problem28 - crashwhite ·...

48
Problem 28.1 The EMF of a ba4ery measures the inherent powerproducing, electric field generaCng character of the ba4ery. When current is drawn from the ba4ery (which is analogous to current passing through the ba4ery), the voltage difference across the ba4ery’s terminal is such that 1.) ε R i ΔV EMF = ε ΔV R = iR ΔV terminal = ε iR ΔV terminal = V terminal = ε iR 11.6 V ( ) = 15 V ( ) iR i = 3.4 V ( ) R The power raCng is: P = i V terminal 20 W ( ) = 3.4 V ( ) R ! " # $ % & 11.6 V ( ) R = 1.97 Ω

Upload: dinhnguyet

Post on 30-Apr-2018

217 views

Category:

Documents


4 download

TRANSCRIPT

Problem  28.1  The  EMF  of  a  ba4ery  measures  the  inherent  power-­‐producing,  electric  field  generaCng  character  of  the  ba4ery.    When  current  is  drawn  from  the  ba4ery  (which  is  analogous  to  current  passing  through  the  ba4ery),  the  voltage  difference  across  the  ba4ery’s  terminal  is  such  that  

1.)  

ε

R

i

ΔVEMF = ε ΔVR = −iR

ΔVterminal = ε − iRΔVterminal = Vterminal = ε − iR ⇒ 11.6 V( ) = 15 V( ) − iR

⇒ i =3.4 V( )

RThe  power  raCng  is:  

P = i Vterminal

20 W( ) = 3.4 V( )R

!

"#

$

%& 11.6 V( )

⇒ R = 1.97 Ω

Problem  28.5  This  circuit  has  two  single  resistors  in  series  with  a  combinaCon  of  three  resistors  in  parallel,  all  of  the  same  value.    As  resistors  in  series  combinaCons  add,  we  can  write:  

1.)  

R

Req = R + R3 + R

= 7R3

In  the  off-­‐chance  you  don’t  see  where  the  second  term  came  from,  if  you  have  “n”  resistors  in  parallel,  the  equivalent  resistance  will  be:  

R

R

RR

1Req

=1R+

1R+

1R+ . . . n times( )

= n 1R

!"#

$%&

⇒ Req =Rn

2.)  

RTHIS  ONLY  WORKS  IF  ALL  THE  RESISTORS  ARE  OF  THE  SAME  SIZE.    In  any  case,  a  parallel  combinaCon  of  3  resistors  each  of  resistance  “R”  will  have  an  equivalent  resistance  of:  

R

R

RR

Req,parallel =R3

Req,parallel =R3

Problem  28.6  A  75  wa4  light  bulb  at  120  volts  suggests  the  current  can  be  determined  from  the  power  relaConship  using:  

1.)  

Rwire

P = iV ⇒ i = P

V

⇒ i = 75 W120 V"#$

%&'

= .625 A

With  the  current,  the  resistance  of  the  bulb  can  be  determined  from:  

Rwire

V Rbulb

P = i2Rbulb

⇒ Rbulb = Pi2

= 75 W.625 A( )2

"

#$

%

&'

= 192 Ω

The  resistance  the  bulb  along  with  the  resistance  in  the  wires  generates  a  net  resistance  of:  

2.)  

Rtotal = Rbulb + 2Rwire

= 192 Ω( ) + 2 .8 Ω( ) = 193.6 Ω

V = iRtotal

⇒ i = 120 V193.6 Ω#$%

&'(

= .62 Ω

According  to  Ohm’s  Law,  that  resistance  in  a  120  volt  circuit  will  generate  a  current  of:  

Apparently,  if  we  include  the  resistance  associated  with  the  wires,  the  current  turns  out  to  be  .005  amps  below  the  theoreCcally  expected  value.  

Problem  28.8  All  resistances  are  “R.”  NeglecCng  internal  resistance  of  the  ba4eries:  

1.)  

i1 =ε

R

A B C

+ − + −ε ε

a.)  currents?  

ckt  1   ckt  2  

ckt  1   ckt  2  

i2 =ε

R + R

= ε

2R

= 12

i1

i1 i2

b.)  As  the  current  is  the  same  through  each  element  in  the  series  combinaCon  (circuit  2),  the  obvious  response  is  that  the  brightness  of  bulbs  B  and  C  will  be  the  same.  

For  the  intellectually  curious:  It  is  not  unreasonable  to  wonder  “how  much  more?”    To  understand  the  answer  to  that,  we  need  to  look  at  the  math.  

2.)  

PR = i2R

In  other  words,  the  power  dissipated  by  the  single  resistor  (A)  in  circuit  1  is:  

PA = i12R

and  the  power  dissipated  by  a  single  resistor  (say  B)  in  circuit  2  is:  

PB = i22 R

= i1

2!"#

$%&

2

R =14

!"#

$%&

i12R( )

= PA

4

A B C

+ − + −ε ε

ckt  1   ckt  2  i1 i2

Short  answer:  More  current  through  bulb  A  suggests  a  brighter  bulb.  

