proceedings of 24th european workshop on thermal … properties enhanced through material...

Click here to load reader

Upload: phamcong

Post on 02-May-2018

219 views

Category:

Documents


2 download

TRANSCRIPT

  • 85

    Appendix F

    Development of numerical tools for design and verification ofablative thermal protection systems

    Marco Giardino Elena Campagnoli(Politecnico of Turin, Italy)

    Gianni Pippia(Sofiter System Engineering, Italy)

    Massimo Antonacci(Thales Alenia Space, Italy)

    24th European Workshop on Thermal and ECLS Software 1617 November 2010

  • 86Development of numerical tools for design and verification of ablative thermal protection

    systems

    Abstract

    In recent years there has been a great collaborative work between Thales Alenia Space Italia and theEnergetic Department of Politecnico of Turin devoted to the study of ablative heat shields. Two differentnumerical tools for the analysis of the behaviour of charring ablative materials have been developedwithin the frame of a co-founded internal research program.The first of these tools, called Ablatherm, is a Matlab R-based code that can be used during the initialdesign phase: it implements a simple model (that uses a very reduced set of material properties), it hasa short case settings time and execution time and it is very flexible (it can be used both through a scriptfile or a Graphical User Interface). This tool was tested using analytical benchmarks and real test casesand is now used by TAS-I for heat shield design.The second tool, still under development, uses the state of the art both for the model and for the toolimplementation, in order to perform rapid, full 3D simulations. This tool, developed on OpenFoamplatform, implementing a more complex model and requiring higher test case setup time and a hugeamount of material data that must be provided for a full run, is mainly intended for final verification ofthe full system configuration. For an intermediate design phase, it is also possible to use this second toolwith a reduced set of parameters.

    24th European Workshop on Thermal and ECLS Software 1617 November 2010

  • 24th European Workshop on Thermal and ECLS Software ESTEC, 16-17 November 2010

    DEVELOPMENTOFNUMERICALTOOLSFORDESIGN ANDVERIFICATION

    OFABLATIVETHERMALPROTECTIONSYSTEMS

    MarcoGiardino

    (Politecnico

    ofTurin,Italy)ElenaCampagnoli

    (Politecnico

    ofTurin,Italy)

    GianniPippia

    (Sofiter

    SystemEngineering,Italy)MassimoAntonacci

    (ThalesAlenia

    Space,Italy)

    24th European Workshop on Thermal and ECLS Software ESTEC, 16-17 November 2010

    Index

    Ablativeheatshields

    Characteristicoftheusedmodels

    1Dmodel

    AblaTherm

    Specifications

    Necessarydata

    Implementation

    Validationvs.CMA

    Validation

    vs.SAMCEFAmaryllis

    3Dmodel

    Specifications

    Necessarydata

    Implementation

    Testcasedefinition

    Testcaseresults

    Validation

    vs.AblaTherm

    Futureworks

    Development of numerical tools for design and verification of ablative thermal protectionsystems 87

    24th European Workshop on Thermal and ECLS Software 1617 November 2010

  • 24th European Workshop on Thermal and ECLS Software ESTEC, 16-17 November 2010

    Ablativeheatshields

    Notreusable.

    Lightweight.

    Adaptabletomissionconstraints.

    Heatinsulationpropertiesenhanced throughmaterialdegradation.

    SuitableforentryvehicleandSRCs.

    24th European Workshop on Thermal and ECLS Software ESTEC, 16-17 November 2010

    Characteristicoftheusedmodels

    1DMODELABLATHERM

    Local1Dassumption.

    Simplemodel.

    Reducedsetofparameters.

    Multilayercapability.

    Extremelylowsetuptimeand executiontime.

    Idealduringinitialdesignphase.

    3DMODEL

    Full3DCartesiansolver.

    Stateoftheartmodel.

    Highnumberofparameters (possibleuseofareducedset).

    Multiplematerialwithin

    thedomain

    Isnottoomuchuserfriendly.

    Relativelylongsetupandruntime.

    Tobeusedforfinal,fullbody simulation.

