propulsion systems design · 2020. 10. 29. · propulsion systems design . enae 483/788d -...

70
Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Propulsion Systems Design Lecture #18 - October 29, 2020 Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 1 © 2020 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Upload: others

Post on 31-Jan-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Propulsion Systems Design• Lecture #18 - October 29, 2020 • Rocket engine basics • Survey of the technologies • Propellant feed systems • Propulsion systems design

    1

    © 2020 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

    http://spacecraft.ssl.umd.edu

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Grading Rubric for Team Project #2• Overall design (interior/exterior views, dimensioned 3-

    view, functionality in mission application) – 10 pts • Habitability design (crew accommodations, usage

    allocation, galley, waste management, windows) - 10 pts

    • Life support systems design (trade studies, installation in CAD design, provision of resupply) – 10 pts

    • Accommodation of visiting vehicles (docking ports, hatches, cargo interfaces) – 10 pts

    • EVA accommodations (airlock(s)/suitports, suit donning/doffing/recharging stations, dust remediation) – 10 pts

    2

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Grading Rubric for Term Project #2• Logistics management (volume allocation, crew

    access, ability to restock) – 10 pts • Concept of operations (How will the habitat be

    used? “day in the life”… how well does it fit the mission?) – 10 pts

    • Presentation quality (“telling the story”, engaging the reader, adhering to principles from class) - 10 pts

    • CAD quality (details, fidelity, complexity) - 20 pts • “Above and beyond” (extra effort outside of

    nominal expectations) - 10 pts extra credit

    3

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Propulsion Taxonomy

    Ion

    MPD

    Non-ThermalThermal

    Non-ChemicalChemical

    Monopropellants Bipropellants

    Pressure-Fed Pump-Fed

    LiquidsSolids Hybrids Air-Breathing

    Solar Sail

    Laser Sail

    Microwave Sail

    MagnetoPlasma

    ED Tether

    Nuclear

    Electrical

    Solar

    Beamed

    Cold Gas

    Mass Expulsion Non-Mass Expulsion

    4

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Thermal Rocket Exhaust Velocity• Exhaust velocity is

    where

    5

    ve =2γ

    γ − 1ℜToM̄

    1 − ( pepo )γ − 1

    γ

    M̄ ≡ average molecular weight of exhaust

    ℜ ≡ universal gas constant = 8314.3JoulesmoleoK

    γ ≡ ratio of specific heats ≈ 1.2

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Ideal Thermal Rocket Exhaust Velocity• Ideal exhaust velocity is

    • This corresponds to an ideally expanded nozzle • All thermal energy converted to kinetic energy of

    exhaust • Only a function of temperature and molecular

    weight!

    6

    ve,ideal =2γ

    γ − 1ℜToM̄

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Thermal Rocket Performance• Thrust is

    • Effective exhaust velocity

    • Expansion ratio

    7

    T = ·mve + (pe − pamb)Ae

    T = ·mc ⟹ c = ve + (pe − pamb)Ae·m (Isp = cgo )

    AtAe

    = ( γ + 12 )1

    γ − 1

    ( pepo )1γ γ + 1

    γ − 11 − ( pepo )

    γ − 1γ

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Nozzle Design• Pressure ratio p0/pe=100 (1470 psi-->14.7 psi)

    Ae/At=11.9 • Pressure ratio p0/pe=1000 (1470 psi-->1.47 psi)

    Ae/At=71.6 • Difference between sea level and vacuum Ve

    • Isp,vacuum=455 sec --> Isp,sl=397 sec

    8

    ve1ve2

    =p

    γ − 1γ

    o − pγ − 1

    γe1

    pγ − 1

    γo − p

    γ − 1γ

    e2

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Solid Rocket Motor

    9

    From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Solid Propellant Combustion Characteristics

    From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986

    10

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Solid Grain Configurations

    From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986

    11

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Short-Grain Solid Configurations

    From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986

    12

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Advanced Grain ConfigurationsFrom G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986

    13

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Liquid Rocket Engine

    14

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Liquid Propellant Feed Systems

    15

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Space Shuttle OMS Engine

    From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 2001

    16

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Turbopump Fed Liquid Rocket Engine

    From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986

    17

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Sample Pump-fed Engine Cycles

    From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986

    18

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Gas Generator Engine Schematic

