progressive simplicial complexes

63
Progressive Simplicial Progressive Simplicial Complexes Complexes Jovan Popovic Jovan Popovic Carnegie Mellon University Carnegie Mellon University Hugues Hoppe Hugues Hoppe Microsoft Research Microsoft Research

Upload: sarai

Post on 18-Jan-2016

62 views

Category:

Documents


0 download

DESCRIPTION

Progressive Simplicial Complexes. Jovan Popovic Carnegie Mellon University. Hugues Hoppe Microsoft Research. {f 1 } : { v 1 , v 2 , v 3 } {f 2 } : { v 3 , v 2 , v 4 } …. connectivity. {v 1 } : ( x,y,z ) {v 2 } : ( x,y,z ) …. geometry. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Progressive  Simplicial  Complexes

Progressive Simplicial Progressive Simplicial ComplexesComplexes

Jovan PopovicJovan PopovicCarnegie Mellon Carnegie Mellon

UniversityUniversity

Jovan PopovicJovan PopovicCarnegie Mellon Carnegie Mellon

UniversityUniversity

Hugues HoppeHugues HoppeMicrosoft ResearchMicrosoft Research

Hugues HoppeHugues HoppeMicrosoft ResearchMicrosoft Research

Page 2: Progressive  Simplicial  Complexes

Triangle Meshes

{f{f11} : { v} : { v11 , v, v22 , v , v33 } }{f{f22} : { v} : { v33 , v , v22 , v , v44 } }……

connectivityconnectivity

geometrygeometry{v{v11} : (x,y,z)} : (x,y,z){v{v22} : (x,y,z)} : (x,y,z)……

face attributesface attributes{f{f11} : } : “skin material”“skin material”{f{f22} : } : “brown hair”“brown hair”……

Page 3: Progressive  Simplicial  Complexes

Triangle Meshes

{v{v22,f,f11} : (n} : (nxx,n,nyy,n,nzz) (u,v)) (u,v){v{v22,f,f22} : (n} : (nxx,n,nyy,n,nzz) (u,v)) (u,v)……

corner attrib.corner attrib.

{f{f11} : { v} : { v11 , v, v22 , v , v33 } }{f{f22} : { v} : { v33 , v , v22 , v , v44 } }……

connectivityconnectivity

geometrygeometry{v{v11} : (x,y,z)} : (x,y,z){v{v22} : (x,y,z)} : (x,y,z)……

face attributesface attributes{f{f11} : } : “skin material”“skin material”{f{f22} : } : “brown hair”“brown hair”……

Page 4: Progressive  Simplicial  Complexes

•RenderingRendering

•StorageStorage

•TransmissionTransmission

•RenderingRendering

•StorageStorage

•TransmissionTransmission

Complex Models

232, 974 faces

Page 5: Progressive  Simplicial  Complexes

Previous Work

Model Model M=(K,V,D,S)M=(K,V,D,S)

Progressive mesh Progressive mesh representationrepresentation

Model Model M=(K,V,D,S)M=(K,V,D,S)

Progressive mesh Progressive mesh representationrepresentation

1

( , )

set of meshes (simplicial complex of 2D orientable manifods)

{ ,... }vertex coordinates

discrete atributes of 2-smplexes

scalar atributes (e.g. normals, texturecoord.)

m

f

v f

K

V v v

D d f K

S s

1 01

1 1 0

00 1

1 0

ˆPM( ) ,{ ,..., }

ˆ n

n

n

ecol ecolecoln

vsplit vsplit vsplit

M M vsplit vsplit

M M M M

Page 6: Progressive  Simplicial  Complexes

Simplification: Edge collapse

13,54613,546 500500 152152 150 faces150 faces

MM00MM11MM175175

ecolecol00ecolecoliiecolecoln-1n-1

MMnn

ecol(vecol(vs s ,v,vt t , , vvss ))

vvllvvrr

vvtt

vvss

vvssvvll vvrr

(optimization)(optimization)