    88Development of numerical tools for design and verification of ablative thermal protection

    systems

    24th European Workshop on Thermal and ECLS Software 1617 November 2010

  • 24th European Workshop on Thermal and ECLS Software ESTEC, 16-17 November 2010

    1DModel

    Analyticalmodel

    Oneequationmodel(energyconservation)+BC:

    Charringmaterial(Arrheniusequation).

    Internalheatfluxqc

    (t):adiabatic,convectiveand/orradiative

    heatflux.

    Surfaceheatfluxboundarycondition:

    )(),(

    )(,0

    0

    0),(),(

    0

    tqttsxxT

    tqtxxT

    xTtTt

    THxTT

    xtTTc

    w

    c

    p

    heatRecession

    fluxheat radiative

    Surface

    flux External

    Blowingfluxheat

    Net wall00

    sQqqqq carbreceradradconvw

    24th European Workshop on Thermal and ECLS Software ESTEC, 16-17 November 2010

    1DModel

    Necessarydata

    Materialproperties:

    Virginandcharreddensities.

    Arrheniuscoefficients.

    Pyrolysis

    reactionandsurfacerecessionenthalpy.

    Temperaturedependenceofspecificheat,thermalconductivity, surfaceemissivity,bothforvirginandcharredmaterial.

    Heatfluxdata(asfunctionofsurfacetemperature,coldwallevaluation, netvalues).

    Development of numerical tools for design and verification of ablative thermal protectionsystems 89

    24th European Workshop on Thermal and ECLS Software 1617 November 2010

  • 24th European Workshop on Thermal and ECLS Software ESTEC, 16-17 November 2010

    1DModel

    Implementation

    FiniteElementMethod(FEM)discretisation.

    NonlinearNewtonRaphson

    methodforfastandaccuratenonlinearity resolution(surfaceradiation).

    Automaticgridgeneration,withlinearpluslogarithmicspacing;

    formulti layercases,thenumberofelementsperlayercalculatedthrough

    mean

    conductivity.

    Blowing

    evaluation

    atrun

    time.

    Initialsteadystatetemperaturedistributionevaluation.

    ImplementedusingMatlab

    environment.

    Usable

    as

    command

    line

    function

    orthrough

    aGraphical

    User

    Interface (GUI).

    24th European Workshop on Thermal and ECLS Software ESTEC, 16-17 November 2010

    Performedbymeansofcomparisonwithcommercial1Dsoftware(CMA):

    Testcases sizingofasiliconbasedablatorondifferentareasofthe externalsurfaceofareentryvehicle.

    Availablethermalablativepropertieshavebeenimplementedin bothcodes.

    Thermalsimulationextendedinthe1Dsimplifiedcodetothe reproductionoftheconvectiveandradiative

    heatexchangeinside

    thevehicle.

    Thepyrolysis

    heatbehaviourasfunctionofmaterialtemperaturehas

    beenintroducedinAblaTherm.

    W.r.t.CMA,AblaTherm

    doesnotaccountfor:

    Surfacetransportofchemicalenergy.

    Convectivetransferbypyrolysis

    gases:

    Differenceinsizingresultslowerthan

  • 24th European Workshop on Thermal and ECLS Software ESTEC, 16-17 November 2010

    CMA simulation

    AblaTherm

    simulation

    Caseonvehiclereentry.

    Differentmodellingofsurfacethermo chemistry.

    Sizingresults(i.e.shieldthickness)differfor lessthan10%.

    1DModel

    Validationvs.CMA

    24th European Workshop on Thermal and ECLS Software ESTEC, 16-17 November 2010

    -200

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    0 50 100 150 200 250

    1)2)3)4)5)

    -120

    -100

    -80

    -60

    -40

    -20

    0

    20

    40

    60

    80

    0 50 100 150 200 250

    2)3)4)5)

    ComparisonwithsimulationresultsofaMarsentryvehiclefrontshield:

    SHIELDSURFACE

    1) Amaryllis simulation results2) Empty3) AblaTherm

    results, with prescribed heat fluxes correction4) AblaTherm, with ABLAT heat fluxes correction5) AblaTherm, with foam conductivity as function of atmospheric pressure

    T [

    C]

    time

    [s]

    T

    [C

    ]

    time

    [s]

    1DModel

    Validationvs.SAMCEFAmaryllis

    Development of numerical tools for design and verification of ablative thermal protectionsystems 91