     “Power  dissipated”  by  a  light  bulb  generates  brightness.    As  power  dissipaCon,  hence  brightness,  is  governed  by  the  amount  of  current  passing  through  a  resistor  (light  bulb),  we  need  the  power  relaConship  for  a  resistor.    That  is:  

from  Part  a  

Looking  at  this  a  li4le  differently:  The  power  provided  to  a  circuit  by  a  ba4ery  is                        .    Each  of  our  circuits  has  a  ba4ery  voltage  of        .    As  the  current  through  circuit  2  is  half  of  that  through  circuit  1,  the  total  power  provided  to  circuit  2  is  half  that  provided  to  circuit  1.    Half  of  circuit  2’s  power,  or  a  quarter  of  circuit’s  1’s  power,  is  dissipated  by  each  of  circuit  circuit  2’s  two  resistors.    

3.)  

Bo4om  line:    Bulbs  B  and  C  should  be  a  quarter  as  bright  as  bulb  A.  

A B C

+ − + −ε ε

ckt  1   ckt  2  i1 i2

According  to  the  math,  the  power  dissipated  by  B  will  be  a  quarter  that  dissipated  by  A,  hence  B  must  be  a  quarter  as  bright  as  A.  

Pckt−1 = ε i1 and Pckt−2 = ε i2

⇒ Pckt−2

Pckt−1

= ε i2

ε i1

=i2

i1

⇒ Pckt−2

Pckt−1

= i2

i1

=i2

2i2

⇒ Pckt−2 = 12

Pckt−1

P = εiε

Problem  28.17  How  much  power  does  each  resistor  dissipate.  

1.)  

The  equivalent  resistance  is:  

R2 = 2 Ω

Vo = 18 V

Req = R2 + R4 +1

R5

+1

R1

!

"#$

%&

−1

= 2 Ω( ) + 4 Ω( ) + 15 Ω

+1

1 Ω!"#

$%&

−1

= 6.83 Ω

R1 = 1 Ω

R4 = 4 Ω

R5 = 5 Ω

Almost  always,  we  are  looking  for  currents.    With  those,  we  can  determine:  

P = i2R

The  current  drawn  from  the  ba4ery  is:  

2.)  

io =Vo

Requ

= 18 V6.83 Ω

= 2.64 A

P2 = i2R2

= 2.64 A( )2 2 Ω( ) = 13.94 W

The  power  dissipated  by  the  2  ohm  and  4  ohm  resistors  are:    

P4 = i2R4

= 2.64 A( )2 4 Ω( ) = 27.88 W

So  how  much  power  is  led  over?  

The  power  provided  by  the  ba4ery  is:  

3.)  

Pbattery = ioVo

= 2.64 A( ) 18 V( ) = 47.52 W

The  total  power  dissipated  by  the  2  ohm  and  4  ohm  resistors  is:    

P2 + P4 = 13.94 W( ) + 27.88 W( ) = 41.82 W( )

The  two  resistors  we’ve  already  taken  care  of  will  dissipate  41.82  wa4s.    The  power  supply  has  provided  47.52  wa4s.    That  means  there  is  5.7  wa4s  led  to  accommodate  the  other  two  resistors.    

Look  at  the  parallel  part  of  the  circuit,  the  current  flowing  into  the  parallel  combinaCon  will  be  2.64  amps.  

4.)  

That  means:  

R2 = 2 Ω

Vo = 18 V

i5 =16

io =16

2.64 A( )

= .44 A

R1 = 1 Ω

R4 = 4 Ω

R5 = 5 ΩIf  the  current  is  broken  into  six  parts,  5  will  pass  through  the  1  ohm  resistor  and  1  will  move  through  the  5  ohm  resistor.          

That  means  the  power  the  5  ohm  resistor  dissipates  is:   P5 = i5

2R5

= .44 A( )2 5 Ω( ) = .968 W

The  current  through  the  1  ohm  resistor  will  be:  

5.)  

R2 = 2 Ω

Vo = 18 Vi1 =

56

io =56

2.64 A( )

= 2.2 A R1 = 1 Ω

R4 = 4 Ω

R5 = 5 Ω

As  expected,  the  sum  of  those  power  quanCCes  is  4.84  wa4s  +.968  wa4s  =  5.8  wa4s.      Give  or  take  round-­‐off  error,  this  is  the  amount  of  power  we  expected  would  be  available  to  these  two  resistors.  

That  means  the  power  the  1  ohm  resistor  dissipates  is:  

P1 = i12R1

= 2.2 A( )2 1 Ω( ) = 4.84 W

Problem  28.21  The  circuit  is  run  for  120  seconds.      

1.)  

R1 = 8 Ω

V1 = 4 V

R3 = 1 Ωa.)  What’s  the  current  in  each  resistor?  

R5 = 1 ΩR2 = 5 Ω

V2 = 12 V

R4 = 3 Ω

Below  is  an  enlarged  circuit  with  currents  defined  on  a  best-­‐guess  basis  (more  about  current  definiCons  at  the  end  of  the  problem):  

R1 = 8 Ω

V1 = 4 V

R3 = 1 Ω

R5 = 1 ΩR2 = 5 Ω

V2 = 12 V

R4 = 3 Ω

i1i2

i1 + i2

2.)  

a.)  What’s  the  current  in  each  resistor?  

