design

Page 27: Pyroelectric conversion: Harvesting Energy from - UPCommons

27

PVDF CONVERTERS

Measurement Specialties Inc.

Piezoelectrical Film

PVDF large area technology

Sample ID

Thickness (µm)

Area(cm-2)

C (nF)

A1 70 3.6 0.740

A2 40 7.44 2.78

Page 28: Pyroelectric conversion: Harvesting Energy from - UPCommons

28

PVDF CONVERTERS

0 10 20 30 40 50 60-0.4

-0.2

0.0

0.2

0.4

3.60 cm-2

7.44 cm-2

I (µA

)

Time (s)

• Warm air flow/fan

• Temperature fluctuation

(298 K 335 K)

• Peak current

• Generated Charge density

Q = 0.24 C·cm-2

• Symmetry in heating and cooling

0 1 0 2 0 3 0

0

1

2

3

4

dT/

dt (K

/s)

T im e ( s )

Page 29: Pyroelectric conversion: Harvesting Energy from - UPCommons

29

IMPROVING HARVESTERS

• Cell association• Energy storage• Thermal cycling

Page 30: Pyroelectric conversion: Harvesting Energy from - UPCommons

30

PARALLEL ASSOCIATION

0 25 50 75 1000,0

0,1

0,2

0,3

0,4 3 4 3||4

I (µA

)

time (s)

Parallel Cell Association

Current addition

Stacked structures

Page 31: Pyroelectric conversion: Harvesting Energy from - UPCommons

31

ENERGY STORAGE

•Low power systems strategy

•Rectification + storage

•Impedance matching overcome

•Energy loss at diodes

•Capacitor charge

Ce

Page 32: Pyroelectric conversion: Harvesting Energy from - UPCommons

32

THERMAL CYCLING

0 100 200 300 400 5000

1

2

3

4

5

6

V (V)

Time (s)V(

V)

300

310

320

330

340

Tem

pera

ture

(K)

T (K)

PZT PVDF

0 50 100 150 200 250 300 3500

2

4

6

8

10

12

V

V (V

)

time (s)

300

310

320

330

340

Tem

pera

ture

(K)

T

( ) · ·1 12 2

N N

S L e L eo

e L e e L e

Q C C C CS p TV NC C C C C C

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− −∆⎢ ⎥ ⎢ ⎥= − = −⎜ ⎟ ⎜ ⎟+ +⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦( ),max

· ·2o

e

S p TV NC∆

→ ∞ =

Page 33: Pyroelectric conversion: Harvesting Energy from - UPCommons

33

BEYOND PYROELECTRICITY

0 100 200 300 400-0,3

-0,2

-0,1

0,0

0,1

0,2

0,3

I

I (µA)

Time (s)

300

320

340

360

Tem

pera

ture

(K)

T •Materials sensitive to external influences.

•Generated current from a PZT when illuminated.

•Current is not proportional to dT/dt.

•Combination of different effects in a single harvester

•Piezoelectrical response – when undergo mechanical stresses

•Semiconductor – heated with light

Page 34: Pyroelectric conversion: Harvesting Energy from - UPCommons

34

CONCLUSIONS

• Pyroelectricity has been revisited• PZT and PVDF cells have been developed and

modeled.• Parallel association increases the current.• Energy can be effectively transferred and stored in

capacitors.• Further research in order to effectively power low power

systems.

Page 35: Pyroelectric conversion: Harvesting Energy from - UPCommons

35

QUESTIONS?

Castelldefels School of Technology (EPSC),Universitat Politècnica de Catalunya (UPC)

Av. Canal Olimpic s/n08860 Castelldefels (Barcelona), Spain,

[email protected]