prof. dato-' dr. azizan abu samah (presentation)

Upload: kemal-maulana-alhasa

Post on 01-Mar-2016

22 views

Category:

Documents


0 download

DESCRIPTION

Borneo

TRANSCRIPT

  • BorneoVortex:Multiscalarinteractions.(UM)

    A.A.Samah,OoiSeeHai,FadzilMohd.NorandKumaren

  • The global influenceTheglobalinfluence.

    TheSiberianHigh:

    1. Arctic Oscillation.1. ArcticOscillation.

    2. ENSO

  • Methodology

    ClimatologyMSLP&ATcalculatedbyaveragingmonthlydatafrom19712000

    SiberianHighIndexwascalculatedbyfindingout the maximum daily (from 6 hourly NC file)outthemaximumdaily(from6hourlyNCfile)andthenaveraged(ofthedailymaxvalues)formonthlyvalue.o o t y a ue

    SiberianHighareadefinedat800 1200 E,400 600 N60 N

  • SiberianHighClimatology

  • Siberian High Index (SHI)SiberianHighIndex(SHI)

    AveragedofdailymaximumMSLPoverdefinedAveraged of daily maximumMS P over definedarea(800 1200 E,400 600 N).

    XX

    m

    mmnmn

    XXSHI = ..

    Xn.m isthevalueofaveragedmaxofSLPatmonthm, yearn;

    m

    istheclimatologyaverage(19712000)ofmonthlyaverageofmaximummeanSLPformonthm,

    is its climatology standard deviation at monthm.

    mX

    m isitsclimatologystandarddeviationatmonthm.

  • 1.5

    SiberianHighIndex(yearly)ofAreaAveragedandMaximumAveraged

    0 5

    1.0

    0.0

    0.5

    1

    9

    7

    1

    1

    9

    7

    2

    1

    9

    7

    3

    1

    9

    7

    4

    1

    9

    7

    5

    1

    9

    7

    6

    1

    9

    7

    7

    1

    9

    7

    8

    1

    9

    7

    9

    1

    9

    8

    0

    1

    9

    8

    1

    1

    9

    8

    2

    1

    9

    8

    3

    1

    9

    8

    4

    1

    9

    8

    5

    1

    9

    8

    6

    1

    9

    8

    7

    1

    9

    8

    8

    1

    9

    8

    9

    1

    9

    9

    0

    1

    9

    9

    1

    1

    9

    9

    2

    1

    9

    9

    3

    1

    9

    9

    4

    1

    9

    9

    5

    1

    9

    9

    6

    1

    9

    9

    7

    1

    9

    9

    8

    1

    9

    9

    9

    2

    0

    0

    0

    2

    0

    0

    1

    2

    0

    0

    2

    2

    0

    0

    3

    2

    0

    0

    4

    2

    0

    0

    5

    2

    0

    0

    6

    2

    0

    0

    7

    2

    0

    0

    8

    2

    0

    0

    9

    1.0

    0.5

    Fi 1 Y l d Sib i hi h i d (SHI AAVE) i d l l t d

    1.5

    SiberianHighIndex(AreaAve) SiberianHighIndex(MaxAve)

    Fig.1: Yearly averaged Siberian high index(SHI AAVE) - an index calculated by averaging the mean SLP values over the defined area (80-1200E,40-60 0N ) and (SHI AvdMx) by averaging the daily maximum mean SLP over the same

    defined area. Correlation coefficient : 0.89defined area. Correlation coefficient : 0.89

  • 1.5

    SiberianHighIndex(NDJFMaveraged) AreaAveragedandMaximumAveraged(801200 E,40600 N)

