protostellar disks: accretion processeseco/ast541/sudhir...mass accretion figure: (kitamura, 2002)...

29
Protostellar Disks: Accretion Processes Sudhir Raskutti Princeton University November 6, 2012 1 / 29 Protostellar Disks: Accretion Processes

Upload: others

Post on 22-May-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Protostellar Disks: Accretion Processeseco/AST541/Sudhir...Mass Accretion Figure: (Kitamura, 2002) Disks last for 110Myr Must accrete or disperse disk mass in this time Accretion rates

Protostellar Disks: Accretion Processes

Sudhir Raskutti

Princeton University

November 6, 2012

1 / 29

Protostellar Disks: Accretion Processes

Page 2: Protostellar Disks: Accretion Processeseco/AST541/Sudhir...Mass Accretion Figure: (Kitamura, 2002) Disks last for 110Myr Must accrete or disperse disk mass in this time Accretion rates

Introduction

Modelling Protostellar Disks

Angular Momentum Transport

Accretion by the Magnetorotational Instability:

Ideal CaseResistive Case and Ionization StructureOther non-ideal e↵ectsNon-linearities

Accretion by Hydrodynamic Instabilities

2 / 29

Protostellar Disks: Accretion Processes

Page 3: Protostellar Disks: Accretion Processeseco/AST541/Sudhir...Mass Accretion Figure: (Kitamura, 2002) Disks last for 110Myr Must accrete or disperse disk mass in this time Accretion rates

Protostellar Disks

Masses around 0.01� 0.1M� and sizes around 10� 100AU

Thin Disks (Minimum Mass Solar Nebula):

⌃(r) ⇡ 1700�

r1 AU

��3/2gcm�2

hr = cs

⌦r ⇡ 0.03�

r1 AU

�1/4

Cool and Dusty: T (r) ⇡ 280�

r1 AU

��1/2K

Magnetic fields between 10�2 � 1G

3 / 29

Protostellar Disks: Accretion Processes

Page 4: Protostellar Disks: Accretion Processeseco/AST541/Sudhir...Mass Accretion Figure: (Kitamura, 2002) Disks last for 110Myr Must accrete or disperse disk mass in this time Accretion rates

Mass Accretion

Figure: (Kitamura, 2002)

Disks last for ⇠ 1� 10Myr

Must accrete or disperse diskmass in this time

Accretion rates⇠ 10�9 � 10�7

M�yr�1

Disk evolves, accretes massonto protostar by

Loss of mass and angularmomentum(photoevaporation, diskbraking, disk winds)

Angular MomentumTransport

4 / 29

Protostellar Disks: Accretion Processes

Page 5: Protostellar Disks: Accretion Processeseco/AST541/Sudhir...Mass Accretion Figure: (Kitamura, 2002) Disks last for 110Myr Must accrete or disperse disk mass in this time Accretion rates

Angular Momentum Transport

Local turbulence creates viscoscity ⌫ = ↵

c2s⌦ related to the local

stress

Wr� =

�vr�v� � BrB�

4⇡⇢

Wr� = ↵c

2s

This viscoscity drives disk evolution

@⌃

@t

=3

r

@

@r

pr

@

@r

�⌫⌃

pr

��

M = 6⇡r1/2@

@r

(2⌃⌫r1/2)

Accretion and di↵usion outwards if @(⌫⌃)@⌃ < 0

Most internal methods of accretion require sustained turbulence

5 / 29

Protostellar Disks: Accretion Processes

Page 6: Protostellar Disks: Accretion Processeseco/AST541/Sudhir...Mass Accretion Figure: (Kitamura, 2002) Disks last for 110Myr Must accrete or disperse disk mass in this time Accretion rates

MHD Turbulence

Can create turbulence by:

Self-gravity (Wendy)Hydrodynamic InstabilitiesMagnetorotational Instability (MRI)

J x B

J x B

B0+ δB

1

2v

v

rφzx

B0

1

2

In Ideal MHD@B@t = r⇥ [v ⇥B]

