pv solar electricity: one of the major upcomming big ... · pdf fileoperations and...

35
5 th EFAC – Davos – January 2009 1 "PV Solar Electricity: One of the Major Upcomming Big Production Industries”" 5 th EFAC Assembly Technology Conference January 23-24, 2009 – Davos, Sswizterland Winfried Hoffmann, President EPIA Vice President and Chief Technology Officer (CTO), Energy and Environmental Solutions Group, Applied Materials Member of the Scientific Board and Supervisory Board of FhG-ISE and ISFH, respectively Applied Materials GmbH & Co. KG • Siemensstr. 100 • 63755 Alzenau Phone: +49 6023 92 6679 • Fax: +49 6023 92 6560 email: [email protected] • www.appliedmaterials.com

Upload: lequynh

Post on 14-Feb-2018

216 views

Category:

Documents


2 download

TRANSCRIPT

5th EFAC – Davos – January 2009 1

"PV Solar Electricity: One of the Major Upcomming Big Production Industries”"

5th EFAC Assembly Technology ConferenceJanuary 23-24, 2009 – Davos, Sswizterland

Winfried Hoffmann, President EPIA

Vice President and Chief Technology Officer (CTO), Energy and Environmental Solutions Group, Applied MaterialsMember of the Scientific Board and Supervisory Board of FhG-ISE and ISFH, respectively

Applied Materials GmbH & Co. KG • Siemensstr. 100 • 63755 AlzenauPhone: +49 6023 92 6679 • Fax: +49 6023 92 6560email: [email protected] • www.appliedmaterials.com

2

External Use

2

Safe Harbor StatementThis presentation may contain forward-looking statements, including those relating to Applied’s performance, products and opportunities, and the industry outlook. These statements are subject to known and unknown risks and uncertainties that could cause actual results to differ materially from those expressed or implied by such statements, including but not limited to: the level of demand for nanomanufacturing technology products, which is subject to many factors, including global economic and market conditions, demand for electronic products and semiconductors, and governmental renewable energy policies and incentives; customers’ capacity requirements and ability to acquire sufficient capital, obtain regulatory approvals and/or build infrastructure; Applied’s ability to (i) develop, deliver and support a broad range of products, expand its markets and develop new markets, (ii) align its cost structure with business conditions, (iii) manage its resources and production capability, (iv) implement initiatives that enhance global operations and efficiencies, (v) obtain and protect IP rights in key technologies; and (vi) attract and retain key employees; and other risks described in Applied’s SEC filings. All forward-looking statements are based on management’s estimates, projections and assumptions as of January 24, 2009, and Applied undertakes no obligation to update any such statements.

3

External Use

3

Applied Materials Overview

SILICON SYSTEMS

Advancing TechnologyInnovating Productivity

DISPLAY

Delivering NewTechnology and Scale

ENERGY & ENVIRONMENTAL

SOLUTIONSChanging the Energy Equation

APPLIED GLOBAL SERVICESDriving Fab Productivity

OUR MISSION

To LEAD the Nanomanufacturing Technology revolution with innovations that transform markets, create opportunities, and offer a cleaner, brighter future to people around the world.

New Orders (past 4 qtrs.) $9,155M

Revenue (past 4 qtrs.) $8,129M

RD&E (rolling 5 years) $5,330MWorldwide Employees (21 countries) ~14,824

December 2008December 2008

4

External Use

4

Applied Materials Worldwide

Research, Development and Engineering and/or Manufacturing Centers:

Sales and/or Service Offices

108 Worldwide Locations

Japan

India

Korea Europe

China

Taiwan

North America

South East Asia

Israel

5

External Use

5

Silicon Systems

We make the systems used to produce virtually every new microchip in the world

Thermal

Etch

Inspection CVD

PVD CMP

6

External Use

6

Energy and Environmental Solutions

Solar Lighting Web Glass NewTechnologies

PWS + Baccini

cSi work cells

TF

SunFab® (aSi / µc complete lines)