    1.0

    0.0

    0.5

    1

    9

    7

    1

    1

    9

    7

    2

    1

    9

    7

    3

    1

    9

    7

    4

    1

    9

    7

    5

    1

    9

    7

    6

    1

    9

    7

    7

    1

    9

    7

    8

    1

    9

    7

    9

    1

    9

    8

    0

    1

    9

    8

    1

    1

    9

    8

    2

    1

    9

    8

    3

    1

    9

    8

    4

    1

    9

    8

    5

    1

    9

    8

    6

    1

    9

    8

    7

    1

    9

    8

    8

    1

    9

    8

    9

    1

    9

    9

    0

    1

    9

    9

    1

    1

    9

    9

    2

    1

    9

    9

    3

    1

    9

    9

    4

    1

    9

    9

    5

    1

    9

    9

    6

    1

    9

    9

    7

    1

    9

    9

    8

    1

    9

    9

    9

    2

    0

    0

    0

    2

    0

    0

    1

    2

    0

    0

    2

    2

    0

    0

    3

    2

    0

    0

    4

    2

    0

    0

    5

    2

    0

    0

    6

    2

    0

    0

    7

    2

    0

    0

    8

    1.0

    0.5

    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

    1.5

    SHI(AreaAve) SHI(MaxAve)

    Fig.2: NDJFM averaged Siberian High Index (SHI Area Ave)- light blue and Siberian High Index (SHI Max Ave) black line over the same defined area.

    Correlation coefficient : 0.91

  • ArcticOscillationandSiberianHighArcticOscillation

    NonseasonalSLPvariationsnorthof200N,characterizedbySLPanomaliesofonesignintheArcticandanomaliesofoppositesignin mid latitude centered about 37450N (Thompson and Wallaceinmidlatitude,centered about37 45 N(ThompsonandWallace(1998).

    Fig. 3. Arctic Oscillation phases and its influence over northern hemisphere (photo courtesy: http://www.appinsys.com/GlobalWarming/AO_NAO.htm and J Wallace, Univ. of Washington).

  • Result:ArcticOscillationandSiberianAirTemperature

    2

    3

    2

    3

    C

    )

    ArcticOscillationandAirTemperatureanomalies(averagedNDJFM)

    1

    0

    1

    1

    0

    1

    e

    m

    p

    .

    A

    n

    o

    m

    a

    l

    i

    e

    s

    (

    0

    C

    A

    O

    I

    3

    2

    3

    2

    1

    9

    7

    1

    1

    9

    7

    2

    1

    9

    7

    3

    1

    9

    7

    4

    1

    9

    7

    5

    1

    9

    7

    6

    1

    9

    7

    7

    1

    9

    7

    8

    1

    9

    7

    9

    1

    9

    8

    0

    1

    9

    8

    1

    1

    9

    8

    2

    1

    9

    8

    3

    1

    9

    8

    4

    1

    9

    8

    5

    1

    9

    8

    6

    1

    9

    8

    7

    1

    9

    8

    8

    1

    9

    8

    9

    1

    9

    9

    0

    1

    9

    9

    1

    1

    9

    9

    2

    1

    9

    9

    3

    1

    9

    9

    4

    1

    9

    9

    5

    1

    9

    9

    6

    1

    9

    9

    7

    1

    9

    9

    8

    1

    9

    9

    9

    2

    0

    0

    0

    2

    0

    0

    1

    2

    0

    0

    2

    2

    0

    0

    3

    2

    0

    0

    4

    2

    0

    0

    5

    2

    0

    0

    6

    2

    0

    0

    7

    2

    0

    0

    8

    A

    i

    r

    t

    e

    Fig.4:ArcticOscillationandairtemperatureanomalies(801200E,40600N)d NDJFM

    AOI(NDJFM) AirTempanom(aveNDJFM)

    averagedoverNDJFM.

    Correlationcoefficient:0.65

  • AirTemperatureduringAOPositiveandNegative

    Fig.5:(left)AirtemperaturesatSiberianhighareaareabovetheaveragetemperatureduringAOpositivephase.

    ( i h ) Ai Sib i l [ ld ] h d i(right)AirtemperaturesoverSiberianareaarelower[colder]thanaverageduringAOnegativephase.

