products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf ·...

37
Chapter 8-II 효소반응 메커니즘 8-1. Transition State Theory> 본 이론은 반응속도가 기질의 기저상태와 전이상태 사이의 에너지 차이인 Gibbs free energy 의 차이의 함수로 표시된다는 이론이다. , [X ] = [X]exp ( -ΔG / RT ) rxn coordinate E reactants products ES EP 이때 전이상태 물질의 분해되는 frequency 가 깨지는 bond 의 vibrational frequency ν와 같다고 가정하면, 의 관계에서 가 된다. : Boltzmann constant (1.381×10 -23 JK -1 ) : Plank constant (6.626×10 -34 JHz -1 ) 그러면 25℃에서 이 된다. 반응물 의 분해가 1 차 반응일 경우 아래와 같은 식이 된다. - (1) = k 1 [X] 그러므로 이 때의 1 차 반응 속도 상수 - (2) 효소의 반응은 Michaelis-Menten equation 으로 주로 아래와 같이 나타내는데 ΔG uncat ΔG cat ΔG 0 X

Upload: others

Post on 25-Jan-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state

Chapter 8-II 효소반응 메커니즘

8-1. Transition State Theory>

본 이론은 반응속도가 기질의 기저상태와 전이상태 사이의 에너지 차이인 Gibbs free energy

의 차이의 함수로 표시된다는 이론이다. 즉, [X≠ ] = [X]exp ( -ΔG≠ / RT )

rxn coordinate

E

reactants

products

ES EP

이때 전이상태 물질의 분해되는 frequency 가 깨지는 bond 의 vibrational frequency ν와

같다고 가정하면,

의 관계에서

가 된다.

: Boltzmann constant (1.381×10-23JK-1)

: Plank constant (6.626×10-34JHz-1)

그러면 25℃에서 이 된다.

반응물 의 분해가 1 차 반응일 경우 아래와 같은 식이 된다.

- (1)

= k1[X]

그러므로 이 때의 1 차 반응 속도 상수

- (2)

효소의 반응은 Michaelis-Menten equation 으로 주로 아래와 같이 나타내는데

ΔG≠uncat

ΔG≠cat

ΔG0

X≠

Page 2: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state

E + S ES E + P

여기에서 kcat 는 (2)식의 k1 과 매우 유사한 성질을 가짐을 알 수 있다. 그러므로 효소

반응도 유기 화학에서의 촉매 반응과 유사함을 알 수 있으며, homogeneous catalyst 의

촉매 반응과 같이 효소 반응은 아래와 같은 메카니즘에 의해 일어남이 알려져 있다.

○1 specific acid(H+), base(OH-) catalysis

② general acid, base catalysis

③ electrostatic catalysis, metal

ion catalysis

④ covalent catalysis

예) General base catalysis

General acid catalysis

Ks kcat

Page 3: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state

1) General acid-base catalysis.

Definition: 반응속도가 base의 농도에 비례하여 증가한다(변한다).

kobs= 2nd order rate const.

BrÖnsted Eqn : efficiency of acid-base catalysis

Log k2 = A + β*pKa, log k2 = A-α*pKa

β : BrÖnsted β value

measures the sensitivity of the rxn to the pKa of the

conjugate acid of the base

α : in acid catalysis

usually o < α, β < 1

Note:

0= means no transfer of a proton

1= means complete transfer of a proton

Ex) ester hydrolysis β ≈ 0.3~0.5

Page 4: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state

“ In general, the stronger the base, the better the general-base

catalysis; the stronger the acid, the better the general-acid

catalysis.”

즉, “ pH와 pKa를 비교하여 catalyst의 (즉 acid 혹은 base의)

ionization state가 반응을 하는데 있어 매우 중요하다.”

2) Electrostatic catalysis

E = e1*e2/(D*r), where, D=dielectric const

- enzymes stabilize polar transition states better than water does,

because the enzyme has dipoles that are kept oriented toward the

charge, whereas water dipoles are randomized by outer solvation

shells interacting with bulk solvent.

Page 5: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state

- enzyme plays an important role for substrate solvation

- electrostatic interactions are much stronger in organic solvents than in

water because of lower dielectric const.

