probabilistic inference lecture 5

81
Probabilistic Inference Lecture 5 M. Pawan Kumar [email protected] es available online http://cvc.centrale-ponts.fr/personnel/pa

Upload: symona

Post on 22-Feb-2016

39 views

Category:

Documents


0 download

DESCRIPTION

Probabilistic Inference Lecture 5. M. Pawan Kumar [email protected]. Slides available online http:// cvc.centrale-ponts.fr /personnel/ pawan /. What to Expect in the Final Exam. Open Book Textbooks Research Papers Course Slides No Electronic Devices Easy Questions – 10 points - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Probabilistic Inference Lecture  5

Probabilistic InferenceLecture 5

M. Pawan [email protected]

Slides available online http://cvc.centrale-ponts.fr/personnel/pawan/

Page 2: Probabilistic Inference Lecture  5

• Open Book– Textbooks– Research Papers– Course Slides– No Electronic Devices

• Easy Questions – 10 points

• Hard Questions – 10 points

What to Expect in the Final Exam

Page 3: Probabilistic Inference Lecture  5

Easy Question – BPCompute the reparameterization constants for (a,b)and (c,b) such that the unary potentials of b are equalto its min-marginals.

Va Vb

2

5 5-3Vc

6 12-6

-5

-2

9

-2 -1 -4 -3

Page 4: Probabilistic Inference Lecture  5

Hard Question – BPProvide an O(h) algorithm to compute thereparameterization constants of BP for an edge whosepairwise potentials are specified by a truncated linearmodel.

Page 5: Probabilistic Inference Lecture  5

Easy Question – Minimum CutProvide the graph corresponding to the MAP estimationproblem in the following MRF.

Va Vb

2

5 5-3Vc

6 12-6

-5

-2

9

-2 -1 -4 -3

Page 6: Probabilistic Inference Lecture  5

Hard Question – Minimum CutShow that the expansion algorithm provides a bound of2M for the truncated linear metric, where M is the valueof the truncation.

Page 7: Probabilistic Inference Lecture  5

Easy Question – RelaxationsUsing an example, show that the LP-S relaxation is not tight for a frustrated cycle (cycle with an odd number ofsupermodular pairwise potentials).

Page 8: Probabilistic Inference Lecture  5

Hard Question – RelaxationsProve or disprove that the LP-S and SOCP-MS relaxations are invariant to reparameterization.

Page 9: Probabilistic Inference Lecture  5

Recap

Page 10: Probabilistic Inference Lecture  5

Integer Programming Formulation

min ∑a ∑i a;i ya;i + ∑(a,b) ∑ik ab;ik yab;ik

ya;i {0,1}

∑i ya;i = 1

yab;ik = ya;i yb;k

Page 11: Probabilistic Inference Lecture  5

Integer Programming Formulation

min Ty

ya;i {0,1}

∑i ya;i = 1

yab;ik = ya;i yb;k

= [ … a;i …. ; … ab;ik ….]y = [ … ya;i …. ; … yab;ik ….]

Page 12: Probabilistic Inference Lecture  5

Linear Programming Relaxation

min Ty

ya;i {0,1}

∑i ya;i = 1

yab;ik = ya;i yb;k

Two reasons why we can’t solve this

Page 13: Probabilistic Inference Lecture  5

Linear Programming Relaxation

min Ty

ya;i [0,1]

∑i ya;i = 1

yab;ik = ya;i yb;k

One reason why we can’t solve this

Page 14: Probabilistic Inference Lecture  5

Linear Programming Relaxation

min Ty

ya;i [0,1]

∑i ya;i = 1

∑k yab;ik = ∑kya;i yb;k

One reason why we can’t solve this

Page 15: Probabilistic Inference Lecture  5

Linear Programming Relaxation

min Ty

ya;i [0,1]

∑i ya;i = 1

One reason why we can’t solve this

= 1∑k yab;ik = ya;i∑k yb;k

Page 16: Probabilistic Inference Lecture  5

Linear Programming Relaxation

min Ty

ya;i [0,1]

∑i ya;i = 1

∑k yab;ik = ya;i

One reason why we can’t solve this

Page 17: Probabilistic Inference Lecture  5

Linear Programming Relaxation

min Ty

ya;i [0,1]

