propagation of characteristic wave front through a two phase mixture of gas and dust particles

Upload: mohammad-miyan

Post on 07-Jul-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Propagation of Characteristic Wave Front through a Two Phase Mixture of Gas and Dust Particles

    1/13

    International Journal of Pure and Applied Researches; 2016 Vol. 1(1); ISSN: 2455-474X

    Paper ID: A16104, Propagation of Characteristic Wave Front through a Two Phase Mixture of Gas and Dust Particles By Dr.

     M. K. Shukla, pp. 18-30.  Page 18

    Propagation of Characteristic Wave Front through a Two Phase

    Mixture of Gas and Dust Particles

    By

    Dr. M. K. ShuklaDepartment of Mathematics, Shia P.G. College

    Lucknow, India.

    Abstract

    The aim of the present paper is to discuss weak-non-linear waves through a two-phase mixture of gas and

    dust particles, when particle-volume-fraction appears as an additional variable. The solutions based on

    an asymptotic procedure are obtained under the approximation that the characteristic length of the signal

    is much shorter that the characteristic length of the medium.

    Keywords: Propagation, Two phase, Gas particles.

    1. Introduction

    In the recent technological advancements in different branches of engineering

    and science, the compressible flows of a dusty gas have been encountered. When a gas carries a lot of

    solid particles, the two-phase relaxation phenomenon significantly affects the flow field. It has been

    shown by Lick (1967) and Parker (1969) that a disturbance having a time-scale comparable to the

    attenuation time may produce partially and fully dispersed shock in relaxing gases. However in some

     physical situations a signal with characteristic time much shorter than the attenuation time may suffer

    continual profile distortion leading to a shock formation. In some disturbances this catastrophic effect isdelayed by dispersion but in non-dispersive systems it arises due to non-linearity provided that the

     propagation distances are sufficiently large (1975, 1971,1972). General discussion on small amplitude

    waves with considerations of non-linear effects are typified in works of Light-hill (1949), Witham (1952)

    and Lin (1955).

    It is known that a gas flow with an appreciable amount of small solid particles

    may exhibit significantly relaxation effects, as a result of the inability of the particles to follow the rapid

    changes in velocity and temperature of the gas. Such effects are predominant in case of wave propagation

    in dusty gases. The problem of acoustical damming in dusty gases has been dealt by Epstein with

    linearized analysis (1955, 1941). Bhutani and Chandran (1977) have discussed the weak waves in dusty

    gases using the characteristic coordinate system; they have analyzed the decay of the plane, cylindricaland spherical weak-waves in gas particle system.

    The aim of the paper is to discuss weak-non-linear waves through a two-phase

    mixture of gas and dust particles, when particle-volume fraction appears as an additional variable. The

    solutions based on an asymptotic simple wave procedure, are obtained under the approximation that the

    characteristic length of the signal is much shorter that the characteristic length of the medium.

  • 8/18/2019 Propagation of Characteristic Wave Front through a Two Phase Mixture of Gas and Dust Particles

    2/13

    International Journal of Pure and Applied Researches; 2016 Vol. 1(1); ISSN: 2455-474X

    Paper ID:A16104, Propagation of Characteristic Wave Front through a Two Phase Mixture of Gas and Dust Particles By Dr. M.

    K. Shukla, pp. 18-30, Email: [email protected]   Page 19

    2. Basic equation and boundary conditions

    The mathematical analysis of two-phase flows is considerably more difficult than

    that of pure gas flows, and one of usual simplifying assumptions is that the volume occupied by the

     particle can be neglected. At high gas densities (high pressure) or at high particle mass fraction, the

     particle-volume fraction may become sufficiently large so that it formulated under the following

    assumptions-

    1. 

    The gas obeys the perfect gas law and specific heats are constant.

    2.  The particles are spherical, of uniform size and are uniformly distributed initially. The specific

    heat is constant and temperature is uniform within each particle.

    3.  Particles do not interact on each other and their motion is negligible.

    4.  The viscosity and heat conductivity of gas are neglected except for the interaction with solid

     particles.