R2RLEDOLED

architectural applications

Nanotech

TF battery

Electrochromicwindows

ATON

7

External Use

7

Applied's Display Group

Source: Display Search, Applied Materials

Color filterTFTTFT LiquidLiquid

CrystalCrystal

Color FilterPVD

Array PVD

PECVD

Array Tester

Color Filter PVDColor Filter PVDPECVD PECVD

8

External Use

8

0

4

8

12

1993 1995 1997 1999 2001 2003 2005 2007 2009 2011F F

Glass Size Increase in the Display Industry–Driving Cost Reduction

Gen 2 Gen 3 Gen 4Gen 5

Gen 6

Gen 7

Gen 8 Gen 8.5

Gen 10

Subs

trat

e A

rea

(M2 )

$100

$10

$1

Cos

t per

Are

a ($

Thou

sand

/m2 )

Source: Display Search, Applied Materials

LaptopLaptop DesktopDesktop

TelevisionTelevision

9

External Use

9

From Display to Solar – Solid Foundation for Next StageDesigned, Engineered and Built by Display Group

Gen 8.5 AKTGen 8.5 AKT--55K PECVD System55K PECVD System Applied Applied SunFabSunFab™™

Gen 8.5 PECVD SystemGen 8.5 PECVD System

Glass

a-SiSiNx

SiNxn+ a-Si

Thin Film Transistor (TFT) StructureThin Film Solar Structure (Single Junction)

Glass

TCOa-SiAl

10

External Use

10

TF: New Standard in Module Size – 5.7m2

SunFabSunFab

EPIA Members, Status March 3, 200811

ADEME (FR), Apollon Solar (FR), APREN (PT), ASIF (ES), Assosolare (IT), BSW(DE), CRES (GR), Dexia (FR), ECN (NL), EDF (FR), Enerplan (FR), Fraunhofer (DE), GIFI (IT), Holland Solar (NL), IM2 Systems (ES), IMEC (BE), INES (FR), Kosolco (DE), PV Cycle (BE), SEMI (US), SER (FR), SMBC (UK), TNC (CH), Trama (ES), Yole (FR), Swissolar (CH)

Associate Members (26)

3S Swiss Solar Systems (CH), Acciona Solar (ES), Carmanah (UK), City Solar (DE), Conergy (DE), Ecostream (NL), Ecotecnia (ES), Enfinity (BE), ESI (DE), Goldbeck Solar (DE), GP Solar (DE), IBC Solar (DE), IB Vogt (DE), IT Power (UK), M+W Zander (DE), NAPS Systems (FI), NaRec Development Services (UK), Phönix SonnenStrom (DE), Saft Power Systems (FR), Solar Solutions (CA), SolarTechnologies (UAE), Solar Ventures (IT), Solar Electric (FR), Solaria Energia (ES), Tenesol (FR), Upsolar (CH), Wager & Co Solartechnik (DE), WIP (DE),

