project: eethylen fkz 033rc004a - co2net

22
Project: eEthylen FKZ 033RC004A CO 2 Plus Status Conference Förderintiative des Bundesministeriums für Bildung und Forschung Siemens Corporate Technology © Siemens AG 2018

Upload: others

Post on 01-Feb-2022

35 views

Category:

Documents


0 download

TRANSCRIPT

Project: eEthylen

FKZ 033RC004ACO2Plus Status ConferenceFörderintiative des Bundesministeriums für Bildung und Forschung

Siemens Corporate Technology© Siemens AG 2018

Unrestricted © Siemens AG 2018

April 17, 2018 CO2-Plus Status-Conference, BerlinPage 2 Corporate Technology

eEthylen: The Vision

Substitution of a Steam-Cracker by a CO2-to-Ethylene Electrolyser

▪ Three PEM-Electrolyzer skids (SILYZER 200)

▪ 1.25 MW rated power (225 Nm³/h) / 2.1 MW peak power

▪ Highly dynamic: load changes in seconds, wide power range

▪ 35 bar outlet pressure

Commercial Siemens PEM H2O-ElectrolyzerCommercial Steam Cracker

Unrestricted © Siemens AG 2018

April 17, 2018 CO2-Plus Status-Conference, BerlinPage 3 Corporate Technology

eEthylene: The Technology

DOI: 10.1002/aenm.201602114 ; C. Reller et. al. Adv. Energy Mater. 2017, 1602114

• Single step electrochemical reduction of CO2 in aqueous electrolytes

• The product distribution is strongly dependent on the electro catalyst

• Cu based catalyst produce hydrocarbons, Ag produce CO

• Ethylene formation involves 2 CO2 molecules, 12 electrons,

8 water molecules to produce 1 ethylene molecule associated

with 12 hydroxide ions (see picture).

Targets of eEthylene

• Find & develop a stable catalyst

• Elaborate the reduction mechanism

• Prepare a gas diffusion electrode out of the catalyst to bring the topic

to industrial relevance (current density >> 200 mA/cm²)

• Scaling to x00 cm² of electrode area

Unrestricted © Siemens AG 2018

April 17, 2018 CO2-Plus Status-Conference, BerlinPage 4 Corporate Technology

eEthylene: Why ethylene – Economics

Can renewable feedstock production become economical viable ?

Ratio between the Economical Value and the Heating Value for a given point in time

Thermodynamic considerations with

100 % efficiency assumption

Energy

Demand

Min. Energy

Cost 1Product

Value

Cost Covering

min. System

Efficiency

MWh / t € / t € / t %

Methane 15,4 463 - 694 150 308 - 463

Ethylene 13,9 419 - 629 1000 42 - 63

1 electricity cost 30 €/MWh; tax & net use 15 €/MWh(there is no excess energy)

Burning Processes

Methane CH4 + 2 O2 CO2 + 2 H2O + 15,4 MWh/t

Ethylene C2H4 + 3 O2 2 CO2 + 2 H2O + 13,9 MWh/t

Synthesis by Single Step Electrochemical CO2 Reduction

Methane CO2 + 2 H2O + min. 15,4 MWh/t CH4 + 2 O2

Ethylene 2 CO2 + 2 H2O + min. 13,9 MWh/t C2H4 + 3 O2

A factor of ~4 might be enough

to compensate for all losses

Unrestricted © Siemens AG 2018

April 17, 2018 CO2-Plus Status-Conference, BerlinPage 5 Corporate Technology

Catalyst preparation GDE Preparation Characterization/ mechanistics

Collaboration and Workflow

Characterization of alloys (CVD/PVD)

pre-charaterization of powder catalysts

In-situ deposited copper catalyst

Preparation of powder based catalysts Preparation of GDEs

Evaluation of different process parameter

Electrochemical characterization at high

current densitiesIn-situ and operando characterization

Upscaling potential

LCA

LCA

Identification of intermediates/ co-products

material exchange

information exchange

mechanistics

Unrestricted © Siemens AG 2018

April 17, 2018 CO2-Plus Status-Conference, BerlinPage 6 Corporate Technology

Ethylene: How we got startet ?

