pulp and paper

9
PULP AND PAPER The pulp and paper industry comprises companies that use wood as raw material and produce pulp, paper, board and other cellulose-based products. Pulp Pulp consists of wood or other lignocellulosic materials that have been broken down physically and/or chemically such that (more or less) discrete fibers are liberated and can be dispersed in water and reformed into a web. History 2 nd Century BC - oldest archeological fragment of paper was discovered in China. 2 nd century AD - pulp making process is said to have been developed in China as early as the year 105 A.D. 13 th century - Europe make use of cotton and linen fibers in making paper.; 1 st water powered paper mills were built. 19 th century - fiber crops such as flax, which provided linen fibers were still the primary material source in making paper. 1844 - the use of wood to make pulp for paper began with the development of mechanical pulping in Germany by Friedrich Gottlob Keller and the Canadian inventor Charles Fenerty. 1867 - J. Roth use sulfurous acid(H 2 SO 4 ) to treat wood. - Benjamin Tilghman use calcium bisulfite(Ca(HSO 3 ) 2 ) to pulp wood. 1879 - the sulfate or kraft process was developed by Carl F. Dahl. 1890 – 1 st kraft mill started in Sweden 1900’s - sulfite pulping had become the dominant means of producing wood pulp. 1960 - 1 st commercial sulfite pulp mill was built in Sweden. Early 1930‘s - G. H. Tomlinson invented recovery boilers which allowed kraft mills to recycle almost all of their pulping chemicals. Pulp and Paper Process I. Harvesting trees II. Preparation for pulping III. Pulping Chemical pulping Mechanical pulping Recycled pulp (de-inking) Organosolv pulping Alternative pulping methods IV. Bleaching V. Additives VI. Producing paper VII. Finishing I. PULPING Types of Pulping Processes Chemical Semi-Chemical Chemi-Mechanical Mechanical Screening Screening of pulp after pulping is a process whereby the pulp is separated from large shives, knots, dirt, and other debris. Accepts consist of the pulp that has passed through the screens. The accept yield is the yield of accepts. Rejects or screenings are the larger shives, knots, large dirt particles, and other debris removed by the screens after the pulping process. Mechanical Pulping Mechanical pulp is pulp produced by using only mechanical attrition to pulp lignocellulosic materials; no chemicals (other than water or steam) are used. Light colored, non-resinous softwoods and some hardwoods are often the fiber source. The total yield is about 90-98%. Lignin is retained in the pulp; therefore, high yields of pulp are obtained from wood. Mechanical pulps are characterized by high yield, high bulk, high stiffness, and low cost. They have low strength since the lignin interferes with hydrogen bonding between fibers when paper is made and also causes the pulp to turn yellow with exposure to air and light. The use of mechanical pulps is confined mainly to non-permanent papers like newsprint and catalog paper. Mechanical pulps constitute 20- 25% of the world production and this is increasing due to the high yield of the process and increasing competition for fiber resources. Chemi-thermomechanical pulping is a process where woodchips are pretreated with sodium carbonate,sodium hydroxide, sodium sulfite and other chemicals prior to refining with equipment similar to a mechanical mill. Chemical pulping Chemical pulping is a method of producing pulp by combining wood chips and chemicals in large vessels known as digesters where heat and chemicals break

Upload: kean-kirby-salazar

Post on 31-Jan-2016

214 views

Category:

Documents


0 download

DESCRIPTION

handouts

TRANSCRIPT

Page 1: Pulp and Paper

PULP AND PAPER

The pulp and paper industry comprises companies that use wood as raw material  and produce pulp, paper,  board and other  cellulose-based products.

PulpPulp consists  of  wood or other  lignocellulosic  materials  that have been broken down physically and/or chemically such that (more or less) discrete fibers are liberated and can be dispersed in water and reformed into a web.

History

• 2nd  Century  BC  -  oldest  archeological   fragment  of  paper was discovered in China.