    19

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    SpaceX Merlin 1D Engines

    20

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Falcon 9 Octoweb Engine Mount

    21

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Staged-Combustion Engine Schematic

    22

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    RD-180 Engine(s) (Atlas V)

    23

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    SSME Powerhead Configuration

    24

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    SSME Engine Cycle

    From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986

    25

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Liquid Rocket Engine Cutaway

    26

    From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 2001

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    H-1 Engine Injector Plate

    27

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Injector Concepts

    From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986

    28

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    TR-201 Engine (LM Descent/Delta)

    29

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Solid Rocket Nozzle (Heat-Sink)

    From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986

    30

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Ablative Nozzle Schematic

    From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986

    31

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Active Chamber Cooling Schematic

    From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986

    32

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Boundary Layer Cooling Approaches

    From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986

    33

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Hybrid Rocket Schematic

    From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986

    34

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Hybrid Rocket Combustion

    From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986

    35

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Thrust Vector Control Approaches

    From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986

    36

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Reaction Control Systems• Thruster control of vehicle attitude and translation • “Bang-bang” control algorithms • Design goals:

    – Minimize coupling (pure forces for translation; pure moments for rotation)except for pure entry vehicles

    – Minimize duty cycle (use propellant as sparingly as possible)

    – Meet requirements for maximum rotational and linear accelerations

    37

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Single-Axis Equations of Motion

    38

    ⌧ = I ✓̈

    It = ✓̇ + C1

    at t = 0, ✓̇ = ✓̇o =)⌧

    It = ✓̇ � ✓̇o

    at t = 0, ✓ = ✓o =)1

    2

    It2 + ✓̇ot = ✓ � ✓o

    1

    2

    It2 + ✓̇ot = ✓ + C2

    1

    2

    ⇣✓̇2 � ✓̇o

    2⌘=

    I(✓ � ✓o)

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Attitude Trajectories in the Phase Plane

    39

    !3.00%

    !2.00%

    !1.00%

    0.00%

    1.00%

    2.00%

    3.00%

    !20.00% !10.00% 0.00% 10.00% 20.00% 30.00% 40.00%

    tau/I=0%

    !0.001%

    !0.002%

    !0.003%

    !0.004%

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Gemini Entry Reaction Control System

    40

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Apollo Reaction Control System Thrusters

    41

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    RCS Quad

    42

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Apollo CSM RCS Assembly

    43

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Lunar Module Reaction Control System

    44

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    LM RCS Quad

    45

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Viking Aeroshell RCS Thruster

    46

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Viking RCS Thruster Schematic

    47

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Space Shuttle Primary RCS Engine

    From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986

    48

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Monopropellant Engine Design

    From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986

    49

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Cold Gas Thruster Exhaust Velocity

    50

    Ve =

    vuut 2�� � 1

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Cold-gas Propellant Performance

    From G. P. Sutton, Rocket Propulsion Elements (5th ed.) John Wiley and Sons, 1986

    51

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Total Impulse• Total impulse It is the total thrust-time product for

    the propulsion system, with units

    • To assess cold-gas systems, we can examine total impulse per unit volume of propellant storage

    52

    It = Tt = ṁvet

    t =⇢V

    It = ⇢V ve

    ItV

    = ⇢ve

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Performance of Cold-Gas Systems

    53

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Self-Pressurizing Propellants (CO2)

    54

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Self-Pressurizing Propellants (N2O)

    55

    Density1300 kg/m3

    Density625 kg/m3

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    N2O Performance Augmentation• Nominal cold-gas exhaust velocity ~600 m/sec • N2O dissociates in the presence of a heated

    catalyst engine temperature ~1300°C exhaust velocity ~1800 m/sec

    • NOFB (Nitrous Oxide Fuel Blend) - store premixed N2O/hydrocarbon mixture exhaust velocity >3000 m/sec

    56

    2N2O �! 2N2 +O2

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Pressurization System Analysis

    Pg0, Vg

    PL, VL

    Pgf, Vg

    PL, VL

    Adiabatic Expansion of Pressurizing Gas

    Initial Final

    pg,0Vgγ = pg, fVg

    γ + plVlγ

    Known quantities:

    Pg,0=Initial gas pressure

    Pg,f=Final gas pressure

    PL=Operating pressure of propellant tank(s)