  • AirTemperatureandSHI

    SHI d Ai T t A li (NDJFM )

    2

    3

    1.5

    2.0

    SHIandAirTemperatureAnomalies(NDJFMave)

    0

    1

    0.0

    0.5

    1.0

    1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

    a

    n

    o

    m

    a

    l

    i

    e

    s

    (

    0

    C

    )

    S

    H

    I

    2

    1

    1 5

    1.0

    0.5 19

    7

    1

    1

    9

    7

    2

    1

    9

    7

    3

    1

    9

    7

    4

    1

    9

    7

    5

    1

    9

    7

    6

    1

    9

    7

    7

    1

    9

    7

    8

    1

    9

    7

    9

    1

    9

    8

    0

    1

    9

    8

    1

    1

    9

    8

    2

    1

    9

    8

    3

    1

    9

    8

    4

    1

    9

    8

    5

    1

    9

    8

    6

    1

    9

    8

    7

    1

    9

    8

    8

    1

    9

    8

    9

    1

    9

    9

    0

    1

    9

    9

    1

    1

    9

    9

    2

    1

    9

    9

    3

    1

    9

    9

    4

    1

    9

    9

    5

    1

    9

    9

    6

    1

    9

    9

    7

    1

    9

    9

    8

    1

    9

    9

    9

    2

    0

    0

    0

    2

    0

    0

    1

    2

    0

    0

    2

    2

    0

    0

    3

    2

    0

    0

    4

    2

    0

    0

    5

    2

    0

    0

    6

    2

    0

    0

    7

    2

    0

    0

    8

    a

    i

    r

    t

    e

    m

    p

    .

    32.0

    1.5

    SHI ATanom

    Fig.6.RelationshipbetweenSHIanddefinedSHareaairtemperature.Astheairtemperaturelower,theSHIvalueishigher.

    Correlation coefficient is 0.56Correlationcoefficientis 0.56

  • ArcticOscillationandSealevelPressure

    Fig. 7: SLP anomalies during 2 phases of AO. (left) SLP anomalies during positive AO. TheFig.7:SLPanomaliesduring2phasesofAO.(left)SLPanomaliesduringpositiveAO.TheSLPoverSiberianhighareaarerelativelylowerthanaverage.

    (right)SLPanomaliesduringnegativeAO.TheSLPovertheSiberianhighisrelativelyhigherthanaverage.

  • AOIandSHI

    SiberianHighIndexandArcticOscillation(aveNDJFM)

    1.0

    1.5

    2.0

    0.5

    0.0

    0.5

    1

    9

    7

    1

    1

    9

    7

    2

    1

    9

    7

    3

    1

    9

    7

    4

    1

    9

    7

    5

    1

    9

    7

    6

    1

    9

    7

    7

    1

    9

    7

    8

    1

    9

    7

    9

    1

    9

    8

    0

    1

    9

    8

    1

    1

    9

    8

    2

    1

    9

    8

    3

    1

    9

    8

    4

    1

    9

    8

    5

    1

    9

    8

    6

    1

    9

    8

    7

    1

    9

    8

    8

    1

    9

    8

    9

    1

    9

    9

    0

    1

    9

    9

    1

    1

    9

    9

    2

    1

    9

    9

    3

    1

    9

    9

    4

    1

    9

    9

    5

    1

    9

    9

    6

    1

    9

    9

    7

    1

    9

    9

    8

    1

    9

    9

    9

    2

    0

    0

    0

    2

    0

    0

    1

    2

    0

    0

    2

    2

    0

    0

    3

    2

    0

    0

    4

    2

    0

    0

    5

    2

    0

    0

    6

    2

    0

    0

    7

    2

    0

    0

    8

    2.0

    1.5

    1.0

    SHI AOI

    Fig.8.:Winteraverage(NDJFM)SiberianhighindexandAOindex

    ( l i ffi i 0 51)

    SHI AOI

    (correlationcoefficient=0.51)

  • ENSO and SHIENSOandSHI

  • ENSOandSiberianhighENSOENSO

    ElNinoLaNina

    Fig. 9: Effects on weather during boreal winter (for El Nino and La Nina phases). (photo courtesy : http://www.srh.weather.gov/srh/jetstream/tropics/enso_impacts.htm)

  • SiberianAirtemperatureandENSOphases

    Fig.10.(above)Airtemperatureg ( ) panomaliesduringElNioyears(below)airtemperaturesanomaliesduringLaNiayears.