’’

’’

Page 7: Progressive  Simplicial  Complexes

Previous Work

Progressive MeshesProgressive Meshes [Hoppe, [Hoppe, ‘96]‘96]Progressive MeshesProgressive Meshes [Hoppe, [Hoppe, ‘96]‘96]

150150

MM00

vsplvspl00MM11

152152

MM175175

500500

… … vsplvsplii … …

13,54613,546

vsplvspln-1n-1

MMnn=M=M̂̂MM00

vsplvspl00 … … vsplvsplii … … vsplvspln-1n-1

Progressive Mesh (PM) representation

Page 8: Progressive  Simplicial  Complexes

Application: Progressive transmissionTransmit records progressively:Transmit records progressively:Transmit records progressively:Transmit records progressively:

MM00

ReceiverReceiver displays: displays:

timetime

MM0 0

vsplvspl00 vsplvspl11 vsplvspli-1i-1

MMii

(~ progressive GIF & JPEG)(~ progressive GIF & JPEG) MMnn

vsplvspln-1n-1

Page 9: Progressive  Simplicial  Complexes

Application: Continuous-resolution LOD

From PM, extract MFrom PM, extract Mii of any desired complexity. of any desired complexity.From PM, extract MFrom PM, extract Mii of any desired complexity. of any desired complexity.

MM00 vsplvspl00 vsplvspl11 vsplvspli-1i-1 vsplvspln-1n-1

MMii

3,478 faces?3,478 faces?

3,4783,478

MM00 MMnnMMii

~400K~400K faces/sec! faces/sec!~400K~400K faces/sec! faces/sec!

Page 10: Progressive  Simplicial  Complexes

PM Features

Continuous LOD sequenceContinuous LOD sequence

Smooth visual transitions Smooth visual transitions (Geomorphs)(Geomorphs)

Progressive transmissionProgressive transmission

Space-efficient representationSpace-efficient representation

Continuous LOD sequenceContinuous LOD sequence

Smooth visual transitions Smooth visual transitions (Geomorphs)(Geomorphs)

Progressive transmissionProgressive transmission

Space-efficient representationSpace-efficient representation

Page 11: Progressive  Simplicial  Complexes

Would also like:

PM Restrictions

Supports only “meshes”Supports only “meshes”(orientable, 2-dimensional manifolds)(orientable, 2-dimensional manifolds)

Supports only “meshes”Supports only “meshes”(orientable, 2-dimensional manifolds)(orientable, 2-dimensional manifolds)

Page 12: Progressive  Simplicial  Complexes

PM Restrictions

Supports only “meshes”Supports only “meshes”(orientable, 2-dimensional manifolds)(orientable, 2-dimensional manifolds)

Preserves topological typePreserves topological type

Supports only “meshes”Supports only “meshes”(orientable, 2-dimensional manifolds)(orientable, 2-dimensional manifolds)

Preserves topological typePreserves topological type

MM00 MMnn

Page 13: Progressive  Simplicial  Complexes

PM Restrictions

Supports only “meshes”Supports only “meshes”(orientable, 2-dimensional manifolds)(orientable, 2-dimensional manifolds)

Preserves topological typePreserves topological type

Supports only “meshes”Supports only “meshes”(orientable, 2-dimensional manifolds)(orientable, 2-dimensional manifolds)

Preserves topological typePreserves topological type

167,744167,7448,0008,0002,5222,522MM00 MMnn… … MMii … …

Page 14: Progressive  Simplicial  Complexes

PM Restrictions

Supports only “meshes”Supports only “meshes”(orientable, 2-dimensional manifolds)(orientable, 2-dimensional manifolds)

Preserves topological typePreserves topological type

minimal vertex num of closed g genus minimal vertex num of closed g genus meshmesh

Supports only “meshes”Supports only “meshes”(orientable, 2-dimensional manifolds)(orientable, 2-dimensional manifolds)