• 2nd century AD - pulp making process is said to have been developed in China as early as the year 105 A.D.

• 13th century - Europe make use of cotton and linen fibers in making paper.; 1st water powered paper mills were built.

• 19th century - fiber crops such as flax, which provided linen fibers  were   still   the  primary  material   source   in  making paper.

• 1844 - the use of wood to make pulp for paper began with the  development  of  mechanical   pulping   in  Germany  by Friedrich Gottlob Keller and the Canadian inventor Charles Fenerty.

• 1867  -   J.  Roth  use   sulfurous  acid(H2SO4)   to   treat  wood.-   Benjamin   Tilghman   use 

calcium bisulfite(Ca(HSO3)2 ) to pulp wood.

• 1879 - the sulfate or kraft process was developed by Carl F. Dahl.

• 1890 – 1st kraft mill started in Sweden

• 1900’s - sulfite pulping had become the dominant means of producing wood pulp.  

• 1960 - 1st commercial sulfite pulp mill was built in Sweden.

• Early 1930‘s -  G. H. Tomlinson invented recovery boilers which   allowed   kraft  mills   to   recycle   almost   all   of   their pulping chemicals.

Pulp and Paper Process

I. Harvesting treesII. Preparation for pulpingIII. Pulping

• Chemical pulping• Mechanical pulping• Recycled pulp (de-inking)• Organosolv pulping• Alternative pulping methods

IV. BleachingV. AdditivesVI. Producing paperVII. Finishing

I. PULPINGTypes of Pulping Processes

• Chemical• Semi-Chemical• Chemi-Mechanical• Mechanical

Screening

• Screening of pulp after pulping is a process whereby the pulp is separated from large shives, knots, dirt, and other debris. 

• Accepts consist  of the pulp that has passed through the screens. The accept yield is the yield of accepts.

• Rejects or screenings are the larger shives, knots, large dirt particles, and other debris removed by the screens after the pulping process.

Mechanical Pulping

• Mechanical   pulp   is   pulp   produced   by   using   only mechanical  attrition  to  pulp   lignocellulosic  materials;  no chemicals (other than water or steam) are used. 

• Light   colored,   non-resinous   softwoods   and   some hardwoods are often the fiber source.  The total  yield   is about  90-98%.   Lignin   is   retained   in   the  pulp;   therefore, high yields of pulp are obtained from wood. 

• Mechanical   pulps   are   characterized   by   high   yield,   high bulk, high stiffness, and low cost. They have low strength since the lignin interferes with hydrogen bonding between fibers when paper is made and also causes the pulp to turn yellow with exposure to air and light. 

• The use of  mechanical  pulps   is  confined mainly   to non-permanent   papers   like   newsprint   and   catalog   paper. Mechanical   pulps   constitute   20-   25%   of   the   world production and this is increasing due to the high yield of the process and increasing competition for fiber resources.

• Chemi-thermomechanical   pulping   is   a   process   where woodchips are pretreated with sodium carbonate,sodium hydroxide,   sodium   sulfite   and   other   chemicals   prior   to refining with equipment similar to a mechanical mill.

Chemical pulping

Chemical   pulping   is   a   method   of   producing   pulp   by combining   wood   chips   and   chemicals   in   large   vessels known as digesters where heat and chemicals break down the   lignin,   which   binds   the   cellulose   fibers   together, without seriously degrading the cellulose fibers.

THREE TYPES OF CHEMICAL PULPING

•KRAFT PROCESS

•SULFITE PROCESS

•SODA PULPING

KRAFT PROCESS (SULFATE PROCESS)

• Kraft  process   is   a   process   for   conversion  of  wood   into wood pulp consisting of almost pure cellulose fibers. 