  • SiberianAirtemperatureandSOI

    SOI and Air Temperature anomalies over defined Siberian high area (averaged NDJFM)

    2

    3

    2.0

    3.0

    SOIandAirTemperatureanomaliesoverdefinedSiberianhigharea(averagedNDJFM)

    0

    1

    0.0

    1.0

    a

    n

    o

    m

    a

    l

    i

    e

    s

    (

    0

    C

    )

    p

    e

    r

    t

    e

    n

    t

    h

    )

    2

    1

    2.0

    1.0

    1

    9

    7

    1

    1

    9

    7

    2

    1

    9

    7

    3

    1

    9

    7

    4

    1

    9

    7

    5

    1

    9

    7

    6

    1

    9

    7

    7

    1

    9

    7

    8

    1

    9

    7

    9

    1

    9

    8

    0

    1

    9

    8

    1

    1

    9

    8

    2

    1

    9

    8

    3

    1

    9

    8

    4

    1

    9

    8

    5

    1

    9

    8

    6

    1

    9

    8

    7

    1

    9

    8

    8

    1

    9

    8

    9

    1

    9

    9

    0

    1

    9

    9

    1

    1

    9

    9

    2

    1

    9

    9

    3

    1

    9

    9

    4

    1

    9

    9

    5

    1

    9

    9

    6

    1

    9

    9

    7

    1

    9

    9

    8

    1

    9

    9

    9

    2

    0

    0

    0

    2

    0

    0

    1

    2

    0

    0

    2

    2

    0

    0

    3

    2

    0

    0

    4

    2

    0

    0

    5

    2

    0

    0

    6

    2

    0

    0

    7

    A

    i

    r

    T

    e

    m

    p

    a

    S

    O

    I

    (

    p

    33.0

    .0

    SOI(NDJFMave) ATanom(NDJFMave)

    Fig.11.SiberianairtemperatureandSOI.ThevaluesareNDJFMaveraged.TheairtemperaturedataandSH

    indexwillbetestwithSOIfromhereafter.

  • SLPandENSOPhases

    Fig.12.compositeofSLPanomalies(averagedNDJFM)duringstrongElNioyears(1972,1982,1991,1997).

  • Fig.13.SLPanomalies(averagedNDJFM)duringstrongLaNiayears(1973,1975,1988).

  • Corr. Between SOI and SHI.

    CorrelationofaveragedvalueofSHIandSOI(MAMMarchAprilMay;JJAJuneJulyAugust;SON SeptemberOctoberNovember;DJF December,JanuaryFebCorrelationofaveragedvalueofSHIandSOI(NDJF NovemberDecemberJanuaryFebruary;MAMJ MarchAprilMayJune;JASO JulyAugustSeptemberOcto

    Corr.BetweenSOIandSHI.

    SHI\SOI MAM JJA SON DJFMAM 0.17 0.07 0.12 0.15

    JJA 0.47 0.41 0.36 0.32SON 0.23 0.37 0.51 0.49DJF 0.23 0.10 0.10 0.26

    \SHI\SOI NDJF MAMJ JASONDJF 0.10 0.03 0.13

    MAMJ 0 28 0 28 0 15MAMJ 0.28 0.28 0.15JASO 0.31 0.45 0.43

  • Synoptic and Mesoscale influence.SynopticandMesoscaleinfluence.

    IntroductiontothegeneralclimatologyofMalaysia.g gy y IntroductiontotheWinterMonsooninSouthEastAsia. ColdSurgesandBorneoVortex. SynopticSignature. Observationalcasestudies. WRFSimulations. DiagnosticstudyonimpactofBorneoVortexConvectionson

    the General CirculationstheGeneralCirculations.

    Conclusion.

  • Researchofmygroupinthisarea.

    1.ClimatologyoftheColdSurgeandBorneoVortex(NCEP)

    2 I i Ob i l k2.IntensiveObservationalwork.

    3.ModelsimulationsusingWRF.

  • CLIMATOLOGICAL STUDIES (NCEP)CLIMATOLOGICALSTUDIES(NCEP)

    Formation of Cold Surges and Borneo Vortex isFormationofColdSurgesandBorneoVortexisrelatedtomidlatitudeforcing.

    Development and troughing of the Siberian DevelopmentandtroughingoftheSiberianHighandcoldsurgesinSCS.

