production logging - active...

13
Production Logging Flowmeter Survey Solution Guide _____________________________________________________ Applying Slippage & Liquid Holdup equations, solve for Q oil and Q water at 6130 ft and 6216 ft @ 6130 ft, the % ratio of flow is about 100 % , or 9190 BFPD @ 6216 ft, the % ratio of flow is about 13.1 % or about 0.131 x 9190 = 1204 BFPD WATER HOLDUP = Yw = (ρt - ρo) / (ρw - ρo) where ρ is fluid density : t = local from log, w = water; o = oil @ 6130 ft, water holdup = (0.755 - 0.670) / (1.020 - 0.670) = 0.243 @ 6216 ft, water holdup = (0.905 - 0.670) / (1.020 - 0.670) = 0.671 From graph, @ 6130 ft slippage velocity Vs = 20 ft/min for (ρw -ρo) = (1.02 – 0.67) @ 6216 ft slippage velocity Vs = 12.1 ft/min for (ρw -ρo) = (1.02 – 0.67) To get Q in BPD, Pseudo-Area = 1.78 (ID csg 2 - OD tool 2 ) = 1.78 (6.184 2 - 1.6875 2 ) = 63.0 @ 6130 ft : Qo = (1 - Yw) (Qt +Vs A Yw) Qo = (1 - 0.243) (9190 + (12.1 63.0 0.243)) = 7097 BOPD Qw = 9190 - 7097 = 2093 BWPD @ 6216 ft : Qo = (1 - 0.671) (1204 + (20.0 63.0 0.671)) Qo = 674 BOPD Qw = 1204 - 674 = 530 BWPD Conversion factor 1.78 resolves units COPYRIGHT

Upload: hoangkhuong

Post on 06-May-2018

245 views

Category:

Documents


9 download

TRANSCRIPT

Page 1: Production Logging - Active Learnercloud1.activelearner.com/contentcloud/portals/hosted3/PetroAcademy/... · 1 Production Logging Threshold Velocity _____ An actual cased‐hole log

Production Logging Flowmeter Survey Solution Guide

_____________________________________________________

Applying Slippage & Liquid Holdup equations, solve for Qoil and Qwater at 6130 ft and 6216 ft

@ 6130 ft, the % ratio of flow is about 100 % , or 9190 BFPD

@ 6216 ft, the % ratio of flow is about 13.1 %

or about 0.131 x 9190 = 1204 BFPD

WATER HOLDUP = Yw = (ρt - ρo) / (ρw - ρo) where ρ is fluid density : t = local from log, w = water; o = oil

@ 6130 ft, water holdup = (0.755 - 0.670) / (1.020 - 0.670) = 0.243

@ 6216 ft, water holdup = (0.905 - 0.670) / (1.020 - 0.670) = 0.671

From graph, @ 6130 ft slippage velocity Vs = 20 ft/min for (ρw -ρo) = (1.02 – 0.67)

@ 6216 ft slippage velocity Vs = 12.1 ft/min for (ρw -ρo) = (1.02 – 0.67)

To get Q in BPD,

Pseudo-Area = 1.78 (IDcsg2 - ODtool

2) = 1.78 (6.1842- 1.68752) = 63.0

@ 6130 ft : Qo = (1 - Yw) (Qt +Vs A Yw)

Qo = (1 - 0.243) (9190 + (12.1 63.0 0.243)) = 7097 BOPD

Qw = 9190 - 7097 = 2093 BWPD

@ 6216 ft : Qo = (1 - 0.671) (1204 + (20.0 63.0 0.671))

Qo = 674 BOPD

Qw = 1204 - 674 = 530 BWPD

Conversion factor 1.78 resolves units

COPYRIGHT

Page 2: Production Logging - Active Learnercloud1.activelearner.com/contentcloud/portals/hosted3/PetroAcademy/... · 1 Production Logging Threshold Velocity _____ An actual cased‐hole log

Production Logging Flowmeter Survey Interpretation

______________________________________________________________________

COPYRIGHT

Page 3: Production Logging - Active Learnercloud1.activelearner.com/contentcloud/portals/hosted3/PetroAcademy/... · 1 Production Logging Threshold Velocity _____ An actual cased‐hole log

1

Production Logging Threshold Velocity

______________________________________________________________________

An actual cased‐hole log has been filed without interpretation during summer of 1983. Several years afterwards, the same well is showing a declining performance. An assessment history of the well past performance  is needed to diagnose the current status from observations and possibly prepare remedial action. 

The essential data available from the old log are copied in the next pages. In 1983, CPI logs were not available. Make up for the backlog of data gathering. 

Browse through data and answer the following questions. 