    5.  The particles do not contribute to the pressure.

    6.   No external forces (such as gravity) or heat exchange affects the mixture and no mass transfer

    takes place between the gas and particle.

    Equations governing the motion of gas particle mixture, under above assumptions are given by

    (1969).

     

    2

    , , , , 0, (2.1)1 1 1

     p

     x x x x

    v

    u v RT Ru uu T  

        

         

     

     

     

      , , , , , 0, (2.2)

    1 1t x x x x  

    u u v v u   

       

     

     

     

    2

    1 11, 1 , , ,

    1 1

    1 1, , 0, (2.3)

    1 1 1 1

    t x x x

    m p p

     x x

    v T v

    u vv uT T Tu T  

    C T T T T v u u vv

        

      

        

       

       

     

    , , 0, (2.4)1t x v

    v u

    v vv 

    , , , 0, (2.5)t x x 

    v v

     

    mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]

  • 8/18/2019 Propagation of Characteristic Wave Front through a Two Phase Mixture of Gas and Dust Particles

    3/13

    International Journal of Pure and Applied Researches; 2016 Vol. 1(1); ISSN: 2455-474X

    Paper ID:A16104, Propagation of Characteristic Wave Front through a Two Phase Mixture of Gas and Dust Particles By Dr. M.

    K. Shukla, pp. 18-30, Email: [email protected]   Page 20

    , ,

    0, (2.6) p

     p t p x

    T T T vT 

     

     

    where ,, , , , , p v p T u C C      be the pressure, density, temperature, velocity, specific heats and specific heat

    ratio of the gas and , , , p mT v C    be the volume-fraction, temperature, velocity and specific heat of the

    dust particles respectively.v

      is relaxation time for particle velocity andT 

       is relaxation time for heat

    transfer. A Comma followed by an index denotes the partial differentiation with respect to index.

    Let   1/ 2

    0 0 0/ ,a p    be the speed of sound in undisturbed gas, where subscript ‘0’ is used to

    indicate a constant reference value. If the time ‘t’ is non dimensionalized by ' 'v

        the distance ‘x’ by

    0' ',

    va      the speed of sound 0' ' by ' 'a a the gas velocity ‘u’ and particle velocity ‘v’ by 0' ',a  gas

    temperature ‘T’ and particle temperature ' ' pT   by 0' 'T   equation (2.1) to (2.6) can be written in the

    following matrix form :

    , , 0, (2.7)t x

    U AU B  

    where

    ,

     p

    u

    T U 

    v

      

     

     

     T 1

      0 0 01 1

     

    A=

    u

    u

       

      

     

     

      0 01 1

    1 11 1 1  1 0

    1 1 1 1

     

    v u

    u vT v u T T v uT 

       

        

        

      

      0 0 0 v 0 0

      0 0 0 v 0

      0 0

      0 0 0 v

     

    mailto:[email protected]:[email protected]:[email protected]:[email protected]

  • 8/18/2019 Propagation of Characteristic Wave Front through a Two Phase Mixture of Gas and Dust Particles

    4/13

    International Journal of Pure and Applied Researches; 2016 Vol. 1(1); ISSN: 2455-474X

    Paper ID:A16104, Propagation of Characteristic Wave Front through a Two Phase Mixture of Gas and Dust Particles By Dr. M.

    K. Shukla, pp. 18-30, Email: [email protected]   Page 21

     

    2

    2

    1

      0

    1

    1 1

    1

      0

     p

    v

     pv

     p

    u v

     p   u v

    T T  B

    v u

    T T 

      

      

     

         

       

     

     

     

    vand .The relationshi p between ' ' and ' ' is given by

    3 P , where is Pr adtl number.2

    v m

    T p

    mT r v r  

    v

    C  PC 

          

     

     

     

    The six families of characteristics of the equation (2.7) are given by:

    ,

    dxu

    dt   representing the gas-particle trajectory, and

    dxv

    dt  (repeated three times), represent the solid particle trajectory, and triple degeneracy corresponds

    to case for non-equilibrium flows and is a consequence of neglecting the partial pressure of the particle.