1. IMPREGNATION

• Common wood chips used  in  pulp  production are 12–25 millimetres   (0.47–0.98 in)   long   and   2–10   millimetres (0.079–0.394 in)   thick.   The   chips   normally   first   enter the presteaming where   they   are   wetted   and   preheated with steam.   Cavities   inside   fresh  wood   chips   are   partly filled with liquid and partly with air. The steam treatment causes the air to expand and about 25% of the air to be expelled from the chips. The next step is to saturate the chips with black and white liquor. Air remaining in chips at the beginning of liquor impregnation is trapped within the chips.  The impregnation can be done before or after the chips enters the digester and is normally done below 100 °C (212 °F).

2. COOKING

The  wood  chips  are   then  cooked   in  pressurized  vessels called   digesters.   Some   digesters   operate   in   a   batch manner   and   some   in   a   continuous   process.   There   are several  variations of   the cooking processes  both for   the batch and the continuous digesters.  Digesters  producing 1,000 tonnes or more of pulp per day are common, with the largest producing more than 3,500 tonnes per day. In a continuous digester, the materials are fed at a rate which allows the pulping reaction to be complete by the time the 

Page 2: Pulp and Paper

materials   exit   the   reactor.   Typically,   delignification requires  several  hours  at  170 to 176 °C  (338 to  349 °F). Under   these  conditions   lignin  and hemicellulose degrade to  give   fragments   that  are  soluble   in   the  strongly  basic liquid.   The   solid  pulp   (about  50% by  weight  of   the  dry wood chips) is collected and washed. At this point the pulp is known as brown stock because of its color.

3. RECOVERY PROCESS

• The excess black liquor contains about 15% solids and is concentrated in a multiple effect evaporator. After the first step the black  liquor  has about 20  -  30% solids.  At   this concentration   the rosin soap   rises   to   the   surface   and is skimmed off.   The   collected   soap   is   further   processed to tall oil. Removal of the soap improves the evaporation operation of the later effects.

• The  weak  black   liquor   is   further   evaporated   to  65% or even   80%   solids   ("heavy   black   liquor")   and   burned   in the recovery boiler to recover the inorganic chemicals for reuse   in   the   pulping   process.   Higher   solids   in   the concentrated   black   liquor   increases   the   energy   and chemical  efficiency  of   the  recovery  cycle,  but  also gives higher viscosity  and precipitation of solids (plugging and fouling of equipment). During combustion sodium sulfate is reduced to sodium sulfide by the organic carbon in the mixture:

1. Na2SO4 + 2 C → Na2S + 2 CO2

The molten  salts   ("smelt")   from the  recovery  boiler  are dissolved in a process water known as "weak wash". This process   water,   also   known   as   "weak   white   liquor"   is composed of all liquors used to wash lime mud and green liquor precipitates.   The   resulting   solution   of   sodium carbonate and sodium sulfide is known as "green liquor", although it is not known exactly what causes the liquor to be green.  This   liquid   is  mixed with calcium oxide,  which becomes calcium hydroxide in solution, to regenerate the white   liquor   used   in   the   pulping   process   through   an equilibrium reaction (Na2S is shown since it is part of the green liquor, but does not participate in the reaction):

2. Na2S + Na2CO3 + Ca(OH)2 ←→ Na2S + 2 NaOH + CaCO3

Calcium carbonate precipitates from the white liquor and is recovered and heated in a lime kiln where it is converted to calcium oxide.

3. CaCO3 → CaO + CO2

Calcium oxide (lime) is reacted with water to regenerate the calcium hydroxide used in Reaction 2:

4. CaO + H2O → Ca(OH)2

4. BLOWING

• The finished cooked wood chips are blown by reducing the pressure   to atmospheric  pressure.  This   releases  a   lot  of steam and volatiles. The steam produced can then be used to   heat   the   pulp   mill   and   any   excess   used   in district heating schemes or to drive a steam turbine to generate electrical   power.   The   volatiles   are   condensed   and collected;   in  the case of  northernsoftwoods this  consists mainly of raw turpentine.