∑i ya;i = 1

∑k yab;ik = ya;i

No reason why we can’t solve this *

*memory requirements, time complexity

Page 18: Probabilistic Inference Lecture  5

Dual of the LP RelaxationWainwright et al., 2001

Va Vb Vc

Vd Ve Vf

Vg Vh Vi

Va Vb Vc

Vd Ve Vf

Vg Vh Vi

Va Vb Vc

Vd Ve Vf

Vg Vh Vi

1

2

3

4 5 6

i =

Page 19: Probabilistic Inference Lecture  5

Dual of the LP RelaxationWainwright et al., 2001

q*(1)

i =

q*(2)

q*(3)

q*(4) q*(5) q*(6)

q*(i)

Dual of LP

Va Vb Vc

Vd Ve Vf

Vg Vh Vi

Va Vb Vc

Vd Ve Vf

Vg Vh Vi

Va Vb Vc

Vd Ve Vf

Vg Vh Vi

max

Page 20: Probabilistic Inference Lecture  5

Dual of the LP RelaxationWainwright et al., 2001

q*(1)

i

q*(2)

q*(3)

q*(4) q*(5) q*(6)

Dual of LP

Va Vb Vc

Vd Ve Vf

Vg Vh Vi

Va Vb Vc

Vd Ve Vf

Vg Vh Vi

Va Vb Vc

Vd Ve Vf

Vg Vh Vi q*(i)max

Page 21: Probabilistic Inference Lecture  5

Dual of the LP RelaxationWainwright et al., 2001

i

max q*(i)

I can easily compute q*(i)

I can easily maintain reparam constraint

So can I easily solve the dual?

Page 22: Probabilistic Inference Lecture  5

• TRW Message Passing

• Dual Decomposition

Outline

Page 23: Probabilistic Inference Lecture  5

Things to Remember

• Forward-pass computes min-marginals of root

• BP is exact for trees

• Every iteration provides a reparameterization

Page 24: Probabilistic Inference Lecture  5

TRW Message PassingKolmogorov, 2006

Va Vb Vc

Vd Ve Vf

Vg Vh Vi

Va Vb Vc

Vd Ve Vf

Vg Vh Vi

1

2

3

4 5 6

i q*(i)

Pick a variable Va

Page 25: Probabilistic Inference Lecture  5

TRW Message PassingKolmogorov, 2006

i q*(i)