3) Metal ion catalysis

- electrophilic catalysis, stabilizing the negative charges

CRO

NHR'

Zn2+

CRO

NHR'RO

Zn2+

RO-

- 104~106 rate enhancement factor

Ex) hydrolysis of glycine ethylester

Co3+ coordinated rxn. 2×106 fold 증가.

- Metal ion becomes a source of OH- ions at neutral pH

Ex) pKa of Cobalt-bound water molecule

(NH3)5Co3++H2O (NH3)5Co2+OH + H+

pKa=6.6

pKa of H2O = 14.7, so that the difference is ca. 8 units.

But, Co-bound OH group is only 40 times less reactive than the

free OH- in catalyzing the hydration of CO2.

∴ becomes Metal-bound H2O is the most effective for nucleophilic

attack.

Ex) carbonic anhydrase

E-Zn2+

OH

C OO E-Zn2+ + HCO3-

Page 6: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state

즉, combination of i) a metal-bound hydroxyl group and ii) an

intramolecular reaction provides the largest rate enhancement.

4) Covalent catalysis.

- structure-reactivity relationships

- Electrophilic catalysis: Stabilization of an electron(negative charge)

Ex) i) Schiff base formation,

ii) Pyridoxal phosphate,

iii) Thiamine pyrophosphate

- Nucleophile catalysis:

Ex) i) serine hydroxyl

ii) thiol protease, lipase, alkaline phosphatase

iii) imidazole of histidine

A. nucleophilic catalysis

ex) nucleophilic attack at the carbonyl group.

model system: nucleophilic attack on ester synthesis

increases with i) e- withdrawal in the acyl portion

ii) e- withdrawal in the leaving group

iii) increasing basic strength of the nucleophile

반응의 e- withdrawal 및 donation에 대한 민감도를 정량적으로 측

정하기 위해서는 rate const(2차 반응속도상수) term logk2 와

nucleophile 의 pKa를 general-base catalysis처럼 plot할 수 있다.

logk2=A+β pKa :직선관계

이로부터 linear free energy relationship 이 성립함을 알 수 있다.

∵ k2 = fn exp (-∆G≠/RT) = (kT/ h) exp(-∆G≠/RT)

또한, -logKa(=pKa) 는 equilibrium const로 ∆G≠ 와 비례관계가 있

음을 알 수 있다.

∴ logk2=A+βpKa는

① Gibbs energy of activation of bond formation with carbonyl

carbon

Page 7: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state

② Gibbs energy of transfer of a proton to the nucleophile

의 비례관계라고 볼 수 있다. : relationship b/w the nucleophilicity

of a nucleophile and its basic strength

B. Hammett eqn : alternative way of plotting data for aromatic

compounds. (refer to BrÖnsted eqn)

(pKa)x = (pKa)o –ρδx

Ex) ionization of phenol.

δx (substituent const): measure e- donating( - values) or withdrawing( +

values) power of the substituent in a benzene ring. It influences pKa.

ρ(constant of proportionality)

혹은 logkx =logko + ρδx 라고 쓸 수도 있다.

Ex) alkaline hydrolysis of phenylacetate

∴ BrŐnsted and Hammett plots are equivalent.

즉 β or ρ : sign & magnitude of this value are an indication of the charge

developed in the transition state.

Ex) acyl transfer from the alcohol to the amine,

R3N + CH3 COEt

OCH3 C

OEt-δ

O-δ

R3N TS

i) In the case of tertiary amine attack on esters of very basic alcohol

β=1.6-1.7, acetyl group is more e- withdrawing than the proton.

Page 8: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state

Ref.) H(proton) β=1.0

-1.5 < β value < 1.5

variation of nucleophile(amine)’s pKa

variation of alcohol(-OEt)

+ CH3 COAr

OCH3 C

OAr

O-δ

RO TS

RO-

ii) rxn of basic nucleophiles with esters containing activated leaving

group β=0.1-0.2

-0.1~-0.2 < β < 0.1~0.2

[variation of leaving group] [variation of nucleophile’ pKa]

“즉, 이를 종합해보면 β is a measure of the charge formed in the

transition state rather than of the extent of bond formation” 이는 특히

acid-base catalysis 로 인해 transition state 에 형성된 charge를

neutralize할 경우는 β 값과 extent of bond formation 과 관계가 없다.