Preserves topological typePreserves topological type

minimal vertex num of closed g genus minimal vertex num of closed g genus meshmesh 1/27 (48 1) / 2 if 2, 10 if 2g g g

7744 1100

1100

Page 15: Progressive  Simplicial  Complexes

PM RestrictionsVolumetric data :Volumetric data :Volumetric data :Volumetric data :

Page 16: Progressive  Simplicial  Complexes

Progressive Simplicial Complexes (PSC)

edge collapseedge collapse(ecol)(ecol)

vertex splitvertex split(vspl)(vspl)

PMPM

Page 17: Progressive  Simplicial  Complexes

Progressive Simplicial Complexes (PSC)

edge collapseedge collapse(ecol)(ecol)

vertex splitvertex split(vspl)(vspl)

PMPMvertex unificationvertex unification

(vunify)(vunify)

PSCPSC

Page 18: Progressive  Simplicial  Complexes

Progressive Simplicial Complexes (PSC)

edge collapseedge collapse(ecol)(ecol)

vertex splitvertex split(vspl)(vspl)

PMPMvertex unificationvertex unification

(vunify)(vunify)

generalized vertex splitgeneralized vertex split(gvspl)(gvspl)

PSCPSC

Page 19: Progressive  Simplicial  Complexes

PSC representation

PSC Representation

MM11 MM2222

gvsplgvspl11MM116116

… … gvsplgvsplii … … gvsplgvspln-1n-1

MMnn=M=M̂̂

arbitrary simplicial arbitrary simplicial complexescomplexes

Page 20: Progressive  Simplicial  Complexes

Abstract simplicial complexes (ASC)

is ASC of {1,.., } vertices iff

1. {1,.., }

2. { } , 1,...

3. ' , '

K m

K P m

i K i m

s K s K s s

is called of

dim | | 1

dim max dims K

s K simplex K

s s

K s

Page 21: Progressive  Simplicial  Complexes

Abstract simplicial complexes (ASC)

faces( ) ( ) \ , star( ) ' '

children( ) ' dim ' dim 1

parents( ) ' star( ) dim ' dim 1

|parents( ) | 1

parents( )

s s P s s s K s s

s s s s s

s s s s s

s s boundary simplex

s s principle simplex

Page 22: Progressive  Simplicial  Complexes

Abstract simplicial complexes

1

is

: 0, 1, 0 { }

topological realization of is

{ }

m

mm

j j jj

s K

open simplex s

s b b b b j s

K K s

of is ( ), where

: linear map, s.t.m d m dj j

geometric realization K K

e v

Page 23: Progressive  Simplicial  Complexes

GGeometric vs toplogical eometric vs toplogical realizationsrealizations

Page 24: Progressive  Simplicial  Complexes

Graph representation.Graph representation.

•First level – principle simplicesFirst level – principle simplices

discrete attributesdiscrete attributes

Page 25: Progressive  Simplicial  Complexes

Abstract simplicial complexes

1 s2 s

1 s2 s

Manifold-Manifold-adjecentadjecent

Not manifold-Not manifold-adjecentadjecent

1 2

1 2

11 2

Two simplices and are - if they have

a common d-dimensional face.

Two d-adjacent (d +1)-simplices and are

- if star( ) d

s s d adjacent

s s

manifold adjacent s s

Page 26: Progressive  Simplicial  Complexes

1

1 1 1

1

'{ }

: For each ({ }) : ' \{ } { }

dublicates simplices in are deleted. ' of

: is deleted , , ( ) / 2

principle in: if ' principle simplex

elsei

i i ii i i

i

i i i i i ib a a a b

isi i

ss a

K s star b K s s s b a K

K s ancestor s

V v v v v v

d s KD s K d

d

1({ },{ }, ) : i ii i i ivunify a b midp M M

( , , , )j j j j jM K V D A

Page 27: Progressive  Simplicial  Complexes

1

'{ }

principle in: if ' principle simplex

elsei

isi i

ss a

d s KD s K d

d

1' ,principle in not principle ini is K s K

1

1

1. { } ( )