    The remaining two characteristics representing waves propagating in  x   direction are

    . (2.8)dx

    u adt 

     

    where

    1 1 / 2 1 .u K u  

     

    1/ 22

    1 4 1 . / 2 1a K u uK T    

    and 1 1 .K u v    

    In the particular case when 0, equation (2.8) reduces to

    mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]

  • 8/18/2019 Propagation of Characteristic Wave Front through a Two Phase Mixture of Gas and Dust Particles

    5/13

    International Journal of Pure and Applied Researches; 2016 Vol. 1(1); ISSN: 2455-474X

    Paper ID:A16104, Propagation of Characteristic Wave Front through a Two Phase Mixture of Gas and Dust Particles By Dr. M.

    K. Shukla, pp. 18-30, Email: [email protected]   Page 22

    1/ 2, where . (2.9)dx

    u a a T  dt 

     

    3. Characteristic Front

    In studying the wave phenomenon governed by hyperbolic equations, it is usually

    more natural and convenient to use the characteristics of governing system as the reference coordinate

    system. Let us introduce the characteristic variables ' '   and ' '   such that;

    , , 0, (3.1)t x 

    u    

    , + , 0, (3.2)t x 

    u a   

     

    The leading characteristic front can be represented by 0   and if a gas particle crosses this front at time

    ‘t’ it’s path will be represented by .t     Keeping in view of the properties of and ,    it is obvious

    that the function , and , x t      satisfy the following partial differential equations;

    ,, , , + , x ut x u a t       

    The transformation from space time (x,t) to the plane of characteristic

     parameters ,   will be one to one if and only if Jacobian

      , , , , - t, , J x t x t u u a t     

    or

    1, , ,

    2 1

    u v J a t t   

     

     

    does not vanish or does not become infinity anywhere.

    Since , 0,t      from physical considerations a breakdown of solution in terms of

    characteristic parameters will arise if and only if , 0,at     

    In terms of characteristic coordinates equations given by (2.7) reduces to the following

    form.

    mailto:[email protected]:[email protected]:[email protected]:[email protected]

  • 8/18/2019 Propagation of Characteristic Wave Front through a Two Phase Mixture of Gas and Dust Particles

    6/13

    International Journal of Pure and Applied Researches; 2016 Vol. 1(1); ISSN: 2455-474X

    Paper ID:A16104, Propagation of Characteristic Wave Front through a Two Phase Mixture of Gas and Dust Particles By Dr. M.

    K. Shukla, pp. 18-30, Email: [email protected]   Page 23

     

     

     

    2

    1 1, , , , , ,

    2 1 1

    , , , ,

    1

    1, , 0, (3.5)

    2 1 1

     p

    u va u t T t T t  

    T t p t 

     pu va u v t t  

     p

     

     

     

     

     

      

      

     

     

     

     

    1, , , , , , , , , ,

    2 1 1

    , , , , 0, (3.6)1

    u v v ua p t p u t u t t t  

     pv t v t  

     

     

       

     

     

     

     

    2

    1 1, , , ,

    1 2 1

    1, , , ,

    1

    11 , , , , , , , ,

    1

    1 1, , , ,

    1 1 1

    1

    1

    a

     p

    u v u vT t a T t  

    T u vt t 

    T v uT u t u t t t  

    T u vv t v t a

    u vT T 

     

     

     

      

     

     

     

       

      

         

      

      

         

     

    , , 0, (3.7)t t   

     

     

    1 2, , , ,

    2 1

    1, , 0, (3.8)

    2 1 1

    u vu v v t a v t  

    u v u va t t 

         

     

     

     

     

     

    mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]

  • 8/18/2019 Propagation of Characteristic Wave Front through a Two Phase Mixture of Gas and Dust Particles

    7/13

    International Journal of Pure and Applied Researches; 2016 Vol. 1(1); ISSN: 2455-474X

    Paper ID:A16104, Propagation of Characteristic Wave Front through a Two Phase Mixture of Gas and Dust Particles By Dr. M.