Di↵erential rotation createstension along field lines

Excites turbulence, drivessome mass inwards, angularmomentum outwards

Excited if ddr

�⌦2

�< 0

6 / 29

Protostellar Disks: Accretion Processes

Page 7: Protostellar Disks: Accretion Processeseco/AST541/Sudhir...Mass Accretion Figure: (Kitamura, 2002) Disks last for 110Myr Must accrete or disperse disk mass in this time Accretion rates

Complications

In reality, there are non-ideal e↵ects

@B

@t

= r⇥v ⇥B� ⌘r⇥B� J⇥B

ene+

(J⇥B)⇥B

c�⇢i⇢

�.

Magnetic field drifts due to di↵usion terms

Ohmic Di↵usion: ⌘ = c2

4⇡�c

Ambipolar Di↵usion: (J⇥B)⇥B

c�⇢i⇢

Hall Di↵usion: J⇥B

ene

Stronger coupling between magnetic field and fluid required forMRI

With Di↵usion, what regions of the disk accrete?

When are non-ideal e↵ects important and what e↵ect do theyhave?

7 / 29

Protostellar Disks: Accretion Processes

Page 8: Protostellar Disks: Accretion Processeseco/AST541/Sudhir...Mass Accretion Figure: (Kitamura, 2002) Disks last for 110Myr Must accrete or disperse disk mass in this time Accretion rates

Ohmic Di↵usion

Magnetic Di↵usion due to finite resistivity ⌘ = c2me�e⇢4⇡e2ne

Important for low ionization fraction since resistivity increaseswith neutral fraction

Suppresses MRI when resistive damping ⌧⌘ ⇠ �2

⌘ is shorter than

growth rate ⌧ ⇠ �vA

Equivalent to:

ReM =hvA

. 1

ne

n

= x ⇠ 5⇥ 10�13

✓h/r

0.05

◆�1 ✓vA

0.1cs

◆�1

8 / 29

Protostellar Disks: Accretion Processes

Page 9: Protostellar Disks: Accretion Processeseco/AST541/Sudhir...Mass Accretion Figure: (Kitamura, 2002) Disks last for 110Myr Must accrete or disperse disk mass in this time Accretion rates

Disk Ionization

Thermal ionization, at typical densities nH ⇠ 1013gcm�3,reaches x ⇠ 10�13 for T & 103K

Protoplanetary disks are much colder than most astrophysicaldisks, does not hold beyond r ⇠ 0.1AU

Stellar X-rays (1 AU, 5 keV)

Cosmic rays (unshielded)

Radioactive decay of 26Al

Likely surfacedensity at 1 AU

Figure: (Armitage, 2010)

Non-thermal sources ofionization dominate

Radioactive Decay

Cosmic Rays

Protostellar X-rays

9 / 29

Protostellar Disks: Accretion Processes

Page 10: Protostellar Disks: Accretion Processeseco/AST541/Sudhir...Mass Accretion Figure: (Kitamura, 2002) Disks last for 110Myr Must accrete or disperse disk mass in this time Accretion rates

Dead Zones

Leads to tiered structure of protostellar disks (Gammie, 1996)

Thermally ionized and MRI turbulent interiorNon-thermally ionized and MRI turbulent exteriorIntermediate region with thin active layer and mid-plane deadzone

dead zone

collisional ionization at T > 103 K (r < 1 AU),MRI turbulent

resistive quenchingof MRI, suppressedangular momentumtransport MRI-active

surface layer

non-thermal ionizationof full disk column

cosmicrays?

ambipolar diffusiondominates

X-rays

10 / 29

Protostellar Disks: Accretion Processes

Page 11: Protostellar Disks: Accretion Processeseco/AST541/Sudhir...Mass Accretion Figure: (Kitamura, 2002) Disks last for 110Myr Must accrete or disperse disk mass in this time Accretion rates