그러나 일반적으로는 charge 와 bond formation 은 연결되어 있어 bond

formation 정도의 측정값이기도 하다.

C. Factors determining nucleophilicity and leaving group ability

- In general, the magnitude of general acid-base catalysis depends

only on substrate’s pK value, and independent of chemical their

nature.

- However, nucleophilic reactivity depends markedly on the nature

of the reagents.

-

In the case of nucleophilic reaction:

i) basic strength reflects nucleophilicity

Page 9: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state

a) NH2, -S- > -O-

b) 두개의 electronegative atom이 붙어있는 경우는 pKa로 예상되는

값보다 more reactive- called “α effect”

NH2OH, NH2NH2, NH2CONHNH2, HOO- and CH3OO-

ii) ease of expulsion of a group

- depends both on its pKa and its state of protonation

- decrease in basic strength increase in the ease of expulsion

예) Acetate > p-nitrophenol & phosphate (pKa=4.76 <pKa=7) > OH

iii) nucleophilic reactions with saturated carbon

- attack of a thiol on the methyl carbon of S-adenosylmethionine

(그림)

not a normal bond, 이 경우는 large polarizability가 더 중요.

예) S, I

8-2 Why does Enzyme dramatically enhance Rxn rates?

이와 같이 화학반응과 효소 반응이 다른게 하나도 없다면 도대체 효소는 어떻게

화학 반응에 비해 kcat 값이 매우 큰 것일까? 이에 대한 해답은 두 가지 정도로 나누어 볼

수 있는 데

1) 첫째로는 효소 반응이 대부분 intramolecular catalysis 이기 때문에 반응 참여 관능기의

effective concentration 을 증가시키는 역할을 하기 때문이다. 이와 같은 effective

concentration 의 증가는 intramolecular 반응이 intermolecular 반응에 비교해 translation

및 rotational entropy 의 감소로 인한 효과만큼 이라고 생각할 수 있다. 즉 아래 반응의 경우

Page 10: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state

i) A + B AB≠ AB

ii) A-B AB≠ A-B

ⅱ) 의 반응과 동일한 반응 속도를 얻기 위해 ⅰ)반응에서 A 의 농도가 6×109M 정도가

되어야 함을 보면 이해할 수 있다.

2) 둘째로는 효소의 경우 효소-기질 복합체의 전이 상태가 효소와의 구조적

complementarity(보완성)를 갖는 성질을 통해 효소와 기질의 binding energy 를 촉매 작용에

매우 유효 적절하게 사용하여 활성화 에너지(activation energy)를 효과적으로 낮출 수 있기

때문이다.

A. Intramolecular catalysis

- Enzyme rxn always becomes intramolecular reaction, then it increases

effective concentration of substrates

Intramolecular catalysis ~ first-order kinetics

Intermolecular catalysis~(general acid-base catalysis) 2nd order kinetics

Ex) hydrolysis 반응의 경우 intramolecular rxn rate를 얻기 위해 약 13M

상당의 external base가 필요.

- Entropy changes: The effect of high effective S concentration of

intramolecular group can be explained by the entropy loss term in

transition state theory.

Entropy(ΔS) = Σ translational, rotational, internal entropies

i. high translational entropy, ≅ 120J/deg/mol, 40kJ/mol at 25℃

ii. rotational entropy, ≅ 120J/deg/mol

보통 mass(분자량)에 대한 영향은 매우 낮다.

iii. low vibrational entropy

Note: 그러나 translational entropy의 경우 분자가 차지하는 volume 에

비례하여 증가.

Page 11: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state

∴ low volume = low entropy

-When two molecules become one molecule,

2 X (3 degrees of translational freedom and 3 degrees of rotational

freedom) will lose 3 degree of translational & rotational freedom,

대신, internal vibrational and rotational entropy의 획득으로 인해 약

간 상쇄됨.

Ex) In the case of S= 1M,

The entropy loss due to the loss of internal rotation energy

= 190J/deg/mol

55~59kJ/mol at 25℃, and if the soln is dilute, the loss will be

greater.

상기 예를 exp(∆S≠/R) 에 대입하면 6×109 배의 차이가 있음.