Aleo Solar (DE), Adept Technology (DE), AGC Flat Glass (BE), Applied Materials (DE), Atersa (NL), Arcelor (LU), Astra (KY), August Krempel (DE), Baoding Yingli (CN), Bangkok Solar (TAI), Belval (CH), Bisol (SI), BP Solar (ES), Centrosolar (DE), Centrotherm (DE), China Sunergy (CN), Crystalox (UK), DC Chemicals (DE), Dow Corning Europe (BE), DuPont (FR), Dyesol (UK), Edisun Power (CH), Elettronica Santerno (IT), Engcotec (DE), Elkem Solar (NW), eMat Technology (US), Energy Solutions (BG), Enersys (UK), EniPower (IT), EPV Solar (US), ErSol Solar Energy (DE), Evergreen Solar (DE), First Solar (DE), Fronius (AU), GE Solar (US), Guardian (US), Helianthos (NL), Heraeus Holding (DE), Hydro (NW), Isofoton (ES), Isovolta (AU), KACO Gerätetechnik (DE), Konarka (US), KPE (KR), Kyocera (DE), Leybold Optics (DE), Meyer + Burger (CH), Martifer (PT), Mistubishi Electric Europe (DE), Mondragon Assembly (ES), Multi-Contact (CH), OC Oerlikon Balzers Ltd. (LS), NPO QuintTech (RU), Photovoltech (BE), Photowatt Internatioal (FR), Pillar (UA), Podolsky Chemical (RU), Danfoss Solar Inverters (DK), PV Silicon (DE), Q-Cells (DE), Samsung Deutschland (DE), Sanyo Component Europe (DE), RECScanwafer (NW), RENA Sondermachinen (DE), Renergies (IT), Saft (FR), Saint Gobain (FR), Schott Solar (DE), Scheuten Solar (NL), Sharp Solar Systems (DE), SGL Carbon (DE), Siemens (DE), Singulus Technologies (DE), Solar Cells Hellas (GR), Solar Energy (RU), Solsonica (IT), SMA Technologie (DE), Solar Century (UK), Solar Plus (PT), Solar World (DE), Solland Sollar Energy (NL), Solvay Solexis (BE), Sputnik Engineering (CH), Stangl Semiconductor Equipment (DE), Sunpower (US), Suntech Power (CN), Sunways (DE), Systaic(DE), Topsil (DK), Trina Solar (ES), Vesuvius (FR), Wacker-Chemie (DE), VON ARDENNE (DE), Umicore (BE), United Solar Ovonic Europe (DE), Würth Solar (DE), XL-Telecom (IN)

Full Members (28)Full Members (97)

Systems, Consulting, R&D (54)Components manufacturers (97)

In 2007 our members had a PV related turnover of approx.14 bn Euro

12

EREC EREC –– European European RenewableRenewable Energy CouncilEnergy CouncilUmbrella organisation representing all RES sectorsUmbrella organisation representing all RES sectors:: AEBIOMAEBIOM European Biomass Association EBBEBB European Biodiesel Board EBIOEBIO European Bioethanol Industry Association EGECEGEC European Geothermal Energy Council EPIAEPIA European Photovoltaic Industry Association ESHAESHA European Small Hydropower Association ESTIFESTIF European Solar Thermal Industry Federation EUBIAEUBIA European Biomass Industry Association EWEAEWEA European Wind Energy Association EURECEUREC AgencyAgency European Renewable Energy Research Centres Agency

Associate members: EUEU--OEAOEA European Ocean Energy Association EREFEREF European Renewable Energy Federation ESTELAESTELA European Solar Thermal Electricity Association

Representation of European RES industry, trade & research

5th EFAC – Davos – January 2009 13

World PV Application Segmentation

ref: European Photovoltaic Industries Association (EPIA) & Navigant Consulting

0

500

1000

1500

2000

2500

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Mar

ket S

ize

in M

Wp

Off-Grid & Consumer on-Grid

40 %/yr overall

18%/yr

63%/yr

0

500

1000

1500

2000

2500

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Mar

ket S

ize

in M

Wp

Off-Grid & Consumer on-Grid

40 %/yr overall

18%/yr18%/yr

63%/yr63%/yr

5th EFAC – Davos – January 2009 14

Customer Needs

on-grid off-grid consumer high efficiency

€/kWh €/hr light W/m² g/W

Source: Fraunhofer ISE

€/m² / aesthetics €/W flexibility W/mm²

5th EFAC – Davos – January 2009 15

Historical Market Development by Regions

ref: European Photovoltaic Industries Association (EPIA) & Navigant Consulting

0

500

1000

1500

2000

2500

3000

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Mar

ket g

row

th in

MW

JAP EU USA ROW

16

1.100

850850

600

3 3 3 3

1508078

4012101274

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 20070

500

1000

1500

2000

2500

3000

3500

4000

Tota

l ins

talle

d PV

cap

acity

in M

Wp

annually installed PV capacity in MWp total installed PV capacity in MWp

Development of the German PV-market

PV Market Data Grid Connected Systems 2007Newly installed capacity 1 100 MWpTotal installed capacity 3 808 MWpSolar electricity production 2007 3 000 GWhNo. of newly installed systems 130 000Total no. of systems installed 430 000Turnover 2007 5.5 Bln. € / 8 Bln. $Employees 40 000(Source: Preliminary figures BSW-Solar)