  • JJAJJA

    ND

    JFJF

  • A case study ofA case study of CS and BVBefore Surge

    A l i f 00 UTC (t l ft) 500 hP h i h i h i ht [i dk t 60Analysis of 00 UTC (top left) 500 hPa hemispheric height [in dkm, at 60-mcontour intervals], (top right) hemispheric mean sea level pressure [in hPa, withselected pressure values], (bottom right) 925-hPa wind with shaded magnitudes >=20 knots and positive relative vorticity (dashed lines, x 10 -4 sec -1 )

  • During Surge

  • During Surge With Cross Equatorial FlowDuring Surge With Cross Equatorial Flow Intensification

  • Figure 5: Average sea surface temperature (o C) for the period 12 19 January20102010.

  • ColdSurgesandBorneoVortexandDeepOrganisedConvection.

    The meso-scale to local scale interactions between wind, sea and topography

  • Driving Force of the Study of CSDrivingForceoftheStudyofCSandBorneoVortexisthe

    developmentofDeepOrganisedand Sustained Convections inandSustainedConvectionsin

    MalaysiaandIndonesia.

  • Borneo Vortex Study.

    09012009 at 0230Z Star dated 18 January 2010

    N 13 J 2009

    State Station 11 Jan

    12 Jan

    13 Jan

    14 Jan

    15 Jan

    16 Jan

    17 Jan

    18 Jan

    19Jan

    20Jan

    21Jan

    Sarawak Kuching 0.2 38.0 190.0

    128.0

    50.0 11.0 60.0 102.0

    0.2 1.0 0.0

    Sri Aman

    0.0 0.0 21.0 6.0 5.0 5.0 21.0 6.0 0.4 25.0

    0.0

    Kapit 5.0 T 25.0 29.0 18.0 0.4 26.0 6.0 T 0.0 0.0Sibu 6.0 60.0 55.0 27.0 9.0 2.0 1.0 19.0 0.0 0.0 1.0Bintulu 0.0 0.2 176.

    083.0 0.6 48.0 5.0 39.0 0.0 0.0 0.0

    Nanyang, 13 January 2009

    Rainfall in mm----- --------------

    8 Jan 9 Jan 10 Jan 11 Jan 12 Jan

    0Miri 0.0 2.0 48.0 95.0 39.0 T 7.0 2.0 0.0 0.0 0.4Limbang 1.0 17.0 32.0 49.0 14.0 1.0 7.0 1.0 0.0 0.0 0.0

    0.3 13.0 48.0 227.0

    27.0 1.0 20.0 0.4 T 0.0 0.0

    0.6 23.0 7.0 32.0 101.0

    6.0 34.0 2.0 T 0.0 0.0

    KUCHING 107 102 187 129 5 SRI AMANI 11 58 86 47 0KAPIT 17 3 10 1 13SIBU 8 3 142 45 23

    Kinabalu 0.6 56.0 2.0 15.0 66.0 11.0 0.0 15.0 0.0 0.0 1.0Kudat 0.0 0.4 14.0 19.0 10.0 34.0 37.0 24.0 2.0 5.0 0.0

    19.0

    3.0 34.0 3.0 17.0 114.0

    31.0 0.0 18.0

    0.0 0.0

    Tawau 1.0 0.0 7.0 48.0 14.0 0.2 8.0 14.0 29.0

    0.0 0.0

  • InteractionswithTopography,WRFStudy

  • Orography of South East Asia

  • CaseStudyoftheBorneoVortexth1120th Jan2010.

  • Intensive Observational Someresults.

    IntensiveObservationalStudiesinNorthofBorneo.

  • Figure 9: Vertical time cross section of wind (kts) and relative humidity. Westerly component winds are plotted in blue. Regions with relative humidities in excess of 80% are shaded in red and below 20% in blue. [Source: station sonde data. Some are missing.]

  • Figure 10a: Vertical profiles of 4-hourly wind vectorsand magnitudes (contours knots) at Kuching fromand magnitudes (contours, knots) at Kuching from(top) 00 UTC 13 January 00 UTC and (bottom) 04UTC 16 January 04 UTC .