이를 2차반응과 1차반응의 분자수 차이에 의한 양으로 보면

maximum effective conc ≅ 6×109M 임.

B. Enzyme must be complementary to the reaction transition state not the substrate

- Binding energy offsets the activation energy, lead to lower a net activation energy

(refer to Fig.1 )

- Utilization of E-S binding energy in catalysis

ΔGT‡ = ΔG‡ (energy required for unfavorable bond making and breaking)+ ΔGS(favorable binding

energy)

k1(=kcat/KM)= (kt/h)exp(- ΔGT‡/RT)

- Binding energy to form [ES]:

i. Entropy reduction---proper arrangement of substrates to react rate

enhancement

Page 12: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state

ii. Solvation shell--- desolvation of the substrate by replacing water-substrate

interactions to enzyme-substrate interactions

iii. Distortion of substrate---Thermodynamical compensation by binding energy

iv. Need for proper alignment of catalytic functional groups---Induced fit

<그림1>

Page 13: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state

8-3. Enzyme Kinetics

1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1)

Steady state approximation: (정의) rate of formation is balanced by its rate of destruction

Assumption : 1) The fomation of ES complex is rapid and reversible.

2) The dissociation of EP is fast and can be ignored in the forward rxn.

Note: 보통 steady state 를 가정하고 효소반응 속도를 측정한다.

(e.g. 초기 substrate 농도를 large excess 로 하여 intermediate 농도가 steady state 까

지를 기다려서 reaction rate 를 재면 시간에 따라 큰 변화가 없다)

E + S ES E + P

: equilibrium approach

v = kcat[ES] [E] = [E]o – [ES]

Ks ≒ Km : dissociation constant of enzyme-substrate complex

2) Briggs-Haldane equation ( )

Steady state approximation

Ks kcat

Page 14: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state

When k2>>k-1, KM > Ks, k1 = kcat/KM

Diagnostic test of BH kinetics 107< k1(= kcat/KM )< 108(sec-1M-1),

3) M-M 식에서의 상수

i) 정의 : turnover number, 기질분자가 효소의 활성 부위당, 단위시간당

생성물로 전환되는 최대수, unit=[sec-1]

ii) 정의: 겉보기 평형상수 (혹은 겉보기 해리 상수), unit=[M]

iii) 정의: specificity constant, unit = [M sec-1]

When S≪Km, M-M 식은 로 된다. 여기서 kcat/Km 은 겉보기

2 차속도상수이다. 즉, 이 상수로 free enzyme 과 기질의 반응속도를 나타낼수

있다. 왜냐하면 낮은 기질의 농도에서는 (S≪Km, [E]≈[E0]) 이므로 v

=(kcat/Km)[E0][S] 로 사용할 수 있다. 또한 이식은 어떤 기질의 농도에서도

Page 15: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state

성립함을 증명할 수 있다. 그러므로 보통 효소의 성질을 비교할 때는 이

상수를 비교해서 우위를 결정한다.

8-4. How do we measure Rate Constants?

1) Lineweaver-Burk plot

에서

slope= Km/Vmax, x intercept=-1/Km , y

intercept=1/Vmax

Advantage: V vs. [S] easy to read it.

Defects: compressing the data points at high substrate concentrations into a small region

and emphasizing the points at lower concentrations

Page 16: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state

2) Eadie and Hofstee plot

Slope=-Km, x intercept=Vmax/Km, y intercept=Vmax

3) Eisenthal and Cornish-Bowden plot

이 식에서 볼 때, S 및 V 가 일정할 때, Km 에 대한 Vmax 의 plot 은 선형식이다.

Km=0, Vmax=V 일 경우,

Vmax=0, Km=-S 일 경우

[S]

vv*max

v1

vn

S1[S]nK*M

Page 17: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state

8-5. Haldane relationship for Reversible Rxns.

- Compare the kinetics of the forward and backward rxns.