R1 = 8 Ω

V1 = 4 V

R3 = 1 Ω

R5 = 1 ΩR2 = 5 Ω

V2 = 12 V

R4 = 3 Ω

i1i2

i1 + i2

L1

L2

V1 − i2R3 − i2R2 − i1 + i2( )R1 = 04 − i2 1( ) − i2 5( ) − i1 8( ) − i2 8( ) = 0 ⇒ 8i1 + i2 14( ) = 4

⇒ i1 =−14i2 + 4

8 ⇒ i1 = −1.75i2 + .5

The  node  equa5on  was  used  to  define  the  current  through  the  8  ohm  resistor,  so  with  only  two  unknowns,  we  need  to  use  loop  equa5ons  to  finish  the  task.    I’ve  idenCfied  the  loops  and  direcCon  of  transverse  on  the  sketch.  

L1 : V1 − i2R3 − i2R2 + i1R4 + i1R5 − V2 = 04 − i2 1( ) − i2 5( ) + i1 3( ) + i1 1( ) − 12 = 0 ⇒ − i2 6( ) + i1 4( ) = 8 ⇒ 4i1 − 6i2 = 8 ⇒ 4 −1.75i2 + .5( ) − 6i2 = 8 ⇒ − 7i2 + 2 − 6i2 = 8 ⇒ i2 = −.46

L2 :

(Note  that  there  are  several  ways  to  solve  these.    I’ve  used  an  algebraic  approach  instead  of  a  matrix-­‐driven  calculator  approach.    Either  will  do!)  

3.)  

So:  

R1 = 8 Ω

V1 = 4 V

R3 = 1 Ω

R5 = 1 ΩR2 = 5 Ω

V2 = 12 V

R4 = 3 Ω

i1i2

i1 + i2

L1

L2

i1 = −1.75i2 + .5 = −1.75 −.46( ) + .5 = 1.3 A

i3 = i1 + i2

= 1.3 + −.46( ) = .84 A

and  the  current  through  the  8  ohm  resistor  is:  

Note  that  the  negaCve  sign  for        means  that  the  current  is  really  in  the  opposite  direcCon  as  defined.    This  is  why  assumpCons  about  current  direcCon  is  not  important.    Apparently,  the  12  volts  ba4ery  is  large  enough  to  sCfle  the  effects  of  the  4  volt  ba4ery  making  the  current  through  that  branch  opposite  the  direcCon  you  would  expect  if  the  4  volt  ba4ery  stood  alone.    When  a  “bad”  assumpCon  is  made,  though,  nothing  is  hurt.    It  just  means  that  when  you  solve  for  that  variable,  you  will  find  a  negaCve  sign  in  front  of  its  numeric  value.  No  bid  deal!  

i2

PV1=

Wbattery1

Δt ⇒ Wbattery1 = PΔt

= −1.84 joulessec( ) 120 sec( )

= −222 joules

b.)  The  energy  delivered  by  each  ba4ery  makes  use  of  the  power  relaConship.    For            :      

4.)  

V1PV1

= i2V1

= −.46 A( ) 4 V( ) = −1.84 W

R1 = 8 Ω

V1 = 4 V

R3 = 1 Ω

R5 = 1 ΩR2 = 5 Ω

V2 = 12 V

R4 = 3 Ω

(−.46A)

L1

L2

(.84A)

(1.3A)

Why  the  negaCve  sign?    The  12  volt  ba4ery  is  forcing  current  into  the  4  volt  ba4ery.    This  is  opposite  what  ba4ery  usually  do  (they  are  designed  to  put  energy  into  the  system).    As  such,  the  ba4ery  in  this  case  can  be  thought  of  as  depleCng  energy,  suggests  a  negaCve  power  raCng.        Knowing  the  power,  we  can  write:  

i1i2

i3

b.)  The  energy  delivered  by  each  ba4ery  makes  use  of  the  power  relaConship.    For            :      

5.)  

V2

R1 = 8 Ω

V1 = 4 V

R3 = 1 Ω

R5 = 1 ΩR2 = 5 Ω

V2 = 12 V

R4 = 3 Ω

L1

L2PV2= i1V2

= 1.3 A( ) 12 V( )

= 15.6 Watts =Wbattery2

Δt ⇒ Wbattery2 = PV2

Δt

= 15.6 joulessec( ) 120 sec( )

= 1872 joules

(−.46A)

(.84A)

(1.3A)i1

i2

i3

6.)  

R1 = 8 Ω

V1 = 4 V

R3 = 1 Ω

R5 = 1 ΩR2 = 5 Ω

V2 = 12 V

R4 = 3 Ω

L1

L2

c.)  The  energy  delivered  to  the  resistors  is  the  same  as  the  energy  dissipated  by  them,  so  using  the  power  relaConship  for  resistors,  we  can  write:  

PR1= i3

2R1

= .84 A( )2 8 Ω( )

= 5.65 joulessec

As PR1=

Wresistor1

Δt ⇒ Wresistor1 = PR1

Δt

= 5.6 joulessec( ) 120 sec( )

= 672 joules

(−.46A)

(.84A)

(1.3A)i1

i2

i3

Note  that  the  actual  soluCon  manual  lists  this  as  687  joules  because  they  used  .846  amps  as  their  current.  