Vc Vb Va

1c;0

1c;1

1b;0

1b;1

1a;0

1a;1

Va Vd Vg

4a;0

4a;1

4d;0

4d;1

4g;0

4g;1

Page 26: Probabilistic Inference Lecture  5

TRW Message PassingKolmogorov, 2006

1 + 4 + rest q*(1) + q*(4) + K

Vc Vb Va Va Vd Vg

Reparameterize to obtain min-marginals of Va

1c;0

1c;1

1b;0

1b;1

1a;0

1a;1

4a;0

4a;1

4d;0

4d;1

4g;0

4g;1

Page 27: Probabilistic Inference Lecture  5

TRW Message PassingKolmogorov, 2006

’1 + ’4 + rest

Vc Vb Va

’1c;0

’1c;1

’1b;0

’1b;1

’1a;0

’1a;1

Va Vd Vg

’4a;0

’4a;1

’4d;0

’4d;1

’4g;0

’4g;1

One pass of Belief Propagation

q*(’1) + q*(’4) + K

Page 28: Probabilistic Inference Lecture  5

TRW Message PassingKolmogorov, 2006

’1 + ’4 + rest

Vc Vb Va Va Vd Vg

Remain the same

q*(’1) + q*(’4) + K

’1c;0

’1c;1

’1b;0

’1b;1

’1a;0

’1a;1

’4a;0

’4a;1

’4d;0

’4d;1

’4g;0

’4g;1

Page 29: Probabilistic Inference Lecture  5

TRW Message PassingKolmogorov, 2006

’1 + ’4 + rest

min{’1a;0,’1a;1} + min{’4a;0,’4a;1} + K

Vc Vb Va Va Vd Vg

’1c;0

’1c;1

’1b;0

’1b;1

’1a;0

’1a;1

’4a;0

’4a;1

’4d;0

’4d;1

’4g;0

’4g;1

Page 30: Probabilistic Inference Lecture  5

TRW Message PassingKolmogorov, 2006

’1 + ’4 + rest

Vc Vb Va Va Vd Vg

Compute average of min-marginals of Va

’1c;0

’1c;1

’1b;0

’1b;1

’1a;0

’1a;1

’4a;0

’4a;1

’4d;0

’4d;1

’4g;0

’4g;1

min{’1a;0,’1a;1} + min{’4a;0,’4a;1} + K

Page 31: Probabilistic Inference Lecture  5

TRW Message PassingKolmogorov, 2006

’1 + ’4 + rest

Vc Vb Va Va Vd Vg

’’a;0 = ’1a;0+ ’4a;0

2’’a;1 = ’1a;1+ ’4a;1

2

’1c;0

’1c;1

’1b;0

’1b;1

’1a;0

’1a;1

’4a;0

’4a;1

’4d;0

’4d;1

’4g;0

’4g;1

min{’1a;0,’1a;1} + min{’4a;0,’4a;1} + K

Page 32: Probabilistic Inference Lecture  5

TRW Message PassingKolmogorov, 2006

’’1 + ’’4 + rest

Vc Vb Va Va Vd Vg

’1c;0

’1c;1

’1b;0

’1b;1

’’a;0

’’a;1

’’a;0

’’a;1

’4d;0

’4d;1

’4g;0

’4g;1

’’a;0 = ’1a;0+ ’4a;0

2’’a;1 = ’1a;1+ ’4a;1

2

min{’1a;0,’1a;1} + min{’4a;0,’4a;1} + K

Page 33: Probabilistic Inference Lecture  5

TRW Message PassingKolmogorov, 2006

’’1 + ’’4 + rest

Vc Vb Va Va Vd Vg

’1c;0

’1c;1

’1b;0

’1b;1

’’a;0

’’a;1

’’a;0

’’a;1

’4d;0

’4d;1

’4g;0

’4g;1

’’a;0 = ’1a;0+ ’4a;0

2’’a;1 = ’1a;1+ ’4a;1

2

min{’1a;0,’1a;1} + min{’4a;0,’4a;1} + K

Page 34: Probabilistic Inference Lecture  5

TRW Message PassingKolmogorov, 2006

Vc Vb Va Va Vd Vg

2 min{’’a;0, ’’a;1} + K

’1c;0

’1c;1

’1b;0

’1b;1

’’a;0

’’a;1

’’a;0

’’a;1

’4d;0

’4d;1

’4g;0

’4g;1

’’1 + ’’4 + rest

’’a;0 = ’1a;0+ ’4a;0

2’’a;1 = ’1a;1+ ’4a;1

2

Page 35: Probabilistic Inference Lecture  5

TRW Message PassingKolmogorov, 2006

Vc Vb Va Va Vd Vg

’1c;0

’1c;1

’1b;0

’1b;1

’’a;0

’’a;1

’’a;0

’’a;1

’4d;0

’4d;1

’4g;0

’4g;1

min {p1+p2, q1+q2} min {p1, q1} + min {p2, q2}≥ 2 min{’’a;0, ’’a;1} + K

’’1 + ’’4 + rest

Page 36: Probabilistic Inference Lecture  5

TRW Message PassingKolmogorov, 2006

Vc Vb Va Va Vd Vg

Objective function increases or remains constant

’1c;0

’1c;1

’1b;0

’1b;1

’’a;0

’’a;1

’’a;0

’’a;1

’4d;0

’4d;1

’4g;0

’4g;1

2 min{’’a;0, ’’a;1} + K

’’1 + ’’4 + rest

Page 37: Probabilistic Inference Lecture  5

TRW Message Passing

Initialize i. Take care of reparam constraint

Choose random variable Va

Compute min-marginals of Va for all trees

Node-average the min-marginals

REPEAT

Kolmogorov, 2006

Can also do edge-averaging

Page 38: Probabilistic Inference Lecture  5

Example 1

Va Vb

0

1 1

0

2

5

4

2l0

l1

Vb Vc

0

2 3

1

4

2

6

3Vc Va

1

4 1

0

6

3

6

4

5

6

7

Pick variable Va. Reparameterize.