17

Subsidy schemes of important European PV markets

2 MWp(25% grid connected)

40 – 5020%-60% grants forcommercial plants

Greece

45 MWp

31.19 – 57.1950% tax reductionmax 8000/16000 €

grants in some regions

France

50 MWp36 – 49 Italy

425 MWp (new:625 MW)23 – 44Spain

1.100 MWp35.49 – 51.75Germany

Market size 2007Feed in Tariff 2008

[€ct/kWh]Subsidy programm

5th EFAC – Davos – January 2009 18

Competitiveness between ElectrictyGeneration Cost PV and Electricity Price

Ref: W. Hoffmann personal estimates

5th EFAC – Davos – January 2009 19

winter

summer

$ct/kWh

hours

60

20

0

40

0 6 12 18 24

Summer

Winter

Standard20,64

6,35

26,78

21,42

31,92

30

10

20

¥/kWh

hours1260 2418

Tokyo Electric Power Cooperation (Jp) Tariff 2005

Range of Electricity Pricesin California

ref: Japan = KEPCO office data ; California = Alison Hyde of BSW

Seasonal Electricity Prices

Institut für Solare EnergieversorgungstechnikVerein an der Universität Kassel

20

23. SymposiumPhotovoltaische

SolarenergieBad Staffelstein05. März 2008

Woche des maximalen PV-Ertrags

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7Tag der Woche

Last

und

Str

omei

nspe

isun

g [G

W]

Konv. KW Wind (17 GW)

5 GWp PV 10 GWp PV

15 GWp PV 20 GWp PV

25 GWp PV 30 GWp PV

2. Korrelation der PV-Einspeisung mit dem Lastverlauf

Bis zu 30 GWp PV lassen sich ohne große Anforderungen integrieren!

5th EFAC – Davos – January 2009 21

Solar Learning Curve: Module Cost/Watt

$1

$10

$100

1 10 100 1,000 10,000 100,000 1,000,000

Cumulative Production (MWp)

Mod

ule

Pric

e (2

006

$/W

p)

Historical Prices

1980

2007

$1.00/W @ >100 GW

c-Si

Polysiliconshortage

$1.00/W @ <20 GW

Thin Film 200710-5

10-4

10-3

10-2

10-1

1

10

100

105 107 109 1011 1013 1015 1017 1019

‘00‘95‘90‘85‘80‘75‘70‘65

~28% reduction for doubling of total volume

DR

AM

Cen

ts/b

it

Cumulative Bits

VLSI/DRAM

5th EFAC – Davos – January 2009 22

Technology Evolution

ref: W. Hoffmann personal estimates

0 5 10 15 20 250

0 5 10 15 20 250

25

75

100

Module Efficiency [%]

todayc-Si

TF

a-Si-pin/pin

a-Si/µc-Si

II-VI

dye a-Si-pinII-VI

r

r

mc

mc

Cz

Cz

Module Price / Wp[rel. units]

conc..

+ 5 to10 years *

+ 10 to20 years *

SiIII -V

50

30

Mod

ule

pric

e(r

el. U

nits

)

@ - (5 to 9) %price decreaseper year

5th EFAC – Davos – January 2009 23

c-Si Technology

In the long run integrated manufacturing of thin wafers (100 µm or less) and subsequent cell and laminate making is probably the most effective route.