GDE with in-situ grown Copper-NP catalyst in a flow cell setup

• The maximum FE for ethylene (45 - 57%) is reached after ~50 min

• Current density of 170 mA/cm² was achieved for ethylene

• System efficiency (SE=20% @ 10 mm cathode – anode distance) (electrical energy to chemical energy)

• The full knowledge including deposition of catalyst, experimental setup and the operating

condition transferred to the partners

Results

Faradic Efficiency over time Material

4nm

Unrestricted © Siemens AG 2018

April 17, 2018 CO2-Plus Status-Conference, BerlinPage 7 Corporate Technology

As

Pre

pa

red

5 m

in O

2-P

las

ma

1 m

in O

2-P

las

ma

Before EC After EC

2 µm 2 µm

• Dendritic structure is maintained upon oxygen Plasma

treatments

• Dendrites remain stable during electrochemistry even

at high potentials (U = -1.3V vs. RHE)

• Longer time treated samples preferentially form CuO

agglomerates at the dendrite sharp ends

• Electrochemical reduction of CuO to Cu lead to the

recovery of sharper dendrite structures

• Significant increase in the dendrite roughness after

CO2 electroreduction for the 5 min pre-oxidized

samples

SEM: Plasma-oxidized Cu Dendrites on Ag

Unrestricted © Siemens AG 2018

April 17, 2018 CO2-Plus Status-Conference, BerlinPage 8 Corporate Technology

CO CH4C2+C3

• Increased selectivity towards C2 and C3 products with increasing O2-plasma treatment time (up to 5 minutes),

especially ethanol and ethylene.

• Increased selectivity towards CO at low potentials due to roughening of the Ag substrate.

• Suppression of undesired C1 products (methane) upon plasma pre-oxidation

SEM: Plasma-oxidized Cu Dendrites on Ag

Unrestricted © Siemens AG 2018

April 17, 2018 CO2-Plus Status-Conference, BerlinPage 9 Corporate Technology

EXAFS AnalysisXPS Analysis

• XPS measurements performed in a UHV system

attached to an electrochemical cell without air exposure

of the samples.

• No oxides present on the sample surface after CO2RR

• Absence of the oxides in the bulk of the sample during the

reaction at -1.1 V for 1.5 h (red curve).

• Cu-Cu coordination numbers (CN) start low (CN = 6-7) due

to initial sample oxidation but converge towards 12 (bulk Cu)

after CO2RR.

Pre-oxidation by O2-Plasma increases the catalysts performance towards the desired products.

Improved behavior is rather linked to the morphological structure than the oxidation state.

Spectroscopic Characterization → Catalyst degradation

Unrestricted © Siemens AG 2018

April 17, 2018 CO2-Plus Status-Conference, BerlinPage 10 Corporate Technology

onlineGC

exhaustCatholyte

Anolyte

CO2

Autosampler

liquidGC

HPLC

Flow-Cell

: anolyte-flow

: catholyte-flow

: CO2-flow

CO2RR testing SetupExperimental setup completed, with flow cell, gas & liquid analytics

Unrestricted © Siemens AG 2018

April 17, 2018 CO2-Plus Status-Conference, BerlinPage 11 Corporate Technology

Catalytic Testing (ABMC3 from Evonik - first sample with C2H4 yield)(results reproducible within the consortium)

Testing procedure:

A) Selectivity-Screening

1. 2h - 50 mA/cm2

2h - 100 mA/cm2

2h - 200 mA/cm2

2h - 300 mA/cm2

2. repetition of 1.

B) Stability-test

4h – 250 mA/cm2

PEIS

4x Repetition

2 4 6 9 11 13 158

7

6

5

4

3

2

1

0

E /

Vce

ll

time / h

0

5

10

50

60

70

80

90

100

FE

/ %

1. 2.

0 2 4 6 8 10 12 14 16 18 20 228

7

6

5

4

3

2

1

0

E /

VC

ell

time / h

0

5

10

50

60

70

80

90

100

FE /

%

B)

A)

Unrestricted © Siemens AG 2018

April 17, 2018 CO2-Plus Status-Conference, BerlinPage 12 Corporate Technology

The picture can be added by clicking on the symbol Images of a homogeneous mixed-metal thin-film

wafer produced by cosputtering in a PVD process

as used for electrochemical characterization:

a)photograph,

b)XRF phase composition

c) XRF atomic composition Cu:Ir 70:30 (variation in

overall composition: ~0.2%, the sample is overall

homogeneous within this variation)

a) b)

c) b)

Catalyst Deposition:

Growth of mixed-metal samples in a PVD process (cosputtering)

Unrestricted © Siemens AG 2018

April 17, 2018 CO2-Plus Status-Conference, BerlinPage 13 Corporate Technology

Chronoamperometric step measurements

• Ethylene gas formation observed at potentials as low as

-1.6 V vs. Ag/AgCl

• Voltage very similar to in-situ grown catalyst with high current density (170 mA/cm²)

Cyclic voltammetry

• Proves the observed trend

Pure Cu:

Electrochemical gaseous product formation in CO2 saturated 0.1 M KHCO3

Unrestricted © Siemens AG 2018

April 17, 2018 CO2-Plus Status-Conference, BerlinPage 14 Corporate Technology

Chronoamperometric step measurements

• Hydrogen gas evolution detected at

potentials of -0.7 V vs Ag/AgCl

• No hydrocarbon (methane, ethylene) gas

formation observed even at lower potentials

• Hydrogen formation is dominant over all

other investigated catalytic pathways for

Cu:Ir 70:30

Result

• The addition of iridium is detrimental for the

reaction under the observed conditions,

because the onset for hydrogen evolution

reaction (HER) is more positive than for pure

copper

Cu-Ir (70:30 alloy): Electrochemical gaseous product formation in CO2

saturated 0.1 M KHCO3

Unrestricted © Siemens AG 2018

April 17, 2018 CO2-Plus Status-Conference, BerlinPage 15 Corporate Technology

Strategies of catalyst preparation

Cu-Coated Raney-Ni-Catalyst Mixed Metal Oxide - Catalyst

(MMO)

Cu-based Catalyst

Raney-Ni-Powder

Copper coated

Preparation of

GDL

GDL in Cu-Bath

Milled Cu-Powder

Electrolytic Cu-Powder

with dendritic surface

Copper Foam

Cu/CuO/C Catalyst

Drying furnace

Cu/CuO/C Catalyst

Spraydryer

Phases in the cpray drying of a catalyst suspension

Unrestricted © Siemens AG 2018

April 17, 2018 CO2-Plus Status-Conference, BerlinPage 16 Corporate Technology

Upscaling of MMO-Catalyst Production

Planung Ende 2017

Umsetzung Anfang 2018

Erste Versuche in Q2/2018

Ofeneingang:

Installation von Einhausung mit Absaugung zur

Befüllung von Kalzinationsschalten

Ofenausgang:

Installation von Einhausung mit Absaugung zum

Entleeren von Kalzinationsschalten.

Absaugung erfolgt über Absaugeinrichtung mit

Abscheidung direkt in Transportgefäß

Kalzinationsschale:

Kalzinationsschale wird mit Katalysatorpulver gefüllt;

Schütthöhe wird mit Rackel reguliert;

Kalzinationsschale mit permeabler Abdeckung

Unrestricted © Siemens AG 2018

April 17, 2018 CO2-Plus Status-Conference, BerlinPage 17 Corporate Technology

Key component:

Gas Diffusion Electrode (GDE) to overcome the low solubility of CO2 in water

• Only CO2 can be electrochemically reduced not HCO3- or

other chemically dissolved species

• 3-Phase interface ensures high CO2 concentration at the

electrode (gas-liquid-solid)

Key challenge to achieve industrial

relevant current densities

>> 100 mA/cm²

• CO2 is absorbed on the electro catalytic electrode

• Gas separation may be needed in subsequent processes

CO2

(l)(g)

CO2

(g)(s)

(l)

Ion Exchange membrane

CO2

dispersion

Unrestricted © Siemens AG 2018

April 17, 2018 CO2-Plus Status-Conference, BerlinPage 18 Corporate Technology

GDE production

Scale-up to 300cm² (MMO / Copper oxide based GDEs)

Calandaring in full with 130mmVacuum table/ mounting

Results

Percent flow/Diameter

0102030405060708090

100

0,7

2

0,7

5

0,7

8

0,8

2

0,8

6

0,9

1

0,9

7

1,0

1

1,0

8

1,1

5

1,2

4

1,3

4

1,4

6

1,6

1

1,7

5

1,9

3

2,2

2

2,5

3

2,8

5

3,2

4

4,5

5,7

4

7,9

8

14

,5

84

,4

Diameter (um)

Percen

t f

low

Pore size flow distribution [CDIF] Cumulative filter flow [SUM]

Pore size distribution

Activation 200mA/cm²

• GDE with very high porosity was prepared

• Sharp pore size distribution was achieved

• 250 mbar wetting pressure

• 100 mbar bubble point pressure

•3 Ohm resistance

• Machine sieving

• Better homogeneity of powder layer

• Faster application

•Calendaring

• Homogeneous pressure over the complete roll with

Unrestricted © Siemens AG 2018

April 17, 2018 CO2-Plus Status-Conference, BerlinPage 19 Corporate Technology

Influence of copper oxide species

Characterization of Copper/ Copper-(I)-Oxides

•The presence of Cu beside Cu2O could slightly increase the faradaic efficiency

• all catalysts form CO, beside hydrogen and ethylene

6% Cu2O-94%Cu

0 50 100 150 200 2500

10

20

30

40

50

60

70

80

90

100

H2

CO

CH4

C2H

4

FE

/ %

J/ mA*cm-2

0 50 100 150 200 2500

10

20

30

40

50

60

70

80

90

100

H2

CO

CH4

C2H

4

FE

/ %

J/ mA*cm-2

Cu2O@Cu

Results

Cu2O was prepared precipitation

Pourbaix diagram (T=25°C, c(Cu) 1x10-5 mol/l)