Page 39: Probabilistic Inference Lecture  5

Example 1

Va Vb

-3

-2 -1

-2

5

7

4

2Vb Vc

0

2 3

1

4

2

6

3Vc Va

-3

1 -3

-3

6

3

10

7

5

6

7

Average the min-marginals of Va

l0

l1

Page 40: Probabilistic Inference Lecture  5

Example 1

Va Vb

-3

-2 -1

-2

7.5

7

4

2Vb Vc

0

2 3

1

4

2

6

3Vc Va

-3

1 -3

-3

6

3

7.5

7

7

6

7

Pick variable Vb. Reparameterize.

l0

l1

Page 41: Probabilistic Inference Lecture  5

Example 1

Va Vb

-7.5

-7 -5.5

-7

7.5

7

8.5

7Vb Vc

-5

-3 -1

-3

9

6

6

3Vc Va

-3

1 -3

-3

6

3

7.5

7

7

6

7

Average the min-marginals of Vb

l0

l1

Page 42: Probabilistic Inference Lecture  5

Example 1

Va Vb

-7.5

-7 -5.5

-7

7.5

7

8.75

6.5Vb Vc

-5

-3 -1

-3

8.75

6.5

6

3Vc Va

-3

1 -3

-3

6

3

7.5

7

6.5

6.5

7 Value of dual does not increase

l0

l1

Page 43: Probabilistic Inference Lecture  5

Example 1

Va Vb

-7.5

-7 -5.5

-7

7.5

7

8.75

6.5Vb Vc

-5

-3 -1

-3

8.75

6.5

6

3Vc Va

-3

1 -3

-3

6

3

7.5

7

6.5

6.5

7 Maybe it will increase for Vc

NO

l0

l1

Page 44: Probabilistic Inference Lecture  5

Example 1

Va Vb

-7.5

-7 -5.5

-7

7.5

7

8.75

6.5Vb Vc

-5

-3 -1

-3

8.75

6.5

6

3Vc Va

-3

1 -3

-3

6

3

7.5

7

Strong Tree Agreement

Exact MAP Estimate

f1(a) = 0 f1(b) = 0 f2(b) = 0 f2(c) = 0 f3(c) = 0 f3(a) = 0

l0

l1

Page 45: Probabilistic Inference Lecture  5

Example 2

Va Vb

0

1 1

0

2

5

2

2Vb Vc

1

0 0

1

0

0

0

0Vc Va

0

1 1

0

0

3

4

8

4

0

4

Pick variable Va. Reparameterize.

l0

l1

Page 46: Probabilistic Inference Lecture  5

Example 2

Va Vb

-2

-1 -1

-2

4

7

2

2Vb Vc

1

0 0

1

0

0

0

0Vc Va

0

0 1

-1

0

3

4

9

4

0

4

Average the min-marginals of Va

l0

l1

Page 47: Probabilistic Inference Lecture  5

Example 2

Va Vb

-2

-1 -1

-2

4

8

2

2Vb Vc

1

0 0

1

0

0

0

0Vc Va

0

0 1

-1

0

3

4

8

4

0

4 Value of dual does not increase

l0

l1

Page 48: Probabilistic Inference Lecture  5

Example 2

Va Vb

-2

-1 -1

-2

4

8

2

2Vb Vc

1

0 0

1

0

0

0

0Vc Va

0

0 1

-1

0

3

4

8

4

0

4 Maybe it will decrease for Vb or Vc

NO

l0

l1

Page 49: Probabilistic Inference Lecture  5

Example 2

Va Vb

-2

-1 -1

-2

4

8

2

2Vb Vc

1

0 0

1

0

0

0

0Vc Va

0

0 1

-1

0

3

4

8

f1(a) = 1 f1(b) = 1 f2(b) = 1 f2(c) = 0 f3(c) = 1 f3(a) = 1

f2(b) = 0 f2(c) = 1

Weak Tree Agreement Not Exact MAP Estimate

l0

l1

Page 50: Probabilistic Inference Lecture  5

Example 2

Va Vb

-2

-1 -1

-2

4

8

2

2Vb Vc

1

0 0

1

0

0

0

0Vc Va

0

0 1

-1

0

3

4

8

Weak Tree Agreement Convergence point of TRW

l0

l1

f1(a) = 1 f1(b) = 1 f2(b) = 1 f2(c) = 0 f3(c) = 1 f3(a) = 1

f2(b) = 0 f2(c) = 1

Page 51: Probabilistic Inference Lecture  5

Obtaining the Labelling

Only solves the dual. Primal solutions?