Long term stable, low cost/m² technologyModule

19 – 241,5 - 3

17 – 225 - 9

14 – 178 - 16

12 – 1430 - 40

Cell efficiency [%][g/W]

100100/0

180150/0

300250/0

450500

Wafer [µm]Kerf loss [µm]

2020201020001990

5th EFAC – Davos – January 2009 24

Thin Film Technologies have

a) low cost (price) per m² (BIPV) at lower eta (4-6%)- deposition area: 0,6 → 1,4 → 3 → 5 → 10 m²- utilize technology development in TFT technology (e.g. ASI)- creation of semitransparency by thin-layers- flexible solar cells (… web coaters)

b) low cost (price) per Wp- ASI/µc-Si and II – VI compound (CIS, CTS)- efficiency from 8 – 12 % today up to 10 – 15 % in 2010 and14 – 20 % in 2030

5th EFAC – Davos – January 2009 25

Substrate Size Expansion in LCD

Gen 2 Gen 2.5 Gen 3 Gen 3.5 Gen 4 Gen 6

370 x470mm

Gen 5 Gen 7

Gen 8 = 5.7 square meters

2.6 meters

2.2 meters

Gen 2 Gen 2.5

Gen 3Gen 3.5

Gen 4

Gen 6

370 x470mm

Gen 5

Gen 7

Gen 8 = 5.7 square meters

2.6 meters

2.2 meters

4 up 10.4”

6 up 12.1”

6 up15 ~ 17”

6 up x 37” wide 6 up x 52” wide6 up

19 ~ 24”

Gen 6

Gen 7

5th EFAC – Davos – January 2009 26

Share of PV Technologies

0%

20%

40%

60%

80%

100%

2010 2015 2020 2025 2030

New TechnologiesTFcSi

Yearly installedPV Power [GW] 7 25 60 200 300

Ref: W. Hoffmann personal estimates

5th EFAC – Davos – January 2009 27

1

10

100

1.000

10.000

100.000

2000 2005 2010 2015 2020 2025 2030 2035 2040

year

TWh³

/ ye

ar

1 assuming 1.4% increase per year (source: IEA WEO 2004, “World Alternative Policy Scenario”) and starting at 17.400 TWh world electricity production in 2004 (source: BMWi “Zahlen und Fakten - Energiedaten”, 2006)

2 assuming average of 1200 kWh yearly electricity production per installed kWp module power (own estimate)

3 TWh = Terrawatt-hour = 1 billion Kilowatt-hours

Total electricity production1

PV electricity

production²1% of Total

10% of Total

World Electricity Production Forecast

ref: IEA 2004 “World Alternative Policy Scenario” & BMWi “Dates and facts – energy” 2006

5th EFAC – Davos – January 2009 28

Types of Energy "as of today„ Primary Energy to Secondary Energy to End User Energy

0

20.000

40.000

60.000

80.000

100.000

120.000

TWh

ErschöpflicheEnergieträger

•fossile 85%•nuklear 7% •Heizöl

•Treibstoff•Wärme• etc.

• Licht•Mobilität••Kraft, etc.Erneuerbare 8%

Strom

0

20.000

40.000

60.000

80.000

100.000

120.000

TWh End User Energy

ErschöpflicheEnergieträger

•fossile 85%•nuklear 7% •Heizöl

•Treibstoff•Wärme• etc.

• Licht•Mobilität••Kraft, etc.Erneuerbare 8%

Strom

Primary Energy Secondary Energy

Exhaustibleenergy sources

•Fossile 85%•Nuclear 7% Heating oil

FuelHeatetc.

••••

LightMobility

Air conditioningPower, etc.

Losses

Renewables 8%

Losses

Electricity

End User Energy

Prime energy in 2000 = 113.000 TWh = 406 EJ (= 13,9 Mrd. t SKE)ref.: World Energy Council

5th EFAC – Davos – January 2009 29

Types of Energy "as of today„ Primary Energy to Secondary Energy to End User Energy

0

20.000

40.000

60.000

80.000

100.000

120.000

ErschöpflicheEnergieträger

•fossile 85%•nuklear 7% •Heizöl

•Treibstoff•Wärme• etc.

• Licht•Mobilität••Kraft, etc.Erneuerbare 8%

Strom

0

20.000

40.000

60.000

80.000

100.000

120.000

TWh End User Energy

ErschöpflicheEnergieträger

•fossile 85%•nuklear 7% •Heizöl

•Treibstoff•Wärme• etc.