    K. Shukla, pp. 18-30, Email: [email protected]   Page 24

       

    1 2, , , ,

    2 1

    , , , , 0, (3.9)

    u v

    u v v t a t  

    v t v t  

     

     

       

     

     

     

    , ,

    1 2, ,

    2 1

    1, , 0. (3.10)

    2 1

     p p

     p

    u vu v T t a T t  

    u va T T t t  

         

     

      

      

     

     

    If we consider the case in which the wave front is an outgoing characteristic

     propagating into a uniform region, boundary conditions are given by

    0'0, 1, 1 and at 0 pu v T T     

     

    and '( ), ( ), , at 0.u F x F t      

    In order to solve the problem we consider , where ( 1),F t f t      Characterizes the amplitude

    of disturbance and 0 1 . f t  We can now assume a solution of system (3.5) to (3.10) of the form

          0 1 2, , , 0 (3.11)Q Q Q    

    where ‘Q’ is any one of the independent variables , , , etc. If 0u T x      the piston is at rest and hence,

    0 0 0 0 0

    0 0 0

    0

    0

    0, 1, 1,1

    , , 0. (3.12)1

     pu v T T  

    a u

      

     

    Substituting the expression (3.11) in equations (3.5 to 3.10) and

    collecting the terms of order 0

    .   we have:

    0 0 0, , ,0, . (3.13) x x t     

    Thus boundary conditions are:

    0 0

    0

    , 0, at 0,

      at 0. (3.14)

    t x 

     

     

     

    Equation (3.13) on integration subject to boundary conditions (3.14) yield,

    0 0, . (3.15) x t     

    mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]

  • 8/18/2019 Propagation of Characteristic Wave Front through a Two Phase Mixture of Gas and Dust Particles

    8/13

    International Journal of Pure and Applied Researches; 2016 Vol. 1(1); ISSN: 2455-474X

    Paper ID:A16104, Propagation of Characteristic Wave Front through a Two Phase Mixture of Gas and Dust Particles By Dr. M.

    K. Shukla, pp. 18-30, Email: [email protected]   Page 25

    The complete solution to 00      be given by (3.12) and (3.15) and to this order the characteristics in the

     physical plane are

    ,

    . (3.16)

     x 

    t x 

     

     

     

    When the expansion (3.11) is inserted in the governing equations (3.5), to (3.10) and

    (3.3), the collection of terms of order     gives the following set of equations for the first order solutions,

     

    01 1 1 1 1 13/ 2,,

    0

    1 0, (3.17)1

     p

    oT u T u v

        

        

     

     

    1 1 1 1 10

    ,0

    , , , 0 (3.18)1

    u u v v  

     

      

     

     

     

     

    11

    1 1 1, 0

    00 0,

    1 1

    0

    0

    11 1, ,

    (11 1

      ,0, (3.19)

    1

     p p

    uuT v v

    T T 

     

     

     

       

     

     

     

     

    1 11

    0

    ( ), 0, (3.20)

    1

    u v

     

      1 1 10 0, 1 , , 0, (3.21)v v    

    1 1 1, 0, (3.22) p pT T T     

    and

    1 1 1 1 1 1, , ,, . (3.23) x u x u a t     

    The boundary conditions for the first order solutions can be obtained as

      1 1 10, , ' at 0, (3.24)t x f u f      

    mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]

  • 8/18/2019 Propagation of Characteristic Wave Front through a Two Phase Mixture of Gas and Dust Particles

    9/13

    International Journal of Pure and Applied Researches; 2016 Vol. 1(1); ISSN: 2455-474X

    Paper ID:A16104, Propagation of Characteristic Wave Front through a Two Phase Mixture of Gas and Dust Particles By Dr. M.