7.)  

R1 = 8 Ω

V1 = 4 V

R3 = 1 Ω

R5 = 1 ΩR2 = 5 Ω

V2 = 12 V

R4 = 3 Ω

L1

L2

For            :  

PR2= i2

2R2

= −.46 A( )2 5 Ω( )

= 1.06 joulessec

As PR2=

Wresistor2

Δt ⇒ Wresistor2 = PR2

Δt

= 1.06 joulessec( ) 120 sec( )

= 127 joules

(−.46A)

(.84A)

(1.3A)i1

i2

i3

Note  that  the  actual  soluCon  manual  lists  this  as  128  joules  as  they  use  -­‐.462  amps.  

R2

c.)  (cont’d)  

8.)  

R1 = 8 Ω

V1 = 4 V

R3 = 1 Ω

R5 = 1 ΩR2 = 5 Ω

V2 = 12 V

R4 = 3 Ω

L1

L2

For            :  

PR3= i2

2R3

= −.46 A( )2 1 Ω( )

= .21 joulessec

As PR3=

Wresistor 3

Δt ⇒ Wresistor 3 = PR3

Δt

= .21 joulessec( ) 120 sec( )

= 25.2 joules

(−.46A)

(.84A)

(1.3A)i1

i2

i3

Note  that  the  actual  soluCon  manual  lists  this  as  25.6  joules.  

R3

c.)  (cont’d)  

9.)  

R1 = 8 Ω

V1 = 4 V

R3 = 1 Ω

R5 = 1 ΩR2 = 5 Ω

V2 = 12 V

R4 = 3 Ω

L1

L2

For            :  

PR4= i1

2R4

= 1.3 A( )2 3 Ω( )

= 5.07 joulessec

As PR4=

Wresistor 4

Δt ⇒ Wresistor 4 = PR4

Δt

= 5.07 joulessec( ) 120 sec( )

= 609 joules

(−.46A)

(.84A)

(1.3A)i1

i2

i3

Note  that  the  actual  soluCon  manual  lists  this  as  616  joules  as  they  use  1.31  amps.  

R4

c.)  (cont’d)  

10.)  

R1 = 8 Ω

V1 = 4 V

R3 = 1 Ω

R5 = 1 ΩR2 = 5 Ω

V2 = 12 V

R4 = 3 Ω

L1

L2

For            :  

PR5= i1

2R5

= 1.3 A( )2 Ω( )

= 1.69 joulessec

As PR5=

Wresistor5

Δt ⇒ Wresistor5 = PR5

Δt

= 1.69 joulessec( ) 120 sec( )

= 203 joules

(−.46A)

(.84A)

(1.3A)i1

i2

i3

Note  that  the  actual  soluCon  manual  lists  this  as  205  joules.  

R5

c.)  (cont’d)  

11.)  

R1 = 8 Ω

V1 = 4 V

R3 = 1 Ω

R5 = 1 ΩR2 = 5 Ω

V2 = 12 V

R4 = 3 Ω

L1

L2

Using  the  work/energy  values  provided  by  the  book  (for  accuracy  sake),  the  sum  of  all  the  energy  dissipated  by  the  resistors  is:    

(−.46A)

(.84A)

(1.3A)i1

i2

i3

d.)  

Wdonebyresistors = 687 + 128 + 25.6 + + 616 + 205 = 1661.6 joules

The  chemical  energy  conversion  in  ba4ery              provided  1880  joules  (according  to  the  book).    So  what  

V1

happened  to  the  approximately  220  joules  of  “led-­‐over”  energy  provided  by  that  ba4ery?    It  went  into  charging  up  ba4ery              to  the  tune  of  -­‐222  joules  (this  is  the  approximate  overlay—the  disparity  is  due  to  round-­‐off  error).    

V2

e.)  The  total  energy  dissipated  by  the  resistors  is,  as  stated  above,  1661.6  joules  (approximately).    This  matches  (again,  as  was  stated  above)  the  amount  of  energy  (net)  put  into  the  system  by  the  ba4eries.  

Problem  28.24  

1.)  

a.)  In  Parts  a  and  b,  we  are  looking  for  currents.    That  means  we  will  be  using  Kirchoff’s  Laws.    Unfortunately,  the  problem  is  a  bit  obscure  in  the  sense  that  I’ve  always  assumed  a  dead  ba4ery  was  one  in  which  the  voltage  across  the  leads  had  gone  to  zero.    That  would  make  the  sketch  misleading.    Instead  (it  finally  dawned  on  me),  they  want  you  to  

1 Ω

12 V

1 Ω

12 V

.06Ω

Live  ba4ery  

Dead  ba4ery  

starter  

i1 i2

i3

nodeA

assume  the  deadness  is  modeled  by  the  high  resistance  to  charge  flow  in  the  branch  of  the  circuit  that  has  the  dead  ba4ery.                Even  an  “approximately  zero-­‐volts”  model  would  suggest  that  the  live  ba4ery  would  force  current  into  the  dead  ba4ery,  charging  it.    I’ve  made  that  assumpCon  in  defining  the  current  in  the  dead-­‐ba4ery  branch.    Fortunately,  if  I’ve  goofed,  the  math  will  cover  me  by  giving  me  a  negaCve  sign  in  front  of  any  errantly  defined  currents.    Let’s  hear  it  for  “the  math!”  