Layered Accretion

Accretion proceeds through the active layer onto the dead zone

Uneven accretion leads to gravitational instability and heating toabove ⇠ 103K

Mass accreted onto dead zone rapidly accreted onto protostar(Variable/Bursty Accretion)

Accretes su�cient mass onto the dead zone (Gammie, 1996)

M ⇡ 1.3⇥ 10�3⇣

10�2

⌘2✓

⌃a

100gcm�2

◆3

0

✓�t

104yr

◆M�

But:

Results ignore Hall and Ambipolar Di↵usionVery sensitive to the exact opacity/recombination rate

11 / 29

Protostellar Disks: Accretion Processes

Page 12: Protostellar Disks: Accretion Processeseco/AST541/Sudhir...Mass Accretion Figure: (Kitamura, 2002) Disks last for 110Myr Must accrete or disperse disk mass in this time Accretion rates

Uncertainties

x determined by balance between ionization and recombination

Ionization (by X-rays) slightly uncertain

Gas-phase recombination well known (though sensitive to metalabundance)

Recombination onto grains dependent on both the fraction ofdust and the size of dust grains

nI,dust

nI,gas⇠ 20

✓fd

10�2

◆⇣x

10�12

⌘�1✓

T

100 K

◆✓a

1 µm

◆�1

Even if initial dust distribution is known, the rate ofsedimentation is unknown

12 / 29

Protostellar Disks: Accretion Processes

Page 13: Protostellar Disks: Accretion Processeseco/AST541/Sudhir...Mass Accretion Figure: (Kitamura, 2002) Disks last for 110Myr Must accrete or disperse disk mass in this time Accretion rates

Uncertainties: Dust Fraction

Gammie, 1996 results assume⌃a ⇡ 100gcm�2, which is onlytrue for small dust fractions Figure: (Sano, Miyama, 2000)

13 / 29

Protostellar Disks: Accretion Processes

Page 14: Protostellar Disks: Accretion Processeseco/AST541/Sudhir...Mass Accretion Figure: (Kitamura, 2002) Disks last for 110Myr Must accrete or disperse disk mass in this time Accretion rates

Uncertainties: Dust Size

Significant active layer onlyfor large dust sizes and smalldust fractions

This is true if disk hasevolved significantly

Figure: (Sano, Miyama, 2000)

14 / 29

Protostellar Disks: Accretion Processes

Page 15: Protostellar Disks: Accretion Processeseco/AST541/Sudhir...Mass Accretion Figure: (Kitamura, 2002) Disks last for 110Myr Must accrete or disperse disk mass in this time Accretion rates

Uncertainties: Disk Density

Changes in disk surface density have less impact, but stilluncertain

Figure: (Sano, Miyama, 2000)

15 / 29

Protostellar Disks: Accretion Processes

Page 16: Protostellar Disks: Accretion Processeseco/AST541/Sudhir...Mass Accretion Figure: (Kitamura, 2002) Disks last for 110Myr Must accrete or disperse disk mass in this time Accretion rates

Non-Ideal E↵ects: Ambipolar Di↵usion

Other e↵ects don’t destroy flux but let it drift wrt neutral fluid

@B

@t

= r⇥⇥(v + vB)⇥B� ⌘(r⇥B)k

vB = vP + vH

J x B

J

v

v + vB

vB

1

r

φ

z

B0

J x B

J

v

v + vB

2

vB

Ambipolar di↵usion (lowdensity, high x) dominateswhen the field is frozen to ions,with a drift due to neutral drag

vP =J⇥B

c�i⇢i⇢

�i =h�vii

mi +m

16 / 29

Protostellar Disks: Accretion Processes

Page 17: Protostellar Disks: Accretion Processeseco/AST541/Sudhir...Mass Accretion Figure: (Kitamura, 2002) Disks last for 110Myr Must accrete or disperse disk mass in this time Accretion rates