5. SCREENING

• Screening of the pulp after pulping is a process whereby the   pulp   is   separated   from   large shives, knots,   dirt   and other   debris.   The accept is   the   pulp.   The   material separated from the pulp is called reject.

• The   screening   section   consists   of   different   types of sieves (screens) and centrifugal cleaning. The sieves are normally set up in a multistage cascade operation because considerable amounts of good fibres can go to the reject 

stream  when   trying   to   achieve  maximum purity   in   the accept flow.

• The fiber containing shives and knots are separated from the rest of the reject and reprocessed either in a refiner and/or is sent back to the digester. The content of knots is typically 0.5 - 3.0% of the digester output, while the shives content is about 0.1- 1.0%.

6. WASHING

• The  brownstock   from  the  blowing  goes   to   the  washing stages where the used cooking liquors are separated from the cellulose fibers. Normally a pulp mill has 3-5 washing stages   in   series.  Washing   stages   are   also   placed   after oxygen delignification and between the bleaching stages as well.  Pulp washers use counter current flow between the   stages   such   that   the   pulp  moves   in   the   opposite direction to the flow of washing waters. 

Bleaching

• In a modern mill,  brownstock (cellulose fibers containing approximately 5% residual lignin) produced by the pulping is first washed to remove some of the dissolved organic material   and   then   further   delignified   by   a   variety of bleaching stages.

• In the case of a plant designed to produce pulp to make brown sack paper or linerboard for boxes and packaging, the pulp does not always need to be bleached to a high brightness. Bleaching decreases the mass of pulp produced by about 5%, decreases the strength of the fibers and adds to the cost of manufacture.

SULFITE PROCESS

• Sulfite process produces wood pulp which is almost pure cellulose fibers by using various salts of sulfurous acid to extract the lignin from wood chips in large pressure vessels called digesters.

1. PULPING LIQUOR PREPARATION

2. PULPING

3. CHEMICAL RECOVERY

• Calcium Based

• Ammonia Based

• Magnesium Based

• Sodium Based

Pulping liquor preparation

The   pulping   liquor   for   most   sulfite   mills   is   made   by burning sulfur with   the   correct   amount   of oxygen to   give sulfur dioxide,  which  is  then absorbed into water  to give sulfurous acid. Care must be taken to avoid the formation of sulfur trioxide since it gives undesired sulfuric acid when it   is  dissolved in water.  Sulfuric acid is undesirable since it promotes hydrolysis of cellulose without contributing to delignification.

Delignification  –  removal of lignin from woody tissue (as by natural enzymatic or industrial chemical processes)

Pulping

• Sulfite   pulping   is   carried   out   between   pH   1.5   and   5, depending on the counterion to sulfite (bisulfite) and the ratio of base to sulfurous acid. The pulp is in contact with the   pulping   chemicals   for   4   to   14   hours   and   at temperatures ranging from 130 to 160 °C (266 to 320 °F), again depending on the chemicals used.

• Most  of   the   intermediates   involved   in  delignification   in sulfite   pulping   are   resonance-stabilized   carbocations 

Page 3: Pulp and Paper

formed   either   by   protonation   of   carbon-carbon   double bonds  or  acidic  cleavage  of  ether  bonds  which  connect many of the constituents of lignin. It is the latter reaction which   is   responsible   for  most   lignin  degradation   in   the sulfite process.

• The sulfite process does not degrade  lignin to the same extent that the kraft process does and the lignosulfonates from the sulfite process are useful byproducts.

Chemical recovery

• The  spent   cooking   liquor   from sulfite  pulping   is  usually called brown liquor, but the terms red liquor, thick liquor and sulfite liquor are also used (compared to black liquor in the kraft process). Pulp washers, using countercurrent flow, remove the spent cooking chemicals and degraded lignin   and  hemicellulose.   The   extracted  brown   liquor   is concentrated,   in   multiple   effect   evaporators.   The concentrated brown liquor can be burned in the recovery boiler   to   generate   steam   and   recover   the   inorganic chemicals   for   reuse  in   the  pulping  process  or   it   can be neutralized to  recover  the useful  byproducts  of  pulping. The   sulfite   process   can   use   calcium,   ammonium, magnesium or sodium as a base.