2.)  

a.)  We  are  going  to  be  using  Kirchoff’s  Laws  to  solve  for  all  of  the  currents,  so  even  though  this  quesCons  asks  only  for  the  current  through  the  starter,  I’m  going  to  write  out  all  the  Kirchoff  equaCons  starCng  with  a  node  equaCon  for  node  A.    Doing  so  yields:  

1 Ω

12 V

1 Ω

12 V

.06Ω

Live  ba4ery  

Dead  ba4ery  

starter  

L1

L2

nodeA

L1 : Vlivebattery − i1R1 − i3R3 = 0

i1 i2 i3

For  the  loops  shown:  

L2 : Vdeadbattery + i2R2 − i3R3 = 0

With  numbers:  

L1: 12 V( ) − i1 .01 Ω( ) − i3 .06 Ω( ) = 0 (equation B)

L2 : 12 V( ) + i2 1 Ω( ) − i3 .06 Ω( ) = 0 (equation C)

i1 + i2 = i3 (equation A)

3.)  

Solving  EquaCons  A,  B  and  C  simultaneously,  we  find  that  the  current  provided  to  the  starter  motor  is  172  amps.    

1 Ω

12 V

1 Ω

12 V

.06Ω

Live  ba4ery  

Dead  ba4ery  

starter  

L1

L2

nodeA

i1 i2 i3

b.)  From  the  soluCons  alluded  to  above,  the  dead-­‐ba4ery’s  current  solves  to  -­‐1.7  volts.    As  I  discussed  on  the  previous  page,  the  negaCve  sign  simply  means  that  current  through  the  dead-­‐ba4ery  branch  is  not  downward  but,  rather,  upward.      

c.)  Apparently,  the  dead  ba4ery  isn’t  completely  dead  but  is,  rather,  providing  a  small  trickle  of  charge  (small  in  comparison  to  that  provided  by  the  live-­‐ba4ery)  moCvaCng  the  starter  to  turn.  

Looking  at  what  we  have,  the  Node  equaCon  for  node  “a”  is:  

Problem  28.27  

1.)  

Assuming                                      and                                                ,  what  is  the  direcCon  and  magnitude  of  current  between  Points  “a”  and  “e?”    

R

ε4R

i1 5R

2R

a e

b dcε = 250 voltsR = 1 kΩ

I’ve  assumed  current  direcCons  and  labeled  them  on  the  sketch.  

i2

i3i4i

i4 = i1 + i (equation A)

Apparently,  we  can  determine  “i”  if  we  can  determine  the  other  two  currents.    It  isn’t  always  useful,  but  someCmes  it  makes  sense  to  re-­‐draw  a  circuit  puqng  it  into  a  geometry  that  is  more  familiar.    That  is  what  I’ve  done  to  the  right.    (If  you  can’t  see  that  the  two  circuits  are  essenCally  the  same,  talk  to  someone  about  it!)  

R

εi1

5R

2R

a e

b dc

i2

i3i4 i3

i1+i2

i1+i2

4R

With  both  start  at  “a’  ”  and  traverse  as  shown,  the  Loop  EquaCons  yield:  

2.)  

With  that,  the  circuit  can  be  drawn  as  shown  to  the  right.    

R

εi1

2R

a ' e

b dc

i2i1+i21.71R

The  equivalent  resistance  of  the  internal  parallel  combinaCon  is:  

Requ =1

4R+

15R

!"#

$%&

−1

= 1.71R L1 L2

L1: ε − i1R − i1 + i2( ) 1.71R( ) = 0

L2 : i1 + i2( ) 1.71R( ) + i2 2R( ) − 2ε = 0

Solving  these  simultaneously  yields:   i1 = 10x10

−3A

(If  I  have  Cme,  I’ll  come  back  and  actually  do  the  solving  at  the  end  of  the  problem  .  .  .  for  those  of  you  who  don’t  like  algebra  or  matrix  manipulaCon):  

i2 = 1.3x10−1A

But  because  the  real  resistors  making  up  this  1.71R  equivalent  resistance  are  in  parallel,  that  voltage  must  also  be  the  voltage  across  each  of  those  elements  .  .  .  which  brings  us  back  to  our  original  circuit.    

3.)  