    K. Shukla, pp. 18-30, Email: [email protected]   Page 26

    1 1 1 1 1 10. 0, 0, 0 at 0. (3.25) p

    u v T T t       

    Since the Parandtl number of many gases is close to 2/3 and / ,m pC C  is of

    order unity for many gas-particle combinations hence for such cases temperature and velocity relaxation

    times are approximately equal, i.e., .v T 

        In such approximate case 1 and 1.   The Laplace

    transform of ,Q      with respect to    is dented by ˆ , , whereQ      

    0

    ˆ , , ,Q Q e d     

     

    equation (3.17) to (3.23) assume the following form

     

    1 1 1 1 1

    0

    0   1 1

    0

    1ˆ ˆˆ ˆˆ1 [ ][ ]

    1

    ˆ ˆ   0,1

    o

     p

    d T u T 

    u v

            

     

      (3.26)

    1 11 1 10 0

    0 0

    ̂ ˆˆ   ̂ ˆ[ ] 0,

    1 1

    du dvu v

    d d   

     

      (3.27)

       

    1 1

    01 1 10   0

    0   1 1

    0

    1ˆ ˆˆˆ   ˆ[   ] ,

    1

    ˆ ˆ( ) 0,1   1

     p

     p

    du dv u T    vd d 

    T T 

           

       

     

     

     

      (3.28)

      1 1 10   ˆ ˆ ˆ1 [ ] 0,v u v    (3.29)

     

    11 1

    0 0

    0 0

    ˆˆ ˆ[ 1 ] 0, (3.30)

    1

    dvv

     

     

     

    1 1 1ˆ ˆ ˆ 0, p pT T T       (3.31)

    and

    mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]

  • 8/18/2019 Propagation of Characteristic Wave Front through a Two Phase Mixture of Gas and Dust Particles

    10/13

    International Journal of Pure and Applied Researches; 2016 Vol. 1(1); ISSN: 2455-474X

    Paper ID:A16104, Propagation of Characteristic Wave Front through a Two Phase Mixture of Gas and Dust Particles By Dr. M.

    K. Shukla, pp. 18-30, Email: [email protected]   Page 27

    1

    1 1 1 1 1ˆˆˆ ˆ ˆ ˆ, [ ]

    u d d  x x u a t 

    d d      (3.32)

    respectively, similarly the transformed boundary conditions are:

      1 1 1ˆ ˆˆ   ˆ ˆ0, , , at =0,t x f u f       (3.33)

      11 1 1 1 1ˆ ˆ   ˆˆ ˆ ˆ0, 0, at 0. pu v T T t         (3.34)

    In view of equations (3.27) to (3.31) equation (3.26) yields following second order linear differential

    equation;

    1 1 12

    2

    2

    ˆ ˆ ˆ2 0,

    1

    d u du Au

    d d 

       

     

      (3.35)

    where ‘A’ is constant given by 

    0

    0 0

    1   ( / )

    ( / ) 1 1 1

     pC D B A

     B C D

           

       

       

     

    and

     

    0

    0 0

    0

    00

    0

    0

    1 ,(1 {1 (1 )}

    ( 1)1 ,

    1 11

    1 .1 1

     p

     B

     D

     

     

     

     

     

       

     

    Solution of equation (3.35) satisfying the condition that 1

    û  is bounded as     is

    1ˆ   expcu K        (3.36)

    where

    1/ 2

    11

     A   

     

     and constant K c is determined by the boundary conditions;

    1 ˆˆ , at 0,u f     

    mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]

  • 8/18/2019 Propagation of Characteristic Wave Front through a Two Phase Mixture of Gas and Dust Particles

    11/13

    International Journal of Pure and Applied Researches; 2016 Vol. 1(1); ISSN: 2455-474X

    Paper ID:A16104, Propagation of Characteristic Wave Front through a Two Phase Mixture of Gas and Dust Particles By Dr. M.

    K. Shukla, pp. 18-30, Email: [email protected]   Page 28

    which gives 1 ˆˆ  exp - . (3.37)u f   

     

    Thus equations (3.26) to (3.32), give

    ( , ) ( ) exp (- ),u f      (3.38)

    1 0ˆˆ , exp - / 1 1 ,v f      (3.39)

     

    1 00

    0

    0

    ˆˆ ( , )= f( ) exp - [1 1 11

    (1 )],

    1

       

     

      (3.40)

     

     

    10 0 0

    0 0 0

    1 1 1 1 1ˆ, exp - , (3.41)

    1 1 1 1  pT f 

       

     

       

     

     

     

    0 0 01

    0 0 0

    1 1 [1 1 ]ˆˆ , exp - , (3.42)

