properties of ferromagnetic layers grown on semiconductor …...properties of ferromagnetic layers...

13
Properties of ferromagnetic layers grown on semiconductor by electrodeposition C. Scheck, P. Evans, R. Schad and G. Zangari University of Alabama Center for Materials for Information Technology, Box870209 Tuscaloosa, AL 35487, USA Research supported by NSF-ECS-0070236. Made use of NSF MRSEC Shared Facilities grant DMR-98-09423 Fall review MINT, 18 Nov. 2002 Center For Materials For Information Technology An NSF Materials Research Science and Engineering Center

Upload: others

Post on 07-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Properties of ferromagnetic layers grown on semiconductor by electrodeposition

    C. Scheck, P. Evans, R. Schad and G. Zangari

    University of AlabamaCenter for Materials for Information Technology, Box870209

    Tuscaloosa, AL 35487, USA

    Research supported by NSF-ECS-0070236. Made use ofNSF MRSEC Shared Facilities grant DMR-98-09423

    Fall review MINT, 18 Nov. 2002Center For Materials For Information Technology

    An NSF Materials Research Science and Engineering Center

  • Motivation• Integration of ferromagnetic films with semiconductors⇒ implementation of novel devices based on spin-

    dependent transport (spin transistor, MRAM)

    • ECD is a particularly suitable process:• low energy → avoid interdiffusion, clean interface• high quality, epitaxial films can be produced

    • Objective: understand and control growth and magnetic properties of magnetic films on GaAs(structure, intermixing, Hc, anisotropy, electric properties)

    Center For Materials For Information TechnologyAn NSF Materials Research Science and Engineering Center

  • ExperimentalGrowth

    • Substrate: n-GaAs (011)/(001)• 1017 cm-3 Te doped• Back contact: Ga/In eutectic• EG&G 273A Galvanostat• Room Temperature• Graphite counter electrode

    Galvanostat

    Characterization• Structural: XRD (θ, φ), NMR,TEM• Magnetic: VSM, Torque• Electrical: 4-point probe• Thickness: XRR, XPS

    Electrolyte: sulfate solution 0.1 M, pH 2.5Center For Materials For Information Technology

    An NSF Materials Research Science and Engineering Center

  • Thickness calibration

    Center For Materials For Information TechnologyAn NSF Materials Research Science and Engineering Center

    0 50 100 150 2000

    40

    80

    120 ~45% current efficiency

    Thic

    knes

    s (n

    m)

    Deposition Time (Sec)

    1° 2° 3° 4°

    102

    103

    104

    105

    106 50 seconds 3.5mAcm2 GaAs (001)

    Inte

    nsity

    (CPS

    (log

    10))

    • X-ray reflectivity carried out on center part of large sample

    • XRD measures Ni film + oxide layer

  • Interface properties: XPS analysis (2)

    -865 -860 -855 -850

    0

    100

    200

    pure Nioxidizedfilm

    ∆EDifference

    Ni 2p

    Inte

    nsity

    (Cou

    nts

    X 1k

    )

    Binding energy (eV)

    ∆E=3.2eV corresponds to Ni(OH)2

    Oxide thickness Ni(OH)2 = 1.9nm

    Shift in energy NiO = 1.4eV,Ni(OH)2 = 3.2eV

    Center for Materials for Information Technology

    A NSF Materials Research Science and Engineering Center

  • Interface properties: XPS analysis (3)

    X-rays

    X-rays

    -50 -45 -40 -35 -30 -25 -2050

    100

    150

    200

    250

    300

    350

    6 nm 0°

    6 nm 40°

    14 nm 0°

    As 3d

    Inte

    nsity

    (Cou

    nts)

    Binding energy (eV)

    -1170 -1140 -1110

    5200

    5400

    5600

    5800

    6000

    6200

    6400 Ga 2p6nm 0°

    Inte

    nsity

    (Cou

    nts)

    Binding energy (eV)

    No Ga, As at the surfaceNo or little diffusion at interface

    mfp @ 1444eV(As 3d) in Ni = 1.9nm

    mfp @ 370eV(Ga 2p) in Ni = 0.75nm

    Center for Materials for Information Technology

    A NSF Materials Research Science and Engineering Center

  • Electrical and magnetic measurements

    No or little intermixing at the interface

    Fuchs model:ρ(T) = ρ∝ + (3/8) (1-p)(ρ∝ × l∝ ) / T

    with the bulk resistivity ρ∝ , the bulk mean free path l∝ , the “reflectivity” coefficient p0 20 40 60 80 100 120

    0

    400

    800

    1200

    16000

    200

    400

    600

    (a)

    0 10 20 300

    250

    500

    ρ *T

    (µΩ

    .cm

    .nm

    )