•Cu2O phase is stable between pH=6 to pH=14

•the local pH value in the laminar boundary much more basic than

the bulk electrolyte

•formation of Cu2+ azurite, malachite, tenorid, must be avoided

Stability of Cu2O is limited to a very small process window!

Cu2O@Cu was prepared by

thermal oxidation according to

phase diagram

Cu2+ Cu2(OH)2CO3CuO

Cu2O

Cu

Unrestricted © Siemens AG 2018

April 17, 2018 CO2-Plus Status-Conference, BerlinPage 20 Corporate Technology

Comparison of Pure Copper and Pure Copper-(I)-oxide

C2H4-FE over WE-Potential

Results

• Cu and Cu2O showed comparable results in the reduction experiment

Cu 99.999

Cu 99.99

Cu 99.999

Cu 99.99

Current density over WE-Potential

Unrestricted © Siemens AG 2018

April 17, 2018 CO2-Plus Status-Conference, BerlinPage 21 Corporate Technology

Catalyst Exchange History

Sample Number Evonik Catalyst test date

FE(Ethylen) @

250mA/cm²1 AMC170050 16.02.2017 10

2 AMC170009 16.02.2017 0

3 AMC170012 16.02.2017 0

4 AMC170013 16.02.2017 0

5 AMC170014 16.02.2017 0

6 CPC SP 1700 16.02.2017 0

7 MC 315 21.02.2017 0

8 Kupferschaum 21.02.2017 4

9 Cu-Polyurethangewebe 21.02.2017 7

10 CSAZ00639 24.04.2017 2

11 CSAZ00640 24.04.2017 14

12 AMC170047 25.04.2017 0

13 AMC170048 25.04.2017 0

14 AMC170073 07.06.2017 0

15 AMC170050 07.06.2017 0

16 AMC170056 07.06.2017 0

17 ABMC3 07.06.2017 12

18 CSAZ00660 08.06.2017 12

19 CSAZ00661 12.06.2017 13

20 CSAZ00662 12.06.2017 3

21 CSAZ00684 23.08.2017 22

22 CSAZ00715 21.11.2017 25

23 CSAZ00716 21.11.2017 22

24 CSAZ00717 21.11.2017 15

25 CSAZ00718 30.11.2017 0

26 CSAZ00734 14.03.2018 12

27 CSAZ00733 14.03.2018 7

Exchanged Samples

• 27 different catalyst powder received from Evonik

• 120 Gasdiffusion electrodes prepared

• 37 electrodes pre-tested on 3cm² scale

• 10 electrodes tested on 10cm² scale in flow cell (longtime)

• 5 electrodes prepared on 300cm² scale (copper based)

•two suitable catalyst powders identified (mixed metal oxide)

•25% Faraday efficiency for ethylene at 250mA/cm² achieved

•GDE preparation up scaled to 300cm²

GDE could handle current densities J>300mA/cm²

High mechanical stability, high porosity

Highlights

sampleexchange

results

Unrestricted © Siemens AG 2018

April 17, 2018 CO2-Plus Status-Conference, BerlinPage 22 Corporate Technology

Conclusion Project eEthylene FKZ 033RC004A

• Ethylene could be reproducibly obtained at high current densities by all partners with

an in-situ deposited nano dentride copper catalyst

• Catalyst stability is still the major challenge of the whole project (we may move to other oxides)

• Electro catalysts differ significantly from classical thermochemicals catalyst with respect to

composition, purity & morphology

• Copper oxide gives excellent ethylene selectivity, but could be hardly stabilized under

electrochemical reduction conditions

• Transfer to gas diffusion electrodes and their implementation successful

Thanks also to the team of eEthyene

Prof. Dr. B.Roldan, F. Scholten, Prof. P. Strasser, T. Möller, Prof. K. Mayrhofer, I. Katsounaros,

R. Poss, C. Reller, S. Romero-Cuellar, A. Maltenberger, D. Taroata and all the invisible technicians in the back

Thanks Dr. Stefanie Roth for coordination