2. { }

parents

principle in

iK

i

s a s

s a K

1 ({ }) ' \{ } { }vunifyi ii i iK star b s s s b a K

1

1

'

1. ( ) { } ' { } ( ') '

2. { } { } ' { } ( ')

then

not princ. in

i i

i

vunify

c sK K

vunifyi

Kc sc p

parents s s c s c parents s c s c a

p s a K p c p p c star s

aa

ii

bbii

aa

ii

sss’s’

Page 28: Progressive  Simplicial  Complexes

1

1 1 1

1

'{ }

: For each ({ }) : ' \{ } { }

dublicates simpleces in are deleted. ' of

: is deleted , , ( ) / 2

principle in: if ' principle simplex

elsei

i i ii i i

i

i i i i i ib a a a b

isi i

ss a

K s star b K s s s b a K

K s ancestor s

V v v v v v

d s KD s K d

d

1({ },{ }, ) : i ii i i ivunify a b midp M M

( , , , )j j j j jM K V D A

1

'

: If was deleted then redistributed to ( ) \ ({ , })

If ( ) \ ({ , }) then if 'principle in ,

else discarded.

i is

is s

s

A s K a MN s star a b

MN s star a b a a s K

a

* MN – manifold adjacent * MN – manifold adjacent neighborsneighbors

Page 29: Progressive  Simplicial  Complexes

( , , , )j j j j jM K V D A

1({ }, , , , , ) :K D A i ii i i i i i igvsplit a C midp v C C M M

ia

1 1

(4)

(1) (2) (3)

: For each ({ }) : ' according to

' , ( \{ }) { 1}, , ( \{ }) { 1},

, ( \{ }) { 1}, { 1}

i i i Ki i

i i

i

K s star a K s s K C

s s s a i s s a i

s s a i s i

{ }

{ }{ }

{ }, { }

1.

2.

3.

4. { , }, { }, { }

vunify i

p a

p bp a s K

p b p a

p a b p b p a

1 1

{ , } 1({ }) ({ }) 2 , , ,i i

a b i

K Kstar b star a x p x a b p p K

Page 30: Progressive  Simplicial  Complexes

Connectivity Encoding

case case (1)(1)

case case (2)(2)

case case (3)(3)

case case (4)(4)

0-dim0-dim

1-1-dimdim

2-dim2-dim

undefinundefineded

undefinundefineded

Page 31: Progressive  Simplicial  Complexes

( , , , )j j j j jM K V D A

1({ }, , , , , ) :K D A i ii i i i i i igvsplit a C midp v C C M M

, , are sorted by simplex dimension first, then by simplex idK D Ai i iC C C

ia

1 1

1 1 11

1

1

(4)

(1) (2) (3)

: For each ({ }) : ' according to

' , ( \{ }) { 1}, , ( \{ }) { 1},

, ( \{ }) { 1}, { 1}

: , ,

: according to

: accordin

i i i i

i i i Ki i

i i

i

i i i i i ii a i a a a i

i Di

i

K s star a K s s K C

s s s a i s s a i

s s a i s i

V v v v v v v v

D C

A

g to AiC

Page 32: Progressive  Simplicial  Complexes

Geomorps. Geomorps. (smooth (smooth transform.)transform.)Interpolation between , 1

correspondance { } ( )

,( )

( ) ,

c f

f f c c

f cf c

j

M M c f n

K j p j K

j j cp j

p b j c

( )

01

( ) ( , ( ), , ( ))