Va Vb Vc

Vd Ve Vf

Vg Vh Vi

’ = i

Fix the labelOf Va

Page 52: Probabilistic Inference Lecture  5

Obtaining the Labelling

Only solves the dual. Primal solutions?

Va Vb Vc

Vd Ve Vf

Vg Vh Vi

’ = i

Fix the labelOf Vb

Continue in some fixed orderMeltzer et al., 2006

Page 53: Probabilistic Inference Lecture  5

Computational Issues of TRW

• Speed-ups for some pairwise potentials

Basic Component is Belief Propagation

Felzenszwalb & Huttenlocher, 2004

• Memory requirements cut down by half Kolmogorov, 2006

• Further speed-ups using monotonic chains Kolmogorov, 2006

Page 54: Probabilistic Inference Lecture  5

Theoretical Properties of TRW

• Always converges, unlike BP Kolmogorov, 2006

• Strong tree agreement implies exact MAP Wainwright et al., 2001

• Optimal MAP for two-label submodular problems

Kolmogorov and Wainwright, 2005

ab;00 + ab;11 ≤ ab;01 + ab;10

Page 55: Probabilistic Inference Lecture  5

ResultsBinary Segmentation Szeliski et al. , 2008

Labels - {foreground, background}

Unary Potentials: -log(likelihood) using learnt fg/bg models

Pairwise Potentials: 0, if same labels

1 - exp(|da - db|), if different labels

Page 56: Probabilistic Inference Lecture  5

ResultsBinary Segmentation

Labels - {foreground, background}

Unary Potentials: -log(likelihood) using learnt fg/bg models

Szeliski et al. , 2008

Pairwise Potentials: 0, if same labels

1 - exp(|da - db|), if different labels

TRW

Page 57: Probabilistic Inference Lecture  5

ResultsBinary Segmentation

Labels - {foreground, background}

Unary Potentials: -log(likelihood) using learnt fg/bg models

Szeliski et al. , 2008

Belief Propagation

Pairwise Potentials: 0, if same labels

1 - exp(|da - db|), if different labels

Page 58: Probabilistic Inference Lecture  5

ResultsStereo Correspondence Szeliski et al. , 2008

Labels - {disparities}

Unary Potentials: Similarity of pixel colours

Pairwise Potentials: 0, if same labels

1 - exp(|da - db|), if different labels

Page 59: Probabilistic Inference Lecture  5

ResultsSzeliski et al. , 2008

Labels - {disparities}

Unary Potentials: Similarity of pixel colours

Pairwise Potentials: 0, if same labels

1 - exp(|da - db|), if different labels

TRW

Stereo Correspondence

Page 60: Probabilistic Inference Lecture  5

ResultsSzeliski et al. , 2008

Labels - {disparities}

Unary Potentials: Similarity of pixel colours

Belief Propagation

Pairwise Potentials: 0, if same labels

1 - exp(|da - db|), if different labels

Stereo Correspondence

Page 61: Probabilistic Inference Lecture  5

ResultsNon-submodular problems Kolmogorov, 2006

BP TRW-S

30x30 grid K50

BP TRW-S

BP outperforms TRW-S

Page 62: Probabilistic Inference Lecture  5

Code + Standard Data

http://vision.middlebury.edu/MRF

Page 63: Probabilistic Inference Lecture  5

• TRW Message Passing

• Dual Decomposition

Outline

Page 64: Probabilistic Inference Lecture  5

Dual Decomposition

minx ∑i gi(x)s.t. x C

Page 65: Probabilistic Inference Lecture  5

Dual Decomposition

minx,xi ∑i gi(xi)

s.t