Calcium-based

• The earliest process used calcium, obtained as inexpensive calcium carbonate and there was little incentive to recover the inorganic materials.

Ammonia-based

• Ammonia-based processes  do not  allow recovery  of   the pulping chemicals since ammonia or ammonium salts are oxidized to nitrogen and nitrogen oxides when burned.

Magnesium-based

• The   recovery   process   used   in  magnesium-based   sulfite pulping the "Magnefite" process is well developed.[8] The concentrated brown liquor is burned in a recovery boiler, producing  magnesium oxide  and   sulfur  dioxide,  both  of which   are   recovered   from   the   flue   gases.  Magnesium oxide  is  recovered  in  a wet scrubber to give a slurry  of magnesium hydroxide.

• This magnesium hydroxide slurry is then used in another scrubber   to   absorb   sulfur   dioxide   from   the   flue   gases producing a magnesium bisulfite solution that is clarified, filtered and used as the pulping liquor.

Sodium-based

• Sodium-based processes use a recovery system similar to that used in the kraft recovery process, except that there is no "lime cycle".

SODA PULPING

• Soda pulping is a chemical process for making wood pulp with sodium hydroxide as the cooking chemical. 

• In the Soda-AQ process, anthraquinone (AQ) maybe used as   a   pulping   additive   to   reduce   the   carbohydrate degradation.

• It is a solution for silicate scaling.

DE-INKED PULPING (RECYCLING PROCESS)

• De-inked   pulping   is   a   process   where   used   papers   are recycled   by   removing   the   printing   links   and other unwanted elements and freed the paper fibers. 

• DIP is used as raw material in papermaking.   (newsprint, toilet paper and facial tissues grades) 

II. BLEACHING

• Bleaching of wood pulp is the chemical processing carried out on various types of wood pulp   to decrease the color of the pulp, so that it becomes whiter.

• Bleaching differs depending on the pulping method.

BLEACHING FOR CHEMICAL PULPING METHOD

BLEACHING   FOR   MECHANICAL   PULPING METHOD

BLEACHING FOR RECYCLING METHOD (DE-INKED METHOD)

BLEACHING FOR CHEMICAL PULPING METHOD

• Chlorine and hypochlorite

Chlorine replaces hydrogen on the aromatic rings of lignin via aromatic   substitution,   oxidizes   pendant   groups   to   carboxylic acids and adds across carbon carbon double bonds in the lignin sidechains.   At   pH   >8   the   dominant   species   is   hypochlorite, ClO−, which is also useful for lignin removal. The main objection to the use of chlorine for bleaching pulp is the large amounts of soluble organochlorine compounds produced and released into the environment.

• Chlorine dioxide

Chlorine   dioxide   is   sometimes   used   in   combination   with chlorine, but  it  is used alone in ECF (elemental chlorine-free) bleaching sequences. It is used at moderately acidic pH (3.5 to 6).   The   use   of   chlorine   dioxide   minimizes   the   amount   of organochlorine   compounds   produced.   Chlorine   dioxide   (ECF technology) currently is the most important bleaching method world wide. About 95% of all bleached Kraft pulp is made using chlorine dioxide in ECF bleaching sequences.

• Other bleaching agents

A variety of more exotic bleaching agents have been used on chemical   pulps.   They   include peroxyacetic   acid,  peroxyformic acid, potassium peroxymonosulfate (Oxone), dimethyldioxirane

Types of Pulps

• Air dry pulp - is the most common form to sell pulp. This is pulp  dried   to  about  10 percent moisture content.   It   is normally delivered as sheeted bales of 250 kg. The reason to   leave   10   percent  moisture   in   the   pulp   is   that   this minimizes the fiber to fiber bonding and makes it easier to disperse the pulp in water for further processing to paper.