S P

k1 k2

S + E ES/EP P + E

k-1 k-2

i) forward : vf = (vSmax[So])/ (Km

s + [So]): initial velocity in the forward direction

Kms = (k-1 + k2)/k1

ii) reverse : vb =(vPmax[Po]) /(Km

p+[Po]) : initial velocity in the backward direction

Kmp = (k-1 + k2)/k-2

relationship b/w kinetic consts and equilibrium consts

At equilibrium

k-1[ES] = k1[ES][S] [ES]/[E] = k1[S]/ k-1

k2[ES] = k-2[E][P] [ES]/[E] = (k-2/ k2 )[P] = (k1/k-1) [S]

그러므로, Keq = [P]/[S] = (k 1 * k2)/( k-1* k-2)

그런데, vsmax =k2[Eo] and vp

max = k-1[Eo],

So that , vSmax / vp

max = ( k2/ k-1)

In addition , Kms / Kmp = {(k-1 + k2)/k1} /{k-2 /(k-1 + k2)} = k -2/ k1

그러므로, Keq = (k1*k2)/( k-1*k-2)

= { vsmaxKm

p / vpmaxKm

s}= {(kcat/Km)s /(kcat/Km)p } This is called “Haldane relationship for reversible reaction”

Page 18: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state

Keq= fixed by free energies of the reactant and product,

“kcat and Km change at the same time.”

8-6. Kinetic expressions of Enzymes for Competing substrates

1) An alternative formulation of the M-M eqn.

Km = [E][S]/ (Σ [ES] ), Σ ES : sum of all bound enzyme = [E][S] / [ES] (1) if only one intermediate is present.

V = kcat [E]0 [S] /( KM+[S]) put eq’n (1) into the above Eqn. where, Vmax =kcat [E]0

= kcat[E]0[S]/ {([E][S]/ [ES])+ [S]} = kcat[E]0[S][ES]/{ [E][S] +[S][ES]} = kcat[E]0[S][ES] / {[S]([E] +[ES])} = kcat[E]0[ES]/ [E]0

V = kcat[ES] = {(kcat [E][S])/Km}

-easy to use and rapidly calculating the ratio of the rxn rate

Page 19: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state

2) Specificity for competing substrates kB EB

B E kA EA d[A] /dt = vA = (kcat/Km)A [E][A] d[B] /dt = vB = (kcat/Km)B [E][B] (vA / vB ) = {( kcat/Km )A[A]}/ {( kcat/Km )B[B]}

Specificity is determined by the ratio of kcat/Km, and not by Km alone. Since kcat/ KM is not affected by (1) non-productive binding, nor by (2) accumulation of intermediates, these phenomena do not affect specificity.

A

Page 20: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state

8-7. Enzyme Inhibitions

Page 21: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state

1). Competitive inhibition

- inhibitor 와 기질이 active site 에 대해 경쟁적임.

-Binding to active site

Vo =Vmax [S] / (αKm + [S]),

where α =( 1 + [I] / KI ), KI = [E] [I] / [EI]

Increase in apparent Km by α

No change in Vmax

Page 22: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state

2) Uncompetitive inhibition

- inhibitor 가 ES complex 를 이룰 경우에만 반응하며 효소자체(E)일 경우는 결합하지 않음.

-Binding only to ES complex at a site distinct from the active site

Vo =Vmax [S] / (Km + α’ [S])

α’ = (1 + [I] / K’I ), K’I = ([ES] [I] / [ESI])

Decrease in Vmax : Vmax / α’, Decrease in apparent Km

Page 23: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state

3) Noncompetitive inhibition( or Mixed inhibition)

- inhibitor 와 기질이 동시에 active site 에 결합함.

- Binding to either E or ES at a site distinct from the active site

Vo =Vmax [S] / (α Km + α’ [S])

α = α’ , affects Vmax but not Km

Page 24: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state
Page 25: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state
Page 26: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state

v/[S]

v

v/[S]

v

v/[S]

v

1/[S]

1/v

1/[S]

1/v

1/[S]

1/v

(a) (b)

Competitive

Uncompetitive

Noncompetitive

Page 27: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state
Page 28: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state
Page 29: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state
Page 30: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state
Page 31: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state

8-8. Multisubstrate system

Ref.) Irwin H. Segel, Enzyme Kinetics(1975), John Wiley and Sons

A. 예)

① ping-pong bi-bi mechanism

E EE-AX E-XA

AX A B BX

EX E-XB E-BX

이 경우는 효소의 한 개의 결합부위에서 반응이 일어나는 경우임.

