properties of ga doped zno hexagonal nanocrystals carrier ... · fig. s4 edax line scan for a...

12
30 40 50 60 70 Intensity x=0.0025 Fittted Difference Experimental x=0.005 Fig.S1 Rietveld refinements of the X ray diffraction for x=0.0025 and x=0.005 samples Supporting Information: Carrier concentration dependent optical and electrical properties of Ga doped ZnO hexagonal nanocrystals Manas Saha, Sirshendu Ghosh, Vishal Dev Ashok and S. K. De * Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata – 700032, INDIA * E-mail: [email protected] Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

Upload: others

Post on 24-Apr-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

30 40 50 60 70

Inte

nsity x=0.0025

Fittted

Difference

Experimental

x=0.005

Fig.S1 Rietveld refinements of the X ray diffraction for x=0.0025 and x=0.005 samples

Supporting Information:

Carrier concentration dependent optical and electrical

properties of Ga doped ZnO hexagonal nanocrystals

Manas Saha, Sirshendu Ghosh, Vishal Dev Ashok and S. K. De*

Department of Materials Science, Indian Association for the Cultivation of

Science, Jadavpur, Kolkata – 700032, INDIA

*E-mail: [email protected]

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.This journal is © the Owner Societies 2015

Fig.S2 Compression of lattice parameter in % rather than pure sample with doping mole%.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.50.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.54.04

4.06

4.08

4.10

4.12

4.14

4.16

4.18

4.20

c compression

Com

pres

sion(

%)

Ga(%)

a compression

0 1 2 3 40.0

2.0x10-3

4.0x10-3

6.0x10-3

8.0x10-3

1.0x10-2

1.2x10-2

1.4x10-2

1.6x10-2

Latti

ce S

trai

n

Gallium(%)

lattice strain

Fig.S3 Lattice strain with doping mole%.

Fig. S4 EDAX line scan for a single 1 mole% Ga doped ZnO nanocrystals. Blue, Green and Red column bars are symbolic for Zn, O and Ga respectively. Homogeneous Dopant distribution was found over 30 nm region. Inset shows the single nanocrystal which was line scanned.

x=0.02

Wavelength(nm.)

ZnO

x= 0.04

300 320 340 360 380 400 420 440 460 480 500

d(A)

/d

x= 0.005

x= 0.01

x= 0.0025

Fig.S5 Differential absorption spectra of pure and doped samples.

Fig. S6 XRD pattern of as synthesized Zn1-xGaxO (x= 0.0 and x= 0.02) film and ligand free heat treated ( 450˚ C Ar annealed ) film on quartz ; A = as synthesized , L+Δ = ligand exchange and heat treated

30 40 50 60 70 80

x=0.02, L+

Inte

nsit

y(a.

u)

x= 0.0, L+

2

x= 0.0,A(100

)(0

02)

(101

)

(102

)

(110

)

(103

)

(200

)(1

12)

(201

)(0

04)

(202

)

x=0.02,A

Fig. S7

Fig. S7: (a) Cross section SEM image of as-deposited Ga:ZnO thin film. (b) Cross-section view of annealed thin film shows the uniform nature of film.

(b)(a)

(a)

Fig. S8 SEM image of as deposited and annealed film of Zn1-xGaxO. (a) as deposited film of x=0.02 (b) annealed film of x=0.02 (c) as deposited of film x=0.0 and (d) annealed film of x=0.0.

(d)(c)

(a) (b)

Fig. S9 UV-Vis-NIR transmittance (%) plot of bare quartz, as deposited and ligand free annealed films of Zn1-xGaxO (x=0.02) deposited on quartz shows %T ˃ 80%, transparent in visible region and plasmonic absorption in NIR region for annealed film.

500 1000 1500 2000 2500

0

20

40

60

80

100

Transmittance spectra of ligand exchanged annealed film

Tran

smitt

ance

(%)

(nm)

Transmittance spectra of bare quartz substrate

Transmittance spectra of as deposited film

1200298

0.00 0.01 0.02 0.03 0.040

1000200030004000

50000

60000

70000

Sh

eet R

esis

tanc

e (O

hm/s

q.)

Zn1-xGaxO

Sheet resistance value with error bar

60000

900264650216

3000440

1700470

Fig.S10 Five films prepared under similar conditions for the each composition. Room temperature sheet resistance of Zn1-xGaxO films with error bar for (x=0.0, 0.0025, 0.005, 0.01, 0.02 and 0.04).

-0.6 -0.4 -0.2 0.0 0.2 0.4

2.14

2.16

2.18

2.20

2.22

2.24

2.26

2.28

2.30

2.32

Log(

MIT

Tem

pera

ture

)

Log (concentration of Ga ion in mol%)

slope =1/6.135

Fig.S11 Linear fit of log of Metal semiconductor transition temperature vs log of mol% Ga doping concentration

50 100 150 200 250 300

0.0

2.0x105

4.0x105

6.0x105

8.0x105

1.0x106

1.2x106

1.4x106

1.6x106

Experimental Fitted

Shee

t res

istan

ce(O

hm/sq

.)

T(K)

Zno

(a)

50 100 150 200 250 300

0

200

400

600

800

1000

1200

1400

Experimental Fitted

Shee

t res

istan

ce (O

hm/sq

.)

T(K)

x=0.005

(c)

50 100 150 200 250 300

0

200

400

600

800

1000

1200

1400

Experimental Fitted

Shee

t res

ista

nce

(Ohm

/sq.

)

T(K)

x=0.01

(d)

50 100 150 200 250 300

0

100

200

300

400

500

600

700 Experimental Fitted

Shee

t res

istan

ce (O

hm/sq

.)

T(K)

x= 0.02

(e)

50 100 150 200 250 300

0

200

400

600

800

1000

1200

1400

1600

1800

Experimental Fitted

Shee

t res

istan

ce(K

ohm

/sq.)

T(K)

x= 0.04

(f)

50 100 150 200 250 300

0

200

400

600

800

1000

1200

1400

1600

Experimental Fitted

Shee

t res

istan

ce(O

hm/sq

.)

T(K)

x= 0.0025

(b)

Fig.S12

Table:S1 The fitted parameter for equation (5) with replaced by .𝑎1𝑇𝑝2 𝑎4𝑇

32 + 𝑎1𝑇

𝑝2

Samples a 1 p a 2 a 3 a 4 R0 Adj R

ZnO 6.11967x10-10 3.8594 4.18795x10-7 0.26645 -7.44787x10-8 -11186.93311 0.99928

X=0.0025 3.19711x10-7 2.82618 3.52053x10-5 0.07477 -4.51283x10-6 -8955.79176 0.99789

X=0.005 4.02345x10-7 2.46172 1.46435x10-5 0.08291 -2.08315x10-6 -18829.46422 0.99813

X=0.01 4.47102x10-7 2.86923 6.02149x10-5 0.03869 -5.58869x10-6 -2873.68986 0.99943

X=0.02 9.77834x10-6 2.9912-6.43296x10-4

0.01063 0 -285.37296 0.9916

X=0.04 2.24156x10-6 3.05662-1.45211x10-4

0.00292 0 -309.94464 0.99263