• Roll pulp or reel pulp - is the most common delivery form of   pulp   to   non   traditional   pulp   markets. Fluff   pulp is normally shipped on rolls (reels). This pulp is dried to 5–6 percent moisture content.

• Flash Dried Pulp -  This   is  done by pressing  the  pulp   to about  50 percent moisture content  and   then   let   it   fall through silos that are 15–17 m high. 

III. ADDITIVES

• Besides   the   fibers,   pulps   may   contain   fillers   such as chalk or china clay, which improve its characteristics for printing or writing. 

• Additives for sizing purposes may be mixed with it and/or applied   to   the   paper   web   later   in   the   manufacturing process;   the   purpose   of   such   sizing   is   to   establish   the correct level of surface absorbency to suit ink or paint.

Page 4: Pulp and Paper

IV. PRODUCING PAPER (PAPER MAKING)

• The pulp is fed to a paper machine where it is formed as a paper web and the water is removed from it by pressing and drying.

• Pressing the sheet removes the water by force; once the water is forced from the sheet, a special kind of felt, which is not to be confused with the traditional one, is used to collect the water; where when making paper by hand, a blotter sheet is used instead.

• Drying involves using air and/or heat to remove water from the paper sheets; in the earliest days of paper making this was done by hanging the sheets like laundry; in more modern times various forms of heated drying mechanisms are used. 

• On the paper machine the most common is the steam heated can dryer. These can reach temperatures above 200 °F (93 °C) and are used in long sequences of more than 40 cans; where the heat produced by these can easily dry the paper to less than 6% moisture.

V. FINISHING

• The paper may then undergo sizing to alter its physical properties for use in various applications.

CALCULATIONS OF WOOD, PAPER, AND OTHER MATERIALS

Wood Moisture Content

Measure of the water content relative to either the total wet weight of material (the green weight of wood) or to the weight of ovendried wood material (the oven-dry basis)

Weight of water in wood = wet weight of wood – ovendry weight of wood

Specific gravity and density

Specific gravity (sp gr) of wood is the oven dry weight of wood divided by the weight of displaced volume of water

Density of a material is defined as the mass per unit volume, mass/volume. For wood, it is customary to take the total mass (or weight) divided by the volume both at the same moisture content.

Pulpwood measurement

Measurements of wood can be based on weight (with moisture content correction to determine a reliable estimate of oven-dry weight), by solid wood volume (for example, the unit), by gross, stacked volume (for example, the cord), or as volume of chips (for example, the unit).

Page 5: Pulp and Paper

Breaking Length

Breaking length, L, is a measure of tensile strength by calculating the length of a piece of material such that it breaks under its own weight

Chemical Concentration

Chemical charge (to a process), percent chemical (on wood or pulp).: The chemical charge is a measure of the weight of chemical used to process (i.e., pulp or bleach) a material.

Kraft Liquor Chemical Calculations

1) Total chemical or total alkali (TA)

The total alkali is the sum of all of the sodium salts in the liquors (as Na2O) that contribute to AA or are capable of being converted to AA in the kraft cycle, specifically NaOH, Na2S, Na2CO3, and Na2SxOy (as Na2O).

2) Total titratable alkali (TTA)

TTA is the sum of all of the bases in the white liquor that can be titrated with strong acid. Generally, it is considered as NaOH, Na2S, and Na2C03 (as Na2O), although small amounts of Na2S03 and other acids might be present.

3) Active alkali (AA)The sum of the active ingredients in the pulping process is known as active alkali

4) Effective alkali (EA)EA is the sum of sodium chemicals that will produce OH during kraft pulping.