  • V in knots

    U knots

    RH

    Figure 10b: Vertical profiles of (top) meridional winds [in knots, with northerlies

  • Case Study of the BorneoCaseStudyoftheBorneoVortex7th15th Jan2009

  • Formation of low level vortexFormationoflowlevelvortex

  • ObservationalStudiesBorneoVortexinKuching.-500

    -800

    -700

    -600

    -300

    -200

    -100

    20 40 60 80-1000

    -900

    -500-50020 40 60 80

    -400

    -800

    -700

    -600

    -800

    -700

    -600

    300

    -200

    -100

    300

    -200

    -100

    20 40 60 80-1000

    -900

    800

    20 40 60 80-1000

    -900

    800

    500

    20 40 60 80

    -400

    -300

    20 40 60 80

    -400

    -300

    -700

    -600

    -500

    -200

    -100

    20 40 60 80-1000

    -900

    -800

    20 40 60 80

    -400

    -300

  • GMS Enhanced IR Imageries on 7 January 2009

    0830 1130 1430

    1730

    Diurnal Cycle of Cloud Cluster

    0530

    2030

    23300230

  • The Impact of the ConvectionTheImpactoftheConvectionassociatedwiththeBorneoVortexonGlobalCirculation.

  • Figure 7a: Averaged 200 hPa velocity potential (contours, 106 m2 s-1 ) and divergent winds (vectors, ms-1 ) ) for the periods (top) 6 10 January 2010; (center) 11 15 January 2010; and (bottom) 16 20 January 2010.

  • Figure 7b: Averaged 200 hPa streamfunction (contours, 106 m2 s-1 ) and rotational winds (vectors, ms-1 ) ) for theperiods (top) 6 10 January 2010; (center) 11 15 January 2010; and (bottom) 16 20 January 2010.

  • Figure 7c: Hadley Circulation (m/s, averaged between 1100 E and 117.50 E) for the periods (top) 6 10 January 2010; (center) 11 15 January 2010; and (bottom) 16 20 January 2010.

  • Figure 7d: Walker-type Circulation (m/s, averaged between 00 N and 100 N) for the periods (top) 6 10 January2010; (center) 11 15 January 2010; and (bottom) 16 20 January 2010.

  • ComparisonbetweenNCEPandECWMF

  • Figure 1a: Averaged 200 hPa streamfunction (contours, 106 m2 s-1 ) and rotational winds(vectors, ms-1 ) ) for the periods (top) 6 10 January 2010; (center) 11 15 January 2010;and (bottom) 16 20 January 2010.

  • Figure 2a: Hadley Circulation (m/s) and relative humidity (%) averaged between 1100 E and 117.50 E) forthe periods (top) 6 10 January 2010; (center) 11 15 January 2010; and (bottom) 16 20 January2010.

  • Figure 2b: Walker-type Circulation (m/s) and relative humidity (%) averaged between 00 N and 100 N) for theperiods (top) 6 10 January 2010; (center) 11 15 January 2010; and (bottom) 16 20 January 2010.

  • Conclusion.1 This talk showed that the initiation of cold surge from the Siberian High is due to1. This talk showed that the initiation of cold surge from the Siberian High is due to

    the push factor i.e. increase of pressure gradient and southward troughing of the Siberian High which is influence by the subtropical jet.

    2. The cold surge is channelled by the topography of land and sea towards the South China Sea (SCS)South China Sea (SCS)

    3. The surge increase the wind velocity over the SCS and the dry subsiding air start to become very moist due to evaporation from the warm sea surface.

    4. The pull factor constitute the monsoon trough or ITZC that is now near Borneo islandisland.

    5. The alignment of the Borneo island and Sumatra/Peninsular and its position across the equator contributed to the formation of a cyclonic vortex known as the Borneo Vortex. There is also a circum-island circulation that contribute to a zone of convergence associated with the Borneo Vortex and a zone of divergence nearof convergence associated with the Borneo Vortex and a zone of divergence near Tawau where a zone of low level diffluence was observed.

    6. This cyclonic vortex ordered the process of deep convection and feed the moist air into the system to sustain rainfall for more than 48 hours.

    7 There is also a diurnal influence of the spatial location of convection as observed7. There is also a diurnal influence of the spatial location of convection as observed earlier by Houze et al.

    8. The deep convection of the Borneo vortex was observed to strengthen the ascending branch of the Hadley Circulation in both Hemisphere and also the E t W t W lk i l tiEast-West Walker circulation.

    9. Via the Hadley Circulation the Borneo Vortex will then feedback into the subtropical jetstream hence completing the cycle.