    24th European Workshop on Thermal and ECLS Software 1617 November 2010

  • 24th European Workshop on Thermal and ECLS Software ESTEC, 16-17 November 2010

    -50

    0

    50

    100

    150

    200

    0 50 100 150 200 250

    1)2)3)4)5)

    T [

    C]

    time

    [s]

    -120

    -100

    -80

    -60

    -40

    -20

    0

    20

    40

    60

    80

    0 50 100 150 200 250

    2)3)4)5)

    T

    [C

    ]

    time

    [s]

    1) Amaryllis simulation results2) Empty3) AblaTherm

    results, with prescribed heat fluxes correction4) AblaTherm, with ABLAT heat fluxes correction5) AblaTherm, with foam conductivity as function of atmospheric pressure

    ComparisonwithsimulationresultsofaMarsentryvehiclefrontshield:

    ABLATIVE/COLDSTRUCTUREINTERFACE

    1DModel

    Validationvs.SAMCEFAmaryllis

    24th European Workshop on Thermal and ECLS Software ESTEC, 16-17 November 2010

    -50

    0

    50

    100

    150

    200

    0 50 100 150 200 250

    1)2)3)4)5)

    T [

    C]

    time

    [s]

    -4

    -2

    0

    2

    4

    6

    8

    10

    12

    0 50 100 150 200 250

    2)3)4)5)

    T [

    C]

    time

    [s]

    1) Amaryllis simulation results2) Empty3) AblaTherm

    results, with prescribed heat fluxes correction4) AblaTherm, with ABLAT heat fluxes correction5) AblaTherm, with foam conductivity as function of atmospheric pressure

    ComparisonwithsimulationresultsofaMarsentryvehiclefrontshield:

    COLDSTRUCTURE/INTERNALFOAMINTERFACE

    1DModel

    Validationvs.SAMCEFAmaryllis

    92Development of numerical tools for design and verification of ablative thermal protection

    systems

    24th European Workshop on Thermal and ECLS Software 1617 November 2010

  • 24th European Workshop on Thermal and ECLS Software ESTEC, 16-17 November 2010

    3DModel Analitical model

    3equationmodel(energy,solidmassandgasmassconservationequations)+ closureequations(Idealgaslaw,Darcylaw)+BC(Amar,A.J.Modelingof

    OneDimensionalAblationwithPorousFlowUsingFiniteControlVolume Procedure,NorthCarolinaStateUniversity,2006

    ).

    Pyrolysis

    gasinlocalthermalequilibrium.

    Pyrolysis

    energyabsorptionthroughmixtureinternalenergyevaluation.

    Charring

    material(Arrheniusequation).

    Surface

    BCunderdevelopment.

    gg

    g

    V Vgmeshg

    Vgg

    Vg

    Vi

    Vmesh

    Vi

    Vmesh

    VVggg

    V

    MTp

    pKv

    dVmdSnvdSnvdVdtd

    nidVmdSnvdVdtd

    dSnvhdSnTkdSnvhedVdtd

    ,..,1for

    0

    24th European Workshop on Thermal and ECLS Software ESTEC, 16-17 November 2010

    3DModel

    Necessarydata

    Materialandgasproperties:

    VirginandcharredsubdensitiesandArrheniuscoefficientsforeach decompositionreaction,materialcompositioncoefficients.

    Solid:temperaturedependenceofspecificheat,thermalconductivity, surfaceemissivity,bothforvirginandcharredmaterial.Extent

    of

    reactionsdependenceofporosityandgaspermeability.

    Gas:temperaturedependenceofspecificheat,gasmolecularmass andviscosity.

    Formationenthalpyandreferencetemperatureforvirgin,charand gas.

    BC:differentstandardconditions,somespecificunderdevelopment.

    Development of numerical tools for design and verification of ablative thermal protectionsystems 93

    24th European Workshop on Thermal and ECLS Software 1617 November 2010

  • 24th European Workshop on Thermal and ECLS Software ESTEC, 16-17 November 2010

    3DModel

    Implementation

    FiniteVolumeMethod(FVM)discretization.

    ImplementedusingtheopensourceOpenFOAM

    suite.Advantages:

    parallelruninbothsharedanddistributedmemorymachines(MPI protocol,onworkstationorclusters).