( ) (1 ) ,

( ) (1 ) , ( )

f c

f f

f cj j p j

f c fs s s

M K V D A

v v v

a a a s P K

Page 33: Progressive  Simplicial  Complexes

Simplicial Complex

VV KKMM̂̂

Page 34: Progressive  Simplicial  Complexes

Simplicial Complex

VV KKMM̂̂

Page 35: Progressive  Simplicial  Complexes

KK

Simplicial Complex

VVMM̂̂ 1122 33 44

55

66

77

= {1, 2, 3, 4, 5, 6, 7} + = {1, 2, 3, 4, 5, 6, 7} + simplicessimplices

abstract abstract simpliciasimplicia

l l complexcomplex

{1}, {2}, …{1}, {2}, … 0-0-dimdim

Page 36: Progressive  Simplicial  Complexes

Simplicial Complex

5511

22 33 4466

77

= {1, 2, 3, 4, 5, 6, 7} + = {1, 2, 3, 4, 5, 6, 7} + simplicessimplices

VV KKMM̂̂

{1}, {2}, …{1}, {2}, … 0-0-dimdim{1, 2}, {2, 3}…{1, 2}, {2, 3}…1-1-dimdim

abstract abstract simpliciasimplicia

l l complexcomplex

Page 37: Progressive  Simplicial  Complexes

Simplicial Complex

5511

22 33 4466

77

= {1, 2, 3, 4, 5, 6, 7} + = {1, 2, 3, 4, 5, 6, 7} + simplicessimplices

{1}, {2}, …{1}, {2}, … 0-0-dimdim{1, 2}, {2, 3}…{1, 2}, {2, 3}…1-1-dimdim

VV KKMM̂̂

{4, 5, 6}, {6, 7, 5}{4, 5, 6}, {6, 7, 5}2-dim2-dim

abstract abstract simpliciasimplicia

l l complexcomplex

Page 38: Progressive  Simplicial  Complexes

Generalized Vertex Split Encoding

vunifvunifyy

aa

iiaa

ii

bbii

Page 39: Progressive  Simplicial  Complexes

Generalized Vertex Split Encoding

gvspgvspll

vunifvunifyy

aa

ii

gvsplgvsplii = = {a {aii},},

aa

iiaa

ii

bbii

Page 40: Progressive  Simplicial  Complexes

Connectivity Encoding

case case (1)(1)

case case (2)(2)

case case (3)(3)

case case (4)(4)

0-dim0-dim

1-1-dimdim

2-dim2-dim

undefinundefineded

undefinundefineded

Page 41: Progressive  Simplicial  Complexes

Connectivity Encoding

case case (1)(1)

case case (2)(2)

case case (3)(3)

case case (4)(4)

0-dim0-dim

1-1-dimdim

2-dim2-dim

undefinundefineded

undefinundefineded

Page 42: Progressive  Simplicial  Complexes

Connectivity Encoding

case case (1)(1)

case case (2)(2)

case case (3)(3)

case case (4)(4)