    1 1 1 1 p

     p

    T f   

       

     

     

     

    0 01

    0

    1ˆˆ , exp - , (3.43)

    1 1 f   

     

     

    1 ˆˆ  exp - , x f        (3.44)

    and

    mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]

  • 8/18/2019 Propagation of Characteristic Wave Front through a Two Phase Mixture of Gas and Dust Particles

    12/13

    International Journal of Pure and Applied Researches; 2016 Vol. 1(1); ISSN: 2455-474X

    Paper ID:A16104, Propagation of Characteristic Wave Front through a Two Phase Mixture of Gas and Dust Particles By Dr. M.

    K. Shukla, pp. 18-30, Email: [email protected]   Page 29

     

    1

    0 0 0

    0 0

    3/ 2

    0 0 00 0

    0 0 0

    0 0

    0

    ˆ exp - 1ˆ , [ {2(1 (1 )) (2 ( 1)(1 ))}

    2 1 1 1

    (1 ) ( 1)(1 ){1 (1 ) }2(1 ) {1 (1 )} { (3.45)

    1 (1 )(1 )

    (1 )}]

    (1 )

     p

     f t 

       

     

       

     

     

    respectively.

    On inversion, it follows that

      2, exp - 0 ,2

    S i

    S iu a f d  

    i

        

     

      (3.46)

      2ˆ, exp - 0 ,2

    S i

    S i x f d 

    i     

      (3.47)

     

     

    0 0

    0 0 0

    3/ 2

    0 00 0

    0 0 0

    0 0 2

    0

    ˆ  exp exp - 1,

    4 1 1 1

    [ {2(1 (1 )) (2 ( 1)(1 ))}

    (1 ) ( 1)(1 )(1 )2 (1 ){1 (1 )} {

    (1 ) (1 ){(1 )

    1

    }] 0 ,1

    S i

    S i

     p

     f t 

    i

         

         

     

       

         

     

       

     

    (3.48)

    where S is a positive number satisfying the condition that all the singularities of these integral are to the

    left of line S     in the complex plane.

    4. Conclusions

    Equations (3.46) to (3.48) are solutions up to the first order of non-linear

    equations (3.3) and (3.5) to (3.10) along with prescribed boundary conditions (2.10). The trajectory of the

    outgoing waves and particle paths in the ( - ) x t   plane is described by equations (3.46) and (3.48), which

    evidently show the convergence of characteristics. The formation of a shock wave is characterized by

    , =0.t    

    References

    [1]. Epstein, P. S., and Carhrat, R. R., 1955; J.Acoust. Soc. Am. 25, 555.

    [2]. Epstein, P. S., 1941; Contributions to Applied Mechanics, Thedore Von Marman Anniversary

    Volume, Calif. Inst. Technol., 162. 

    mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]

  • 8/18/2019 Propagation of Characteristic Wave Front through a Two Phase Mixture of Gas and Dust Particles

    13/13

    International Journal of Pure and Applied Researches; 2016 Vol. 1(1); ISSN: 2455-474X

    Paper ID:A16104, Propagation of Characteristic Wave Front through a Two Phase Mixture of Gas and Dust Particles By Dr. M.

    K. Shukla, pp. 18-30, Email: [email protected]   Page 30

    [3]. Lick, W.J., 1967; In Advance of Applied Mechanics 10, Academic, New York.

    [4]. Lighthill, M. J., 1949; Phil. Mag. 50, 1179.

    [5]. Lin, C. C., 1955; J. Maths. Phys. 33, 117. 

    [6]. Parker, D .F., 1973; Physics Fluids, 15, 256.

    [7]. Parker, D. F., 1971; J. Inst. Math. Applice 7, 92.

    [8]. Parker, D. F., 1969; J. Fluid Mech. 39, 793.

    [9]. Seymour. B. R. and Mortell, M. P., 1965;  Non Linear Geometrical Acoustics Mechanic Today 2,

    Pergamon Press.

    [10]. Witham, G. B., 1952; Comm. On Pure and Appl. Maths.,301. 

    mailto:[email protected]:[email protected]:[email protected]:[email protected]