So  the  voltage  across  that  central  resistor  is:  

R

εi1

2R

a ' e

b dc

i2i1+i21.71R

The  current  through  the  1.71R  ohm  resistor  is:  

L1 L2

i1 + i2 = 10x10−3 A( ) + 130x10−3 A( ) = 140x10−3 A

Vc− a ' = i1 + i2( ) 1.71R( ) = 140x10−3 A( ) 1.71 1000 Ω( )( ) = 240 V

R

ε4R

i1 5R

2R

a e

b dc

i2

i3i4i

And  with  that  informaCon,  we  can  write  out  that  original  node  equaCon  as:  

4.)  

Knowing  the  voltage  across  the  4R  resistor  is  240  volts,  we  can  write:  

Vc− a = i4 4R( )

⇒ i4 =240 V

4 1000 Ω( ) = .06 A

R

ε4R

i1 5R

2R

a e

b dc

i2

i3i4i

i4 = i1 + i ⇒ i = i4 − i1

= .06 A( ) − .01 A( ) = .05 A

Finally,  the  calculated  value  for  “i”  was  posiCve,  so  we  know  the  originally  assumed  direcCon  was  good.    Current  flows  from  “a”  to  “e.”  

Problem  28.32  

1.)  

This  a  bizarre  problem  in  the  sense  that  it  makes  you  step  through  all  the  math,  literally  by  the  numbers.    I’ve  dumped  everything  we  need  on  the  sketch  to  the  right!!  

i1

ε3 = 36 V

node A

R1 = 8 Ω

a.)  For  the  circuit  shown  (and  starCng  at  posiCon  “b”),  the  Loop  EquaCon  for  loop  L1  is:  

i2

i3

ε2 = 12 V

ε1 = 18 V

R2 = 5 Ω

R5 = 5 Ω

R3 = 11 Ω R4 = 7 Ω

L1

L2

L1: − ε1 + i1R2 + i2R4 − ε2 + i2R3 + i1R1 = 0 − 18 + 5i1 + 7i2 − 12 + 11i2 + 8i1 = 0 ⇒ 13i1 + 18i2 = 30

L2 : − i2R3 + ε2 − i2R4 − ε3 + i3R5 = 0 − 11i2 + 12 − 7i2 − 36 + 5i3 = 0 ⇒ − 18i2 + 5i3 = 24

b.)  For  the  circuit  shown  (starCng  at  “c”),  the  Loop  EquaCon  for  loop  L2  is:  

b

c

2.)  

i1

ε3 = 36 V

node A

R1 = 8 Ω

c.)  For  the  circuit  shown,  the  Node  EquaCon  for  node  “A”  is:  

i2

i3

ε2 = 12 V

ε1 = 18 V

R2 = 5 Ω

R2 = 5 Ω

R3 = 11 Ω R4 = 7 Ω

L1

L2

i1 = i2 + i3d.)  Solve  Node  EquaCon  for          :  

e.)  SubsCtuCng          into  Loop  2  equaCon:  

i3i1 = i2 + i3

⇒ i3 = i1 − i2

i3

−18i2 + 5i3 = 24 ⇒ − 18i2 + 5 i1 − i2( ) = 24 ⇒ 5i1 − 23i2 = 24

⇒ i1 =23i2 + 24

5 ⇒ i1 = 4.6i2 + 4.8

3.)  

i1

ε3 = 36 V

node A

R1 = 8 Ωi2

i3

ε2 = 12 V

ε1 = 18 V

R2 = 5 Ω

R2 = 5 Ω

R3 = 11 Ω R4 = 7 Ω

L1

L2

f.)  Solving  the  modified  loop  equaCons  for          and          ,  we  get:  

13 i1 + 18i2 = 3013 4.6i2 + 4.8( ) + 18i2 = 30⇒ 59.8i2 + 62.4 + 18i2 = 30 ⇒ 77.8i2 + 62.4 = 30 ⇒ 77.8i2 = −32.4 ⇒ i2 = −.416 A

i1i2i1 = 4.6i2 + 4.8Using                                                          :  

This  means:  

13i1 + 18 i2 = 3013i1 + 18 −.416 A( ) = 30 ⇒ i1 = 2.88 A

4.)  

i1

ε3 = 36 V

node A

R1 = 8 Ωi2

i3

ε2 = 12 V

ε1 = 18 V

R2 = 5 Ω

R2 = 5 Ω

R3 = 11 Ω R4 = 7 Ω

L1

L2

g.)  Lastly:  

i1 = i2 + i3

⇒ 2.88 A( ) = −.416 A( ) + i3

⇒ i3 = 3.3 A( )

h.)  The  significance  of  the  negaCve  sign  in        :  i2

It  is  not  uncommon  to  not  know  the  actual  direcCon  of  current  in  a  complicated  circuit,  so  to  do  a  problem  like  this  we  have  to  guess  at  the  current  direcCon.    This  is  not  a  problem,  though,  as  the  math  will  take  care  of  you.    How  so?    If,  given  the  numbers  in  the  problem,  you  have  assumed  the  wrong  current  direcCon,  you  will  simply  find  yourself  with  a  negaCve  sign  in  the  offending  current’s  numerical  answer.    In  this  case,  the  current                                                    is  telling  you  that  the  current’s  magnitude  is  .416  amps  and  its  direcCon  is  not  to  the  right  as  assumed  but,  in  fact,  is  to  the  led.    Ain’t  math  wonderful?        