Non-Ideal E↵ects: Hall Di↵usion

Hall di↵usion dominates when the field frozen to electrons aloneand induces a drift due to the di↵erential ion-electron motion

vH = � J

ene

The Hall e↵ect depends on the field direction and can eitherreinforce or entirely suppress the MRI

1

2

J x B

J

J x B

J

vP

vH

v

v + vB

vB vP

vH

v

v + vB

vB

r

φ

zB0

JJ x B

vP

vH

v v + vB

vB

1

JJ x B

vP

vH

vv + v

B

vB 2

XB0

r

φ

z

17 / 29

Protostellar Disks: Accretion Processes

Page 18: Protostellar Disks: Accretion Processeseco/AST541/Sudhir...Mass Accretion Figure: (Kitamura, 2002) Disks last for 110Myr Must accrete or disperse disk mass in this time Accretion rates

Non-Ideal E↵ects in Protoplanetary Discs

Figure: (Sano, Stone, 2002)

Compare di↵usion terms:OI ⌘ 1

ReMAI ⌘ ⌦

�⇢iHI ⌘ X

2

Assume equilibrium:

�c = e2nemennh�vie

⌘ = c2

4⇡�c

X = ⌘⌦2v2

A

Typical protoplanetary disks are Hall/Ohm dominated in innerregions and Ambipolar-dominated beyond r ⇠ 20AU

Hall di↵usion may be very important for mass accretion

18 / 29

Protostellar Disks: Accretion Processes

Page 19: Protostellar Disks: Accretion Processeseco/AST541/Sudhir...Mass Accretion Figure: (Kitamura, 2002) Disks last for 110Myr Must accrete or disperse disk mass in this time Accretion rates

Non-Ideal E↵ects: Linear Regime

–2 0 2 40

1

2

3

4

s ηH Ω / vA2

0.100.3

0.4

0.5

0.6

0.7

(η +

ηA

) Ω /

v A2

0.7

0.5

0.4

0.3

1

0.2

0.1

∞0.75

0.2

–2 0 2 40

1

2

3

4

s ηH Ω / vA2

(η +

ηA

) Ω /

v A2

1.2

0.5 0.4 0.3

1

0.2

1.5

0.6

0.7

0.8 0.9

2

0

Maximum growth rate (Black), wavenumber (Blue) and largest stable wavenumber (Right).

(Wardle, Salmeron 2012)

For B = sBz (s = ±1) under perturbations exp(⌫t� ikz)

Weakly coupled electron-ion-neutral plasma:

⌘A = B2

4⇡ �i ⇢⇢i

⌘H = cB4⇡ e ne

Pure ohmic and ambipolar di↵usion tend to decrease the growthrate and increase the maximum wavelength of perturbations

Hall Di↵usion increases the maximum growth rate

19 / 29

Protostellar Disks: Accretion Processes

Page 20: Protostellar Disks: Accretion Processeseco/AST541/Sudhir...Mass Accretion Figure: (Kitamura, 2002) Disks last for 110Myr Must accrete or disperse disk mass in this time Accretion rates

Non-Ideal E↵ects: Linear Regime

0

1

2

3

4

5

0.0

0.5

1.0

1.5

2.0

2.5

0

1

2

3

4

5

0.0

0.5

1.0

1.5

2.0

2.5

B (G)

0

0.25

0.5

0.75

10–3 10–2 10–1 100 101 1020

1

2

3

4

5

0.0

0.5

1.0

1.5

2.0

2.5

z / h

ohmic only

Bz > 0

Bz < 0

ν / Ω

z (1

012 c

m)

z / hz / h

z (1

012 c

m)

z (1

012 c

m)

Mdust / Mgas = 0

Figure: Maximum growth rate vs.height above mid-plane. (Wardle,Salmeron, 2012).