0-dim0-dim

1-1-dimdim

2-dim2-dim

undefinundefineded

undefinundefineded

SS

Page 43: Progressive  Simplicial  Complexes

gvsplgvsplii = = {a {aii},},

Generalized Vertex Split Encoding

vunifvunifyy

aa

ii

gvspgvspll

0-0-simplicessimplices

44

11

2233

44

55aa

iiaa

ii

bbii

Page 44: Progressive  Simplicial  Complexes

Generalized Vertex Split Encoding

vunifvunifyy

aa

ii

gvsplgvsplii = = {a {aii}, 4 14223}, 4 14223

gvspgvspll

1-1-simplicessimplices

11

2233

44

55aa

ii

bbii

Page 45: Progressive  Simplicial  Complexes

gvsplgvsplii = = {a {aii}, 4 14223 }, 4 14223 1212

Generalized Vertex Split Encoding

vunifvunifyy

aa

ii

2-2-simplicessimplices

gvspgvspll

aa

ii

bbii

11

22

Page 46: Progressive  Simplicial  Complexes

gvsplgvsplii = = {a {aii}, 4 14223 }, 4 14223 1212

Generalized Vertex Split Encoding

vunifvunifyy

aa

ii

connectivitconnectivityy

gvspgvspll

SS

aa

ii

bbii

Page 47: Progressive  Simplicial  Complexes

Generalized Vertex Split Encoding

vunifvunifyy

gvsplgvsplii = = {a {aii}, 4 14223 }, 4 14223 12,12,

vpos

gvspgvspll

aa

ii

bbii

Page 48: Progressive  Simplicial  Complexes

Generalized Vertex Split Encoding

vunifvunifyy

gvsplgvsplii = = {a {aii}, 4 14223 }, 4 14223 12,12,

vpos

gvspgvspll

aa

ii

bbii

11

2233

44

5511

22

•If a simplex has split code If a simplex has split code c c inin {1, 2} , all of its parents have {1, 2} , all of its parents have split code split code cc..

•If a simplex has split code 3, none of its parents have split If a simplex has split code 3, none of its parents have split code 4.code 4.

1. { }, 2. { } { }vunifyp a p b p a

3. { }, { } { }vunifyp b p a p a

Page 49: Progressive  Simplicial  Complexes

Connectivity Encoding Constraints

vunifvunifyy

gvspgvspll

11 22 44 55 11 2233

11

2233

44

5511

22

11 1 1 11 1 1 1 1 11 1 12 2 2 2 22 22 2 2 2 2 22

33 33 3 3 3 3 3 3 33 3 33 344 4 4 44 4 4 4 4 4 4 4 44 4

Page 50: Progressive  Simplicial  Complexes

Space Analysis

Average 2D manifold meshAverage 2D manifold meshn vertices, 3n edges, 2n trianglesn vertices, 3n edges, 2n triangles

PM representationPM representation

n ( logn ( log22n + 4 ) bitsn + 4 ) bits

PSC representationPSC representation

n ( logn ( log22n + 7 ) bitsn + 7 ) bits

Average 2D manifold meshAverage 2D manifold meshn vertices, 3n edges, 2n trianglesn vertices, 3n edges, 2n triangles

PM representationPM representation

n ( logn ( log22n + 4 ) bitsn + 4 ) bits

PSC representationPSC representation

n ( logn ( log22n + 7 ) bitsn + 7 ) bits

Page 51: Progressive  Simplicial  Complexes

PSC Construction

Form a set of candidate vertex Form a set of candidate vertex pairspairs

•1-simplices of K some pairs from 1-simplices of K some pairs from different different components components

Form a set of candidate vertex Form a set of candidate vertex pairspairs

•1-simplices of K some pairs from 1-simplices of K some pairs from different different components components

For each candidate vertex pairs a, For each candidate vertex pairs a, b :b :

• calculate accuracy of vunify (a,b)calculate accuracy of vunify (a,b)

Sort candidate vertices according Sort candidate vertices according to accuracyto accuracy

For each candidate vertex pairs a, For each candidate vertex pairs a, b :b :

• calculate accuracy of vunify (a,b)calculate accuracy of vunify (a,b)

Sort candidate vertices according Sort candidate vertices according to accuracyto accuracy

Page 52: Progressive  Simplicial  Complexes

PSC ConstructionHow to get pairs from different How to get pairs from different componentscomponents

• Octree of model’s bboxOctree of model’s bbox

How to get pairs from different How to get pairs from different componentscomponents

• Octree of model’s bboxOctree of model’s bbox

Page 53: Progressive  Simplicial  Complexes

PSC ConstructionHow to get pairs from different How to get pairs from different componentscomponents

• Delaunay triangulation KDelaunay triangulation KDTDT

How to get pairs from different How to get pairs from different componentscomponents

• Delaunay triangulation KDelaunay triangulation KDTDT

No point in No point in PP is is inside the inside the circumcircles of any circumcircles of any simplex in simplex in KKDTDT

Center of Center of circumcircles gives circumcircles gives Voronoi diagram Voronoi diagram

Page 54: Progressive  Simplicial  Complexes

Unify pair with lowest costUnify pair with lowest cost•updating costs of affected candidatesupdating costs of affected candidates