    Basedonopensourceplatform(Linux)andopensourcesuite.

    Useunstructuredgrid(complexgeometricshapes,differentcellshapes).

    Gridimportationcapabilities.

    Simplifiedmodelwich

    canrunneglectingthegaseffects(nongasdata needed)

    24th European Workshop on Thermal and ECLS Software ESTEC, 16-17 November 2010

    3DModel

    testcase

    Geometry

    andgrid:10x10cm,100x400cells.

    Boundary

    conditions:

    Northside:time

    variable,uniform

    external

    heat

    flux

    :

    with

    surface

    reradiation;time

    variable

    uniform

    pressure:

    SouthandEastside:adiabatic

    andimpermeable.

    Westside:impermeable,time

    variable

    uniform

    temperature:

    Materialdata:PICA15

    NASATM110440(1997).

    22 1000100100sin611100 mWttettq

    Patetp 200

    52

    KttT 3001000

    sin25002

    94Development of numerical tools for design and verification of ablative thermal protection

    systems

    24th European Workshop on Thermal and ECLS Software 1617 November 2010

  • 24th European Workshop on Thermal and ECLS Software ESTEC, 16-17 November 2010

    3DModel

    Results

    1

    Performances:solution

    time

    ona8coreworkstation

    1400s.

    Following

    moviedescription:

    Backgroundcolor:materialdensity(red

    max,blue

    min).

    Colored

    lines:isotemperaturelines,colored

    with

    temperaturescale; lines

    at[(300:20:400)(600:200:3800)]K.

    Vectors:oriented

    using

    pyrolysis

    gasvelocity

    andcolored

    using pyrolysis

    gasvelocity

    magnitude.

    24th European Workshop on Thermal and ECLS Software ESTEC, 16-17 November 2010

    Development of numerical tools for design and verification of ablative thermal protectionsystems 95

    24th European Workshop on Thermal and ECLS Software 1617 November 2010

  • 96Development of numerical tools for design and verification of ablative thermal protection

    systems

    Slow Normal Fast Play/Pause Stop

    24th European Workshop on Thermal and ECLS Software ESTEC, 16-17 November 2010

    3DModelValidationvs.AblaTherm

    Thesolutionsobtainedusingthetwocodesarecompared.Toperformthe comparison,thefollowingstepswereperformed:

    Ablatherm

    runwasperformedneglectingsurfacerecessionand applyingthesameprofilefortheheatflux(withouttheblowing correction).

    3Dcoderun:temperaturesolutionextractedontheEastsideofthe domain(negligible2Deffects).

    24th European Workshop on Thermal and ECLS Software 1617 November 2010

    video2d.swfMedia File (application/x-shockwave-flash)

  • Development of numerical tools for design and verification of ablative thermal protectionsystems 97

    24th European Workshop on Thermal and ECLS Software ESTEC, 16-17 November 2010

    3DModel

    Validation

    vs.AblaTherm

    Slow Normal Fast Play/Pause Stop

    24th European Workshop on Thermal and ECLS Software 1617 November 2010

    videocomparison.swfMedia File (application/x-shockwave-flash)

  • 24th European Workshop on Thermal and ECLS Software ESTEC, 16-17 November 2010

    3DModel

    Validation

    vs.AblaTherm

    24th European Workshop on Thermal and ECLS Software ESTEC, 16-17 November 2010

    Futureworks

    Finalization

    of

    the3Dcode:

    surface

    recession

    models

    implementation.

    Different

    surface

    heat

    flux

    Boundary

    Conditions

    implementation.

    Studies

    for

    integration

    with

    ESATAN.

    98Development of numerical tools for design and verification of ablative thermal protection

    systems

    24th European Workshop on Thermal and ECLS Software 1617 November 2010

  • 24th European Workshop on Thermal and ECLS Software ESTEC, 16-17 November 2010

    ANYQUESTIONS?

    THANKSFORYOURATTENTION.

    Development of numerical tools for design and verification of ablative thermal protectionsystems 99

    24th European Workshop on Thermal and ECLS Software 1617 November 2010

  • 100

    24th European Workshop on Thermal and ECLS Software 1617 November 2010