10–3 10–2 10–1 100 101 102

100

101

102

103

ohmohm+ amb

ohm+amb+hall (Bz > 0)

Mdust / Mgas = 10–4

activ

e co

lum

n (

g cm

–2 )

B (G)

ohm+amb+hall (Bz < 0)

a = 1µm

Hall di↵usion does stabilise(destabilise) the disk compared toohmic di↵usion alone

Up to 2 orders of magnitudedi↵erence in active layer columndensity

20 / 29

Protostellar Disks: Accretion Processes

Page 21: Protostellar Disks: Accretion Processeseco/AST541/Sudhir...Mass Accretion Figure: (Kitamura, 2002) Disks last for 110Myr Must accrete or disperse disk mass in this time Accretion rates

Non-Ideal E↵ects and Dust

E↵ect of Hall Di↵usionprobably dwarfed byuncertainty in dustfraction

No grains: Couplingcan probably bemaintained atmidplane

1% mass in grains(early evolution), nosignificant active layer

If grains remain small(turbulence), nosignificant active layer

10–3 10–2 10–1 100 101 102

100

101

102

103

B (G)

10–4

10–6

10–2

10–2

10–410–6

0

0

activ

e co

lum

n (

g cm

–2 )

Figure: Active layer size at 1 AU for positive andnegative magnetic fields and various dust mass fractionswith a = 1µm. (Wardle, Salmeron, 2012)

21 / 29

Protostellar Disks: Accretion Processes

Page 22: Protostellar Disks: Accretion Processeseco/AST541/Sudhir...Mass Accretion Figure: (Kitamura, 2002) Disks last for 110Myr Must accrete or disperse disk mass in this time Accretion rates

Non-Ideal E↵ects: Simulations

No guarantee that linear conditions will guarantee a steady stateof MHD turbulence and outwards transport of angularmomentum

Figure: Radial Velocity and Magnetic Field. (Sano,Stone, 2002)

Non-linear e↵ectscaptured in 2-fluidsimulations

Small initialperturbations in gaspressure ⇠ 10�6

Angular MomentumTransport as in idealMHD

22 / 29

Protostellar Disks: Accretion Processes

Page 23: Protostellar Disks: Accretion Processeseco/AST541/Sudhir...Mass Accretion Figure: (Kitamura, 2002) Disks last for 110Myr Must accrete or disperse disk mass in this time Accretion rates

Non-Ideal E↵ects: Simulations

Figure: (Sano, Stone, 2002)

Ohmic di↵usion condition remainsthe same

Hall di↵usion marginally changes thesaturation stress

Hall di↵usion has no e↵ect on thecritical Reynolds number

But don’t probe regime of halldomination XReM > 2 and ReM < 1

23 / 29

Protostellar Disks: Accretion Processes

Page 24: Protostellar Disks: Accretion Processeseco/AST541/Sudhir...Mass Accretion Figure: (Kitamura, 2002) Disks last for 110Myr Must accrete or disperse disk mass in this time Accretion rates

Hydrodynamic Instabilities

Angular Momentum Transport may be achieved with purehydrodynamic instabilities:

ConvectionPlanet-Driven EvolutionBaroclinic Instability

Likely to be subdominant to MHD turbulence

Can be important in dead zones

24 / 29

Protostellar Disks: Accretion Processes

Page 25: Protostellar Disks: Accretion Processeseco/AST541/Sudhir...Mass Accretion Figure: (Kitamura, 2002) Disks last for 110Myr Must accrete or disperse disk mass in this time Accretion rates

Baroclinic Instability

thermalization due to diffusion

buoyantsinking,roughlyadiabatic

buoyantrise, acceleration

thermalization

vortex

dTpert / dq�= 0

r

entropygradient

Radial entropy gradients and e�cient cooling produce vorticity

Particles moving inwards are cooler, drawn to lower orbits

E�cient thermal di↵usion heats them up along Keplerian orbits

25 / 29

Protostellar Disks: Accretion Processes

Page 26: Protostellar Disks: Accretion Processeseco/AST541/Sudhir...Mass Accretion Figure: (Kitamura, 2002) Disks last for 110Myr Must accrete or disperse disk mass in this time Accretion rates

Momentum Transport

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

50 100 150 200

< !

