probability distribution of conductance and transmission eigenvalues zhou shi and azriel z. genack...

28
Probability Distribution of Conductance and Transmission Eigenvalues Zhou Shi and Azriel Z. Genack Queens College of CUNY

Upload: gerardo-norrid

Post on 15-Jan-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Probability Distribution of Conductance and Transmission Eigenvalues Zhou Shi and Azriel Z. Genack Queens College of CUNY

Probability Distribution of Conductance and Transmission Eigenvalues

Zhou Shi and Azriel Z. GenackQueens College of CUNY

Page 2: Probability Distribution of Conductance and Transmission Eigenvalues Zhou Shi and Azriel Z. Genack Queens College of CUNY

Measurement of transmission matrix t

a

b

tba

Frequency range:10-10.24 GHz: Wave localized14.7-14.94 GHz: Diffusive wave

Page 3: Probability Distribution of Conductance and Transmission Eigenvalues Zhou Shi and Azriel Z. Genack Queens College of CUNY

Number of waveguide modes : N~ 30 localized frequency range N~ 66 diffusive frequency range

Measurement of transmission matrix t

N/2 points from each polarization

t : N×N

L = 23, 40, 61 and 102 cm

Page 4: Probability Distribution of Conductance and Transmission Eigenvalues Zhou Shi and Azriel Z. Genack Queens College of CUNY

Transmission eigenvalues n

τn : eigenvalue of the matrix product tt†

2 †

, 1 1( )

N N

ba na b nT t Tr tt

g T

Landauer, Fisher-Lee relation

R. Landauer, Philos. Mag. 21, 863 (1970).

Page 5: Probability Distribution of Conductance and Transmission Eigenvalues Zhou Shi and Azriel Z. Genack Queens College of CUNY

Transmission eigenvalues n

1

N

nng

O. N. Dorokhov, Solid State Commun. 51, 381 (1984).

Y. Imry, Euro. Phys. Lett. 1, 249 (1986).

Most of channels are “closed” with τn 1/e.Neff ~ g channels are “open” with τn ≥ 1/e.

Page 6: Probability Distribution of Conductance and Transmission Eigenvalues Zhou Shi and Azriel Z. Genack Queens College of CUNY

Z. Shi and A. Z. Genack, Phys. Rev. Lett. 108, 043901 (2012)

Spectrum of transmittance T and n

1

N

nnT

Page 7: Probability Distribution of Conductance and Transmission Eigenvalues Zhou Shi and Azriel Z. Genack Queens College of CUNY

Scaling and fluctuation of conductance

1

N

nng

~ 1g P(lng) is predicted to be highly asymmetric

K. A. Muttalib and P. Wölfle, Phys. Rev. Lett. 83, 3013 (1999).

1 2 1 21( ) ( ) ( , )

N

n n nnP g g P d d d

P(lng) is Gaussian with variance of lng, σ2 = -<lng>

1g

P(g) is a Gaussian distribution1g

Page 8: Probability Distribution of Conductance and Transmission Eigenvalues Zhou Shi and Azriel Z. Genack Queens College of CUNY

Probability distribution of conductance

Page 9: Probability Distribution of Conductance and Transmission Eigenvalues Zhou Shi and Azriel Z. Genack Queens College of CUNY

Probability distribution of conductance

Page 10: Probability Distribution of Conductance and Transmission Eigenvalues Zhou Shi and Azriel Z. Genack Queens College of CUNY

Probability distribution of conductance

Page 11: Probability Distribution of Conductance and Transmission Eigenvalues Zhou Shi and Azriel Z. Genack Queens College of CUNY

Probability distribution of conductance

Page 12: Probability Distribution of Conductance and Transmission Eigenvalues Zhou Shi and Azriel Z. Genack Queens College of CUNY

Probability distribution of conductance

Page 13: Probability Distribution of Conductance and Transmission Eigenvalues Zhou Shi and Azriel Z. Genack Queens College of CUNY

Probability distribution of conductance

Page 14: Probability Distribution of Conductance and Transmission Eigenvalues Zhou Shi and Azriel Z. Genack Queens College of CUNY

Probability distribution of conductance

Page 15: Probability Distribution of Conductance and Transmission Eigenvalues Zhou Shi and Azriel Z. Genack Queens College of CUNY

<lnτn> for different value of <lnT> for g = 0.37

Page 16: Probability Distribution of Conductance and Transmission Eigenvalues Zhou Shi and Azriel Z. Genack Queens College of CUNY