5) SulfidityThe ratio of Na2S to the active alkali, expressed as a percent; Increases the rate of delignification, which occurs by nucleophilic action of the hydrosulfide anion (HS) and appears to protect cellulose against degradation

6) Causticity

Page 6: Pulp and Paper

The ratio of NaOH to active alkali, expressed as a percentage; therefore causticity + sulfidity = 100%

7) Causticizing EfficiencyThe causticizing efficiency is the ratio of NaOH to NaOH and Na2CO3. This is a measure of how efficient causticizing is; it represents the percentage of the Na2CO3 from the recovery boiler that is converted back into useful NaOH cooking chemical. A value of 77-80% is typical.

8) Reduction EfficiencyThe reduction efficiency is the ratio of Na2S to the sum of Na^S and Na2S04 in green liquor expressed as a percentage. This is a measure of the reduction efficiency in the recovery boiler.

Calcining Equations

Two equations are used to characterize calcining of lime mud to produce fresh lime.

1) specific energy consumption is an indication of how much fuel is required to process the lime mud and is often reported as Btu per ton of lime.

2) lime availability is an indication of the purity of the lime in terms of available CaO divided by the amount of lime product.

SAMPLE SOLVED PROBLEM:

Given:

• 50 Tons Chips

• 50% Moisture Content 

• Liquor Charge to Digester:

Page 7: Pulp and Paper

» 1200 ft3 white liquor

- EA = 13% (alkali charge on OD wood as Na2O)

- Sulfidity = 25.2%

» 1300 ft3 black liquor

• Question:  How many lbs./ft3 of NaOH and Na2S were charged to the digester in the white liquor?  (assume no chemical contribution from black liquor)

Step 1: Calculate the amount of oven dry wood 

50 tons chips • 2000 lbs./ton • 0.5 (m.c.) = 50,000 lbs. o.d. wood

Step 2: Calculate the amount of NaOH and Na2S as Na2O in the white liquor using the EA and Sulfidity numbers

EA = NaOH + 1/2 Na2S = 13% on od wood.

NaOH+ 12Na2S=0.13×50,000= 6500 lbs.

NaOH=6500lbs .−12Na2S

Sulfidity= Na2SNa2S+NaOH

x 100=25.2%

Na2S

Na2S+(6500−12 Na2 S)=0.252= Na2S

0.5Na2 S+6500 lbs

Na2S=0.126Na2S+1638 lbs .

0.874Na2S=1638 lbs .

Na2S=1874 lbs(Na2O)

NaOH=6500lbs−(0.5 ) (1874 lbs )=5563 lbs(Na¿¿2O)¿ 

Step 3: Convert NaOH and Na2S values from Na2O

Na2O = 62 g/mole or lbs./mole for this exercise

NaOH = 40 g/mole

Na2S = 78.1 g/mole

*these calculations are based on an equivalence in sodium (Na). This means that Na2S and NaOH are equivalents but that NaOH is equal to 1/2 Na2O.

Na2S = 1874 lbs. (Na2O) • 1mole/62 lbs. • 78.1 lbs./mole = 2360.6 lbs.

NaOH = 5563 lbs. • 1 mole/62 lbs. • 2.0 • 40 lbs./mole = 7178 lbs.

So: Na2S = 2360.6/1200 ft3 = 1.97 lbs./ft3

NaOH = 7178/1200 ft3 = 5.98 lbs./ft3

PROBLEMS:

1) A sample of wood with green dimensions of 3 cm x 5 cm x 10 cm weighs 105 g green (wet) and 62 g when oven-dry. Calculate:1. Specific gravity2. MCOD

3. MCGR

4. Oven-dry weight in kg/w?Answers: 0.413; 69.4%; 41.0%; 413 kg/w?

Page 8: Pulp and Paper

2) A sawmill produces 87.3 BDU (one bone dry unit is 2400 pounds of oven-dry wood chips per day with 50% moisture content green basis. (The solid wood specific gravity is 0.44.) The chip bulk density is 10 pounds dry wood per cubic foot. These rail cars have a rated capacity of 30 units. (One unit is 200 cubic feet.) How many rail cars are needed per day. (Give the final result to 3 significant digits.) Answer: 3.49 rail cars.