② random-order mechanism

보통 ternary complex 를 형성하고 두 개의 다른 결합부위를 가지고 있는 경우.

E + AX E-AX

E-AX-B

EBE + B

+B

+AX

EA-BX

EA-BX

-A E-BX

E + A

E + BX

③ ordered mechanism (예: ordered Bi-Bi)

보통 ternary complex 를 형성하는 경우임.

E EEA

A PB Q

EAB-EPQ EQ

B. Steady state kinetics

multisubstrate 의 경우도 한 개의 기질농도를 일정하게 유지하고 나머지 다른 기질에 대해

M-M equation 을 따르는 식으로 변환할수 있음을 알 수 있다.

<random bi-bi>인 경우를 예를 들어 보면

Page 32: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state

E+A+B

EA + B

EB+A EAB EPQ

EP + Q

P+EQ

P+E + Q

KA

KB

αKA

αKB

kp

k-p

βKQ

Kp

βKp

KQ

만약, 속도결정단계가 EAB 가 EPQ 로 변하는 step 이라면 P,Q 가 아직

생기지 않았다고 가정할 때, 초기 반응속도는 라고 생각할 수 있다. 이때,

이며 이때,

이므로

두 개의 기질중 를 고정하고 를 변화시킬 때,

상기한 속도식을 정리하면 M-M 식과 같이 쓸수 있다.

이때,

Page 33: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state

이 식에서 볼 때, 의 농도가 saturation 되었을 때, 이고 임을 알 수 있으며 의 농도를

고정하고 의 농도를 변화시키면 L-B plot 을 그릴 수 있다. (그림 2 참조)

이와 같이 ordered Bi-Bi 및 ping-pong Bi-Bi 식을 구하면 아래와 같다.

ordered Bi-Bi:

ping-pong Bi-Bi:

Page 34: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state
Page 35: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state

<Extra Advanced>

3) Intermediates occurring after ES : KM < KS

Ks K K’ k4

E+S ES ES’ ES’’ E+P

Slow

[ES’] = K[ES] and [ES”] = K’[ES’]

Km= Ks

1+ K +KK’

kcat = k4KK’

1+ K +KK’

ex) chymotrypsin – catalyzed hydrolysis of esters and amides

Ks k2 k3

E+S ES EAc E

P1

EAc: acyl enzyme

υ= [E]o[S] k2k3/(k2+k3) Ksk3/(k2+k3) +[S]

Km = Ks k3 kcat = k2k3 k2+k3 , k2+k3

if k3<<k2 , kcat = k3

① leaving group activation

A. Electrophilic catalysis

(i.e. Stabilization of an electron(negative charge))

i) Schiff base formation

ii) Pyridoxal phosphate

iii) Thiamine pyrophosphate

B. Nucleophile catalysis ~ ① serine hydroxyl or

Page 36: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state

② thiol protease, lipase, alkaline

phosphatase

③ imidazole of histidine

i) shiff base

예) i) acetoacetate decarboxylase

acetoacetate acetone + CO2

ii) Aldolase and trand aldolase

ii) PLP. ~ coenzyme phridoxal phosphate

- pyridine ring in the schiff base acts as an electron sink stabilize a

negative charge.

a. removal of α-hydrogen

cause

i)racemization

ii)transamination shiff base of an α-ketoacid

iii)β-decarboxylation amino acid가 aspartate일 경우

iv)interconversion of side chains

b. α-decarboxylation

iii) Thiamine pyrophosphate

Page 37: products rxn coordinatecontents.kocw.or.kr/document/wcu/2010/11/02/04/11_02_04_byunggee_08.pdf · 1) Michaelis-Menten equation (experimental based mechanism, kcat≪ k-1) Steady state

- positive charge on the nitrogen promotes the ionization of the C-2

carbon by electrostatic stabilization.

- Hydroxyethylthiamine pyrophosphate 의 반응을 이용해

② decarboxylation

pyr + TPP CH3CHO+ CO2 + TPP

③ C-C bond formation and breaking

D-xylulose5-ⓟ + D-ribose-5ⓟ

------ D-sedoheptulose-7ⓟ + D-glyceraldehyde 3-ⓟ

transketolase