>

t

Figure: (Lesur, 2010)

Vorticity if: Convectively unstable

N

2r = � 1

�⇢

dP

dr

d

drln

✓P

◆< 0

E�cient cooling

Significant initial perturbation(Subcritical)

2D simulations show growth of vorticity and weak angularmomentum transport

Not necessarily the same in 3D

26 / 29

Protostellar Disks: Accretion Processes

Page 27: Protostellar Disks: Accretion Processeseco/AST541/Sudhir...Mass Accretion Figure: (Kitamura, 2002) Disks last for 110Myr Must accrete or disperse disk mass in this time Accretion rates

Conclusions

MRI turbulence important in mass accretion for protoplanetarydisks

Leads to layered disk structure, with accretion through a thinactive layer

Still large uncertainties concerning:

Exact Modelling of Disk (MMSN)Dominant Ionization SourcesRecombination Rate and the large part played by dust grainsBehaviour of Hall Di↵usion in the non-linear regime

Baroclinic Instability possible source of additional accretion indead zones

27 / 29

Protostellar Disks: Accretion Processes

Page 28: Protostellar Disks: Accretion Processeseco/AST541/Sudhir...Mass Accretion Figure: (Kitamura, 2002) Disks last for 110Myr Must accrete or disperse disk mass in this time Accretion rates

References

1 Armitage, P. J. (2010, November 5). Dynamics of ProtoplanetaryDisks. arXiv.org. doi:10.1146/annurev-astro-081710-102521

2 Sano, T., Miyama, S. M., Umebayashi, T., and Nakano, T.(2000, May 23). Magnetorotational Instability in ProtoplanetaryDisks. II. Ionization State and Unstable Regions. arXiv.org.doi:10.1086/317075

3 Bai, X.-N., and Stone, J. M. (2011). E↵ect of AmbipolarDi↵usion on the Nonlinear Evolution of MagnetorotationalInstability in Weakly Ionized Disks. The Astrophysical Journal,736(2), 144. doi:10.1088/0004-637X/736/2/144

4 Sano, T., and Stone, J. M. (2002a, January 11). The E↵ect ofthe Hall Term on the Nonlinear Evolution of theMagnetorotational Instability: I. Local AxisymmetricSimulations. arXiv.org. doi:10.1086/339504

28 / 29

Protostellar Disks: Accretion Processes

Page 29: Protostellar Disks: Accretion Processeseco/AST541/Sudhir...Mass Accretion Figure: (Kitamura, 2002) Disks last for 110Myr Must accrete or disperse disk mass in this time Accretion rates

References

1 Sano, T., and Stone, J. M. (2002b, May 22). The E↵ect of theHall Term on the Nonlinear Evolution of the MagnetorotationalInstability: II. Saturation Level and Critical Magnetic ReynoldsNumber. arXiv.org. doi:10.1086/342172

2 Wardle, M., and Salmeron, R. (2012). Hall di↵usion and themagnetorotational instability in protoplanetary discs. MonthlyNotices of the Royal Astronomical Society, 422(4), 27372755.doi:10.1111/j.1365-2966.2011.20022.x

3 Gammie, C. F. (1996). Layered Accretion in T Tauri Disks.Astrophysical Journal v.457, 457, 355. doi:10.1086/176735

4 Lesur, G., and Papaloizou, J. C. B. (2010). The subcriticalbaroclinic instability in local accretion disc models. Astronomyand Astrophysics, 513, 60. doi:10.1051/0004-6361/200913594

5 Kitamura, Y., Momose, M., Yokogawa, S., Kawabe, R., Tamura,M., and Ida, S. (2002). Investigation of the Physical Propertiesof Protoplanetary Disks around T Tauri Stars by a 1 ArcsecondImaging Survey: Evolution and Diversity of the Disks in TheirAccretion Stage. The Astrophysical Journal, 581(1), 357380.doi:10.1086/344223

29 / 29

Protostellar Disks: Accretion Processes