Questions 1 – Is this well located onshore or offshore? Offshore 2 ‐ Is this well vertical or deviated? Deviated 3 – What is the status of this well? Water Injection well 4 – What are the depths MD of the perforated zones in this well? 3028.5 m – 3048.6 m (Zone CE) + 3053.5 m – 3058.5 m (Zone CT) + 3079.5 m – 3063 m (Zone D1) 5 – What is the total depth TMD of this well? 3096 m 6  –  What  logs  have  been  run?  CFM  (Continuous  Flowmeter),  HRT  (High  Resolution  Thermometer), MAN (Manometer) 7 – Would a Gradiomanometer add value to the information? No, the gradient is known (water injection) 8 – Calibrate tool (use blank chart provided). 9 – Determine threshold velocity. 14.5 fpm 10 – Determine full downhole flowrate in 7” (17.8 cm) casing, if at all possible. 1912 bpd 11 – Determine total flowrate and percentage flowrates per zone. 5008 bpd 12 – Provide comments, conclusions and recommendations. Need to check discrepancy between measured downhole flowrate and surface readings. 

Notes 1 – As seen on the left scale, the logging runs have been performed with depth being measuredin meters, while the blank calibration chart bears tool velocity units in ft/min. 2 – Cross‐check the cable speed indications on the right track of logs. 3 – Whenever flowmeter scale is absent from the right track, assume it to be 0 – 40 RPS.4 – Observe where the recordings have been made by comparing with well completion sketch. 

Page 4: Production Logging - Active Learnercloud1.activelearner.com/contentcloud/portals/hosted3/PetroAcademy/... · 1 Production Logging Threshold Velocity _____ An actual cased‐hole log

2

COPYRIGHT

Page 5: Production Logging - Active Learnercloud1.activelearner.com/contentcloud/portals/hosted3/PetroAcademy/... · 1 Production Logging Threshold Velocity _____ An actual cased‐hole log

3

COPYRIGHT

Page 6: Production Logging - Active Learnercloud1.activelearner.com/contentcloud/portals/hosted3/PetroAcademy/... · 1 Production Logging Threshold Velocity _____ An actual cased‐hole log

4

COPYRIGHT

Page 7: Production Logging - Active Learnercloud1.activelearner.com/contentcloud/portals/hosted3/PetroAcademy/... · 1 Production Logging Threshold Velocity _____ An actual cased‐hole log

1

Production Logging Logging Anomalies in Deviated Hole

______________________________________________________________________

A high deviation well has been drilled, penetrating a  thick  carbonate  reservoir with multiple sub‐zones. 

Following  the  results of Open Hole Logs,  the  reservoir was perforated with 4” casing guns at 4 spf. 

After  an  acid  job,  clean  up  and  flow  test,  the  well  was  shut‐in  for  28  hours  and  the  PCT (Production Combination Tool) was run. The tool was consisting of: 

‐ FBS Continuous Flowmeter ‐ GM Gradiomanometer ‐ MAN Manometer ‐ HRT Thermometer 

The well completion sketch is attached in the data section. 

A composite log is illustrated. Over the zone, the following surveys were performed. 

WELL SHUT‐IN ‐ Flowmeter: 6 passes UP, 6 passes DOWN ‐ Gradiomanometer : 2 passes UP, 2 passes DOWN ‐ Manometer: 2 passes UP, 1 pass DOWN ‐ Temperature:  1 pass UP, 2 passes DOWN ‐  

WELL FLOWING ‐ Flowmeter: 6 passes UP, 6 passes DOWN ‐ Gradiomanometer: 2 passes UP, 2 passes DOWN ‐ Manometer: 2 passes UP, 2 passes DOWN ‐ Temperature: 2 passes UP, 1 pass DOWN 

FLOWMETER IN‐SITU CALIBRATION A zero flow calibration was performed. The zero passes includes the perforated intervals. 

The plot yields all points in good agreement and gives the threshold velocity: Vt = 5 ft/min 

A  close  inspection  of  the  flowmeter  profiles,  not  included  here,  confirms  that  there  is  no apparent internal cross flow while the well is shut‐in. 

COPYRIGHT

Page 8: Production Logging - Active Learnercloud1.activelearner.com/contentcloud/portals/hosted3/PetroAcademy/... · 1 Production Logging Threshold Velocity _____ An actual cased‐hole log

2

GRADIOMANOMETER The gradiomanometer (see log) pinpoints the borehole water contact (OWC) at 8770 ft. The downhole density reading for the oil column is 0.535 g/cc (uncorrected). 

THERMOMETER The temperature recordings show that the well has not been shut‐in long enough to reach back to geothermal gradient. 