    VL=Volume of propellant tank(s)

    Solve for gas volume Vg

    57

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Boost Module Propellant Tanks• Gross mass 23,000 kg

    – Inert mass 2300 kg – Propellant mass 20,700 kg – Mixture ratio N2O4/A50 = 1.8 (by mass)

    • N2O4 tank – Mass = 13,310 kg – Density = 1450 kg/m3 – Volume = 9.177 m3 --> rsphere=1.299 m

    • Aerozine 50 tank – Mass = 7390 kg – Density = 900 kg/m3 – Volume = 8.214 m3 --> rsphere=1.252 m

    58

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Boost Module Main Propulsion• Total propellant volume VL = 17.39 m3 • Assume engine pressure p0 = 250 psi • Tank pressure pL = 1.25*p0 = 312 psi • Final GHe pressure pg,f = 75 psi + pL = 388 psi • Initial GHe pressure pg,0 = 4500 psi • Conversion factor 1 psi = 6892 Pa • Ratio of specific heats for He = 1.67

    • Vg = 3.713 m3 • Ideal gas: T=300°K --> ρ=49.7 kg/m3 (4500 psi = 31.04 MPa) MHe=185.1 kg

    4500 psi( )Vg1.67 = 388 psi( )Vg

    1.67 + 312 psi( ) 17.39 m 3( )1.67

    ρHe =pg,0M ℜT0

    59

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Autogenous Pressurization• Use gaseous propellants to pressurize tanks with

    liquid propellants • Heat exchanger to gasify and warm propellants,

    then route back into ullage volume • Eliminates need for pressurized gases for ullage

    and high-pressure storage bottles (e.g., Falcon 9 failures)

    • Issue: start-up transient

    60

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Nuclear Thermal Rockets• Heat propellants by passing

    through nuclear reactor • Isp limited by temperature

    limits on reactor elements (~900 sec for H2 propellant)

    • Mass impacts of reactor, shielding

    • High thrust system

    61

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Electrostatic Ion Thruster

    62

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Hall-Effect Thruster

    63

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Ion Engine Schematic

    64

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Ion Engines Existing/In Development• NSTAR (NASA Solar Technology Application

    Readiness) – DS1 and Dawn – 30 cm, 2.3 kW, 92 mN, 3120 sec

    • NEXT (NASA Evolutionary Xenon Thruster) – Available 2019 – 6.9 kW power, 236 mN thrust, Isp 4190 sec

    • HiPEP (High Power Electric Propulsion) – TRL 3 – 670 mN, 39.3 kW, 7 mg/sec prop, Isp 9620 sec

    65

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Variable Specific Impulse Magnetoplasma

    66

    By Source (WP:NFCC#4), Fair use, https://en.wikipedia.org/w/index.php?curid=35831241

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    VASIMR Engine Concept

    67

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    VASIMR Operating Specifications• Optimum operating point

    – Isp 5000 sec – Thrust 5.7 N – Power 200 kW

    • Can be derated for higher thrust at lower Isp • Compare to ion engines at equivalent power

    – 87 NSTAR thrusters: 8 N, 3120 sec Isp – 29 NEXT thrusters: 6.8 N, 4190 sec Isp – 5 HiPEP thrusters: 3.4 N, 9620 sec Isp

    68

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Solar Sails• Sunlight reflecting off sail

    produces momentum transfer

    • At 1 AU, P=1394 W/m2 • c=3x108 m/sec • T=9x10-6 N/m2

    T = 2 ˙ m V = 2 ˙ m c

    E = mc2 ⇒ m = Ec 2

    ⇒ ˙ m = Et

    1c2

    =Pc 2

    69

  • Propulsion Systems Design ENAE 483/788D - Principles of Space Systems Design

    U N I V E R S I T Y O FMARYLAND

    Propulsion TaxonomyMass Expulsion Non-Mass Expulsion

    Non-ThermalThermal

    Non-ChemicalChemical Solar Sail

    Laser Sail

    Microwave Sail

    MagnetoPlasma

    Monopropellants Bipropellants

    LiquidsSolids Hybrids

    Pressure-Fed Pump-Fed

    Ion

    MPDNuclear

    Electrical

    Solar

    Air-Breathing ED Tether

    Beamed

    Cold Gas

    70