i2 = −.416 A

Problem  28.34  

1.)  

a.)  Time  constant:  ε = 30 V

S

τ = RC

= 1x106 Ω( ) 5x10−6 f( ) = 5 seconds

C

+−

C = 5x10−6 fR = 1x106 Ω

Qmax = Cε

= 5x10−6 f( ) 30 V( ) = 150x10−6 coulombs

RThe  circuit’s  parameters  are                                                  ,  

b.)  Once  the  capacitor  is  completely  charged,  no  current  will  flow  through  the  circuit  and  all  of  the  ba4ery’s  voltage  drop  will  be  across  the  capacitor.    In  that  case,  we  can  write:  

and   ε = 30 V.

2.)  

c.)  There  are  two  ways  to  do  this.    The  first  is  to  use  the  current  funcCon  we’ve  derived:  

ε = 30 V

S

i(t) = ioe− t /RC

= ε

Re− t /RC

=30 V( )

1x106 Ω( )e− t / 1x106 Ω( ) 5x10−6 f( )

= 30x10−6 A( )e− t /5

+−

C = 5x10−6 f

R = 1x106 Ω

R

EvaluaCng  this  for  t  =  10  seconds  yields:  

i = 30x10−6 A( )e−10 /5

= 4.06x10−6 A

3.)  

The  second  way:    Two  Cme  constants  is  the  amount  of  Cme  it  takes  for  the  current  to  drop  to  approximately  13.5%  of  its  iniCal  value.    In  Part  “a,”  we  determine  that  the  Cme  constant  was  5  seconds.    That  means  10  seconds  is  two  Cme  constants  worth,  which  means  our  current  value  at  that  point  should  be:  

ε = 30 V

S

i(2τ) = .135( ) io

= .135( ) εR

= .135( ) 30 V( )1x106 Ω( )

= 4.05x10−6 A

C

+−

R

The  slight  deviaCon  between  the  two  values  is  due  to  round-­‐off  error.  

Problem  28.37  

1.)  

8 Ωa.)  Voltage  difference  across  capacitor?  

ε = 10 V

We  know  the  electrical  potenCal  of  Point  “a”  is  10  volts  (it’s  connected  to  the  high  side  of  the  ba4ery).    If  we  can  determine  the  voltage  drop  

1 µf+

2 Ω

1 Ω

4 Ω

a  

b   c  This  is  fun!    When  fully  charged,  there  is  no  current  through  the  capacitor.    That  means  the  circuit  could  be  re-­‐drawn  as  shown  below.  

8 Ω

ε = 10 V+

2 Ω

1 Ω

4 Ω

a  

b   c  

Vac

across  the  1  ohm  resistor,  we  can  determine  the  electrical  potenCal  at  Point  “b”  (it’ll  be          10  -­‐                      ).    Doing  a  similar  process  on  the  other  side  and  we  have  what  we  need      to  determine  the  voltage  across  b-­‐c,  which  will  be  the  voltage  across  the  cap.  

To  that  end:  

ΔVa−b

2.)  

With  the  cap  out  of  commission,  there  are  10  volts  across  Points  “a”  and  “d.”    That  means  we  can  write:  

i110 V = i1( ) 1 Ω + 4 Ω( ) ⇒ i1 = 2 A

That  means  the  electrical  potenCal  at  Point  “b”  is:  

a  

R2 = 8 Ω

ε = 10 V+

2 Ω

R1 = 1 Ω

4 Ω

b   c  

d  ΔVa−b = i1R1

= 2 A( ) 1 Ω( ) = 2 V

With        ,  we  can  write:    i1

Vb = Va − Vdrop

= 10 V( ) − 2 V( ) ⇒ Vb = 8 A

3.)  

Similarly  for  the  right  secCon  of  resistors,  we  can  write:  

i110 V = i2( ) 8 Ω + 2 Ω( ) ⇒ i2 = 1 A

That  means  the  electrical  potenCal  at  Point  “c”  is:  

a  

R2 = 8 Ω

ε = 10 V+

2 Ω

R1 = 1 Ω

4 Ω

b   c  

d  

ΔVa− c = i2R2

= 1 A( ) 8 Ω( ) = 8 V

With        ,  we  can  write:    i2

Vc = Va − Vdrop

= 10 V( ) − 8 V( ) ⇒ Vc = 2 A

4.)  

Apparently,  the  net  voltage  drop  between  Points  “b”  and  “c”  is:    

i1

a  

R2 = 8 Ω

ε = 10 V+

2 Ω

R1 = 1 Ω

4 Ω

b   c  

d  

(as  the  voltage  across  a  capacitor  is  always  defined  as  posiCve)  

Vb− c = Vc − Vb

= 2 V( ) − 8 V( ) ⇒ Vcap = 6 V

b.)  With  the  ba4ery  disconnected,  the  circuit  becomes  as  shown  to  the  right.        If  we  combine  the  resistor  in  parallel,  we  get  an  equivalent  resistance  of:  

R =1

9 Ω+

16 Ω

"

#$%

&'

−1

= 3.6 Ω

9 Ω

10 Ω

1 µf

5.)  