Probability distribution of the spacing of lnτn, s

1

1

ln ln

ln lnn n

n n

s

242

2

32( )

sP s s e

Wigner-Surmise for GUE

t is a complex matrix

Page 17: Probability Distribution of Conductance and Transmission Eigenvalues Zhou Shi and Azriel Z. Genack Queens College of CUNY

Probability distribution of optical transmittance T

V. Gopar, K. A. Muttalib, and P. Wölfle, Phys. Rev. B 66, 174204 (2002).

Page 18: Probability Distribution of Conductance and Transmission Eigenvalues Zhou Shi and Azriel Z. Genack Queens College of CUNY

Single parameter scaling

P. W. Anderson et al. Phys. Rev. B 22, 3519 (1980).

2 var(ln )T

Leff = L+2zb, zb: extrapolation length

Page 19: Probability Distribution of Conductance and Transmission Eigenvalues Zhou Shi and Azriel Z. Genack Queens College of CUNY

Correlation of transmittance in frequency domain

( ) ( ) ( ) ( ) ( )C T T T T 22( 0) var( )C T T T

Page 20: Probability Distribution of Conductance and Transmission Eigenvalues Zhou Shi and Azriel Z. Genack Queens College of CUNY

Universal conductance fluctuation

R. A. Webb et. al., Phys. Rev. Lett. 54, 2696 (1985). P. A. Lee and A. D. Stone, Phys. Rev. Lett. 55, 1622 (1985).B. L. Altshuler, JETP Lett. 41, 648 (1985).

Page 21: Probability Distribution of Conductance and Transmission Eigenvalues Zhou Shi and Azriel Z. Genack Queens College of CUNY

Y. Imry, Euro. Phys. Lett. 1, 249 (1986).

Level repulsion

Neff ~ g with τn ≥ 1/e.

1

N

nng

Poisson process: var(Neff)~ <Neff>

var(g)~ <g>

Observation: var(g) independent of <g>

Page 22: Probability Distribution of Conductance and Transmission Eigenvalues Zhou Shi and Azriel Z. Genack Queens College of CUNY

Level repulsion and Wigner distribution

Y. Imry, Euro. Phys. Lett. 1, 249 (1986).K. A. Muttalib, J. L. Pichard and A. D. Stone, Phys. Rev. Lett. 59, 2475 (1987).

1

1

ln ln

ln lnn n

n n

s

Page 23: Probability Distribution of Conductance and Transmission Eigenvalues Zhou Shi and Azriel Z. Genack Queens College of CUNY

Level rigidity

F. J. Dyson and M. L. Mehta, J. Math. Phys. 4, 701 (1963).

Single configurationRandom ensemble

Page 24: Probability Distribution of Conductance and Transmission Eigenvalues Zhou Shi and Azriel Z. Genack Queens College of CUNY

Level rigidity

2

,

1( ( ) ) dmin

i

i

L

A B

N x Ax BL

In an interval of length L, it is defined as the least-squares deviation of the stair case function N(L) from the best fit to a straight line

Poisson Distribution Δ(L)=L/15

Wigner for GUE1

2

1 5( ) ln(2π ) ( )

2π 4L L L

Ο

F. J. Dyson and M. L. Mehta, J. Math. Phys. 4, 701 (1963).

L

Page 25: Probability Distribution of Conductance and Transmission Eigenvalues Zhou Shi and Azriel Z. Genack Queens College of CUNY

Level rigidity

Page 26: Probability Distribution of Conductance and Transmission Eigenvalues Zhou Shi and Azriel Z. Genack Queens College of CUNY

Conclusions:

1. Relate the distribution of conductance to underlying transmission eigenvalues

Page 27: Probability Distribution of Conductance and Transmission Eigenvalues Zhou Shi and Azriel Z. Genack Queens College of CUNY

Conclusions:

1. Relate the distribution of conductance to underlying transmission eigenvalues

2. Observe universal conductance fluctuation for classical waves

Page 28: Probability Distribution of Conductance and Transmission Eigenvalues Zhou Shi and Azriel Z. Genack Queens College of CUNY

Conclusions:

1. Relate the distribution of conductance to underlying transmission eigenvalues

2. Observe universal conductance fluctuation for classical waves

3. Observe weakening of level rigidity when approachingAnderson Localization