    Ni layer Thickness (nm)

    (b)

    MS (

    emu/

    cc) Bulk Ni : Ms=484 emu/cc

    Center For Materials For Information TechnologyAn NSF Materials Research Science and Engineering Center

  • Ni-Crystalline Structure (XRD):Out of plane In plane

    30° 40° 50° 60° 70° 80° 90°

    100

    200

    300

    40° 45° 50°

    100

    200

    300

    GaAs (220)

    Ni (111)

    GaAs (220)

    Ni (111) θ offset by 0.5°

    Inte

    nsity

    (Cou

    nts)

    -180° -90° 0° 90° 180°

    220

    200

    111

    NiGaAs[110]GaAs[100]

    Inte

    nsity

    (Cou

    nts)

    Φ

    Epitaxial relationship Ni(111)[110] // GaAs(011)[110]

    Center For Materials For Information TechnologyAn NSF Materials Research Science and Engineering Center

  • Co-Crystalline Structure (XRD) (1):

    Center For Materials For Information TechnologyAn NSF Materials Research Science and Engineering Center

    30° 40° 50° 60°

    100

    200

    300

    400

    500

    hcp-Co 100 hcp-Co 101

    GaAs (220)θ offset 0.3°

    Inte

    nsity

    (Cou

    nts)

    -180° -90° 0° 90° 180°

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    44.16° 280nm

    Inte

    nsity

    (Cou

    nts)

    Φ

    Co fcc (111) or hcp(002)

    Hexagonal (hcp) or cubic (fcc) ???

    Out of plane In plane

    -180° -90° 0° 90° 180°0

    5

    10

    15

    20

    2575.6° 280nm

    Coun

    tsΦ

    Co fcc (220) or hcp (110)

  • Co-Crystalline Structure (XRD) (2):

    mixture of fcc and hcp phases confirmed by NMR

    TEM

    190 200 210 220 230 240

    0

    20

    40

    60

    80

    FCC HCP

    Co-GaAs [011]30 nm3.5ma/cm

    2 60 secs

    Spin

    -Ech

    o In

    tens

    ity (a

    .u.)

    frequency (MHz)

    NMR

    FeNi: both perpendicular and in-plane XRD scan do not show any clear peaks besides GaAs (011).

    Center For Materials For Information TechnologyAn NSF Materials Research Science and Engineering Center

  • Magnetic Properties (1)

    -180° -90° 0° 90° 180°0.0

    0.5

    1.00.0

    0.5

    1.00.0

    0.5

    1.0

    GaAs[110]

    GaAs[100]

    21nm

    Applied Field Angle

    25nm

    18nm

    0 20 40 60 80 100 1200.0

    0.5

    1.00.0

    0.5

    1.00.0

    0.5

    1.0

    Ni Thickness (nm)

    Co

    e.a h.a

    FeNi

    -1000 0 1000

    -1

    0

    1

    -1

    0

    1

    -1

    0

    1

    21nm

    [110]GaAs [100]GaAs

    Applied Field (Oe)

    [110]GaAs [100]GaAs

    25nm

    Norm

    aliz

    ed M

    agne

    tizat

    ion

    [110]GaAs [100]GaAs

    18nm

    Uniaxial anisotropy e.a [001]GaAs for Ni e.a [011]GaAs for Co and FeNi

    Hysterisis Remanence Squareness

    Center For Materials For Information TechnologyAn NSF Materials Research Science and Engineering Center

  • Magnetic Properties (2)

    0 50 100 150 200 250 3000

    100

    200

    300

    400

    500 Easy Ni Hard Ni Easy Co Hard Co Easy FeNi Hard FeNi

    H c(O

    e)

    Thickness (nm)-20 -10 0 10 20 30 40 50 60 70 80

    0

    200

    400

    600

    800

    1000

    FeNi

    Co

    Ni

    H k(O

    e)

    Thickness

    •Co films keep its anisotropy even for large thicknesses (>250nm) and so does Ni (up to 90nm for the range studied).

    •Ni film exhibit a larger HK value (950 Oe) than anisotropy normal to crystalline anisotropy, which would be ascribed to stress

    Center For Materials For Information TechnologyAn NSF Materials Research Science and Engineering Center

  • Conclusions•No or little intermixing at the interface

    •Epitaxial relationship for Ni Ni(111)[110] // GaAs(011)[110]

    •Mixed structure fcc/hcp for Co but no clear peaks for FeNi

    •Uniaxial anisotropy e.a [001]GaAs for Ni e.a [011] GaAs for Co, FeNi

    •Future work:•Investigation of the Shottky barrier properties•Spin injection from Ferromagnetic contacts into semiconductor

    Center For Materials For Information TechnologyAn NSF Materials Research Science and Engineering Center