Unify pair with lowest costUnify pair with lowest cost•updating costs of affected candidatesupdating costs of affected candidates

PSC Construction

Form a set of candidate vertex Form a set of candidate vertex pairspairs

•1-simplices of K 1-simplices of K ++ 1-simplices of K 1-simplices of KDTDT

Compute cost of each vertex Compute cost of each vertex pairpair

•∆∆E = ∆EE = ∆Edistdist + ∆E + ∆Ediscdisc + ∆ E + ∆ Earea area + E+ Efoldfold

Form a set of candidate vertex Form a set of candidate vertex pairspairs

•1-simplices of K 1-simplices of K ++ 1-simplices of K 1-simplices of KDTDT

Compute cost of each vertex Compute cost of each vertex pairpair

•∆∆E = ∆EE = ∆Edistdist + ∆E + ∆Ediscdisc + ∆ E + ∆ Earea area + E+ Efoldfold

Page 55: Progressive  Simplicial  Complexes

Form a set of candidate vertex Form a set of candidate vertex pairspairsForm a set of candidate vertex Form a set of candidate vertex pairspairs

PSC Construction

1-simplices of KDT1-simplices of K

candidate vertex pairs

Page 56: Progressive  Simplicial  Complexes

Computing ∆E 2 2

ˆˆ {P( ) samples}

1

( ) ( , ) ( , )

( ) ( )

distx Mp M

i idist dist dist

E M d p M d x M

E E M E M

' ''

( ) penelizes in

is ', '' parent( ) :

Or boundaysimplex .

disc

s s

E M sharp simplices K

s K sharp simplex s s s d d

s

Page 57: Progressive  Simplicial  Complexes

Computing ∆E

( ) penalizes surface folding caused byfoldE M vunify

1

2

star( ) star( )

principle in

2

{ , }

( )

simple version: ( )

i

areas a b

s K

ispring j k

j k V

E area s

E M v v

Page 58: Progressive  Simplicial  Complexes

Simplification Results

72,346 72,346 trianglestriangles

674 triangles674 triangles

Page 59: Progressive  Simplicial  Complexes

Simplification Results

8,936 8,936 trianglestriangles

170 170 trianglestriangles

Page 60: Progressive  Simplicial  Complexes

PSC Features Video

Destroyer PSC sequenceDestroyer PSC sequence

PM, PSC comparisonPM, PSC comparison

PSC GeomorphsPSC Geomorphs

Line DrawingLine Drawing

Destroyer PSC sequenceDestroyer PSC sequence

PM, PSC comparisonPM, PSC comparison

PSC GeomorphsPSC Geomorphs

Line DrawingLine Drawing

Page 61: Progressive  Simplicial  Complexes

PSC Features Video

Page 62: Progressive  Simplicial  Complexes

PSCPSC

VV KK

MM̂̂

MM11

gvsplgvspl

progressive geometry progressive geometry and topologyand topology

losslesslossless

any triangulationany triangulation

single single vertexvertex

PSC Summary

arbitrary arbitrary simplicial simplicial complexcomplex

Page 63: Progressive  Simplicial  Complexes

Continuous LOD sequenceContinuous LOD sequence

Smooth transitions Smooth transitions (Geomorphs)(Geomorphs)

Progressive transmissionProgressive transmission

Space-efficient representationSpace-efficient representation

Continuous LOD sequenceContinuous LOD sequence

Smooth transitions Smooth transitions (Geomorphs)(Geomorphs)

Progressive transmissionProgressive transmission

Space-efficient representationSpace-efficient representation

PSC Summary

Supports topological changesSupports topological changes

Models of arbitrary dimensionModels of arbitrary dimension

Supports topological changesSupports topological changes

Models of arbitrary dimensionModels of arbitrary dimensione.g. LOD in volume renderinge.g. LOD in volume renderinge.g. LOD in volume renderinge.g. LOD in volume rendering