• Licht•Mobilität••Kraft, etc.Erneuerbare 8%

Strom

Primary Energy Secondary Energy

Exhaustibleenergy sources

•Fossile 85%•Nuclear 7% Heating oil

FuelHeatetc.

••••

LightMobility

Air conditioningPower, etc.

Losses

Renewables 8%

Losses

Electricity

End User Energy

1 higher efficiencyin end user applications

a) Light bulb –HP & LED

b) Insulation

Important stepsin all areas

1

b)

a)

ref.: World Energy Council

5th EFAC – Davos – January 2009 30

Strom

21001050

6300

3150

1050

Fluorescent + Light bulbs

Fluorescent+ (O)LED

RE

elec

tric

ity-- 50%

-- 66%

-- 83%PE

Electricity need and primary energy input (in TWh) with constant illuminance (global)

Energy Saving with Intelligent Technology

ref.: SPIE Strassbourg, April 2006 & W. Hoffmann personal estimates

5th EFAC – Davos – January 2009 31

Types of Energy with consequent Use of Renewables

0

20.000

40.000

60.000

80.000

100.000

120.000

TWh

ErschöpflicheEnergieträger

•fossile 85%•nuklear 7% •Heizöl

•Treibstoff•Wärme• etc.

• Licht•Mobilität••Kraft, etc.Erneuerbare 8%

Strom

0

20.000

40.000

60.000

80.000

100.000

120.000

TWh End User Energy

ErschöpflicheEnergieträger

•fossile 85%•nuklear 7% •Heizöl

•Treibstoff•Wärme• etc.

• Licht•Mobilität••Kraft, etc.Erneuerbare 8%

Strom

Primary Energy Secondary Energy

••••

••••

•••

End User Energy

Renewables Heating OilFuelHeatetc.

LightMobilityAir ConditioningPower, etc

1

2 use of renewablesinstead of exhaustibleenergy

primary energy = secondary energy(Eurostat methodology)

1 higher efficiencyin end user applications

a) Light bulb –HP & LED

b) Insulation

Important stepsin all areas

22

Electricity Losses

ref.: World Energy Council & W. Hoffmann personal estimates

5th EFAC – Davos – January 2009 32

Primary Energy Need in 2100

ref.: World Energy Council & W. Hoffmann personal estimates

600.000 TWh

115.000 TWh

extrapolation with today's tech-nologies and energy sources

2000

50.000TWh

2100

2000

2100

assuming energy saving and consequent use of renewables

200.000TWh

100.000TWh

5th EFAC – Davos – January 2009 33

Transformation of Global Energy Systems

33

2000 2020 2040

200

600

1000

1400

Year2100

yearly Energy consumtion [EJ/a]

OilCoalGas

NuclearHydroBiomass (traditional)Biomass (modern)

Solar electricity (PV and solarthermal power stations)

Solarthermal (only thermal)other RenewablesGeothermal

Wind

ref: Scientific Board "Global Change of Environment“ to the German Government (2003)

5th EFAC – Davos – January 2009 34

The World Wide Super Grid

Sou

rce:

Sol

ar M

illen

nium

AG

, Erla

ngen

excellent good suitable not suitable…for Solar Thermal Power Plant

Super Grid „EUMENA“ 2010 - 2050

not suitable

Super Grid „NAFTA“ 2020 - 2060

Super Grid „ASIA“ 2030 - 2070

Super Grid „AUSTRALIA“ 2040 - 2080

Super Grid „WORLD WIDE“ 2050 - 2100

Electricity

wind off-/ on shore

Solar Thermal Power Plant

PV Solar Electricity

Other Renewables

Hydrogen for Transportation

Solar Thermal for heating and cooling

1

2

3

4

12

3

4

55

5

3

3

5 ref: W. Hoffmann SCHOTT Solar, Alzenau

5th EFAC – Davos – January 2009 35

Thanks for your attention