Production  also  appears  to  be  at  a  temperature  higher  than  geothermal  and  a  “hot  sink” appears to exist from 8770 to 8790 ft. 

FLOWMETER FULL FLOW @ 8700 ft Flowmeter passes have been recorded, 8 of which are (partly) figured in the data section. The full flow calibration yields a total downhole flowrate above perforations: 

Qtwf = 1780 BPD 

It is immediately apparent that oil is flowing at this point because: 

‐ There is no water production at surface conditions: Qwsc = 0 ‐ The flowing and shut‐in gradio recordings are identical over this interval 

Thus, Qtwf = 1780 BPD 

Given that FVF = Bo = 1.164, we can compute Qosc = 1780/1.164 = 1530 BPD 

which compares favorably with the actual surface production rate, which was estimated to be 1400 BPD during the PCT operation. 

GRADIOMANOMETER The flowing gradio readings reveal that: 

‐ There seems to be some oil production from the lower perforations. ‐ The amplified gradio shows a decrease at 8788 ft. ‐ Up to 8740 ft, the gradio recordings look “noisy”, which is a standard in the case of 

oil bubbling through a standing water column. ‐ The  OWC  has  been  lifted  up  from  8770  ft  to  8735  ft.  Above  this  depth,  the  oil 

bubbles coalesce to single‐phase oil production. ‐ The OWC position in the well is a function of the production rate. 

FLOWMETER CALIBRATION @ 8770 ft The  flowmeter recordings consist of a total of 12 passes, 8 of which are partly reproduced  in the attachments. 

Obviously,  any  readings  obtained  below  the  zero  flow  depth  are  indicative  of  flow  in  the opposite direction to the one that we expect from well observation. 

COPYRIGHT

Page 9: Production Logging - Active Learnercloud1.activelearner.com/contentcloud/portals/hosted3/PetroAcademy/... · 1 Production Logging Threshold Velocity _____ An actual cased‐hole log

3

As this is a production well, flow is, by definition, in the upwards direction. 

A calibration plot of the “anomaly” reveals an apparent example of downflow. The points are all in good agreement, providing reliable calibration lines. 

The standard calculation yields the following values: 

UP passes:    5208 BPD DOWN passes:   4635 BPD 

These values are in relatively good agreement, considering the logging conditions. However, this apparent cross‐flow does not seem to be realistic  

‐ There is no indication of cross‐flow when the well is shut‐in ‐ The reservoir pressure is well known and the possibility of a such a large cross‐flow 

is ruled out. 

CONCLUSION It is known that diphasic flow patterns in highly deviated pipes are anomalous. 

If  a  flowmeter  is  placed  in  such  a  pipe with  inadequate  centralization,  it  is  likely  to  read  a downward flow. 

Since  oil  slippage  increases with well  inclination,  the  apparent  holdup  also  increases.  Thus, quantitative evaluations using standard procedures will lead to erroneous results. 

In this particular case, ‐ Special centralization techniques were used ‐ The flowmeter readings in full flow look normal ‐ The threshold value is realistic ‐ The calculated flow rate compares with the surface value. 

If all  indications point out to good centralization over the full flow zone above perforations,  it seems reasonable to assume that centralization will still be good 50 ft deeper. 

The tool centralization appears good and excentralization is not a cause to reading anomalies. At bottom hole, below  the  level where  the water hold up  recedes  to a  steady‐state value, a flowmeter will is likely to be in error and record turbulence effects and downward flow. 

COPYRIGHT

Page 10: Production Logging - Active Learnercloud1.activelearner.com/contentcloud/portals/hosted3/PetroAcademy/... · 1 Production Logging Threshold Velocity _____ An actual cased‐hole log

4

ZERO FLOW CALIBRATION @ 8700 ft 

COPYRIGHT

Page 11: Production Logging - Active Learnercloud1.activelearner.com/contentcloud/portals/hosted3/PetroAcademy/... · 1 Production Logging Threshold Velocity _____ An actual cased‐hole log

5

 

FLOWMETER CALIBRATION @ 8700 ft

COPYRIGHT

Page 12: Production Logging - Active Learnercloud1.activelearner.com/contentcloud/portals/hosted3/PetroAcademy/... · 1 Production Logging Threshold Velocity _____ An actual cased‐hole log

6

FLOWMETER CALIBRATION @ 8770 ft

COPYRIGHT

Page 13: Production Logging - Active Learnercloud1.activelearner.com/contentcloud/portals/hosted3/PetroAcademy/... · 1 Production Logging Threshold Velocity _____ An actual cased‐hole log

7

CONCLUSION

COPYRIGHT