So  our  circuit  is  now  as  shown  to  the  right.    The  Cme  constant  for  that  circuit  is:  

The  voltage  across  the  capacitor  will  be  the  same  as  the  voltage  across  the  resistor.    As  the  voltage  across  the  resistor  is  a  funcCon  of  the  current  through  it,  and  as  the  current  is  governed  by  the  relaConship:  

τ = RC

= 3.6 Ω( ) 1x10−6 f( ) = 3.6x10−6 seconds

3.6 Ω

1 µf

e− t /RC

The  amount  of  Cme  required  for  that  factor  to  drop  to  1/10  is:  

e− t /RC =1

10

⇒ ln e− t /RC( ) = ln 110#$%

&'(

⇒ − t / RC = ln 110#$%

&'(

⇒ t = −RCln 110#$%

&'(

= − 3.6 Ω( ) 10−6 f( ) −2.3( ) = 8.28x10−6 seconds

As  expected,  this  is  a  li4le  shy  of  the  value  of                                                                    that  we  calculated.  

6.)  

Note:    Remember  that  ader  two  Cme  constants,  the  current  will  drop  to  13.5%  of  the  maximum  current  and  voltage  (just  a  hint  above  our  10%  mark).    Twice  our  Cme  constant  in  this  instance  is:  

8.28x10−6 seconds

2τ = 2RC

= 2 3.6x10−6 seconds( ) = 7.2x10−6 seconds

Problem  28.39  

1.)  

a.)  With  the  switch  open  a  long  Cme,  the  capacitor  will  be  fully  charged  and  there  will  be  no  current  in  the  circuit.    While  the  capacitor  is  charging,  though,  the  Cme  constant  will  be:  

ε = 10 V S

τcharging = RnetC

= R1 + R2[ ] C( )

= 5x104 Ω( ) + 10x104 Ω( )#$ %& 10x10−6 f( ) = 1.50 seconds

b.)  When  the  switch  is  thrown  and  the  capacitor  begins  to  discharge  through            ,  the  Cme  constant  will  be:  

C+−

where C = 10x10−6 Ω

R1 = 5x104 Ω

R2 = 10x104 Ω

R2

τcharging = R2C

= 10x106 Ω( ) 10x10−6 f( ) = 1 seconds

2.)  

c.)  This  is  where  things  get  interesCng.    As  was  said  above,  with  the  switch  opened  for  a  long  Cme,  the  current  goes  to  zero  as  the  capacitor  charges  to  its  maximum,  and  the  voltage  across  the  capacitor  at  that  point  is                                  .            When  the  switch  it  thrown,  then,  a  current  will  be  generated  through              due  to  the              

i1ε1 = 10 V

ba4ery  and  a  current  will  be  generated  through              due  to  the  voltage  across  the  capacitor.    All  of  these  currents  are  shown  in  the  sketch.  

C+−

R1 = 5x104 Ω

R2 = 10x104 Ω

R1

ε1 − i1R1 = 0

⇒ i1 =ε1

R1

⇒ i1 =10 V( )

5x104 Ω( ) ⇒ = 2x10−4 A

ε = 10 V

R2

+

i2i1 + i2

From  Ohm’s  Law  on  the  led  loop,  we  can  write:  

where C = 10x10−6 Ω

3.)  

Remembering  that                                        ,  Ohm’s  Law  used  on  the  right  loop  yields:  

i1ε1 = 10 V

Coupling  those  two  bits  of  informaCon  allows  us  to  write:  

C+−

C = 10x10−6 ΩR1 = 5x104 Ω

R2 = 10x104 Ω

q(t)C

− i2R2 = 0

⇒ i2 =1

R2C#

$%&

'(q(t)

+

i2i1 + i2

We  know  from  the  definiCon  of  capacitance  that:                                                

q(t) = Qmaxe− t /R2C

C = QmaxVmax

⇒ Qmax = CVmax

q(t) = Qmaxe− t /R2C

= CVmaxe− t /R2C

where C = 10x10−6 Ω

Vcap =q(t)C

and  we  know  from  previous  experience  that  the  charge  on  a  discharging  capacitor  is  equal  to:  

4.)  

With  that,  we  can  write:  

i1ε1 = 10 V C+

C = 10x10−6 ΩR1 = 5x104 Ω

R2 = 10x104 Ω

i2 =1

R2C!

"#$

%&q(t)

= 1R2C

!

"#$

%&CVmaxe

− t /R2C( )

= 1R2

!

"#$

%&Vmaxe

− t /R2C( )

= 110x104 Ω!"#

$%&

10 V( )e− t / 10x104( ) 10x10−6( )( ) = 10−4( )e− t / 1 sec( )

+

i2i1 + i2

That  means  the  switch  carries  a  downward  current  of:  

i1 + i2 = 2x10−4 A( ) + 1x10−4( )e− t / 1 sec( ) A"# $%

where C = 10x10−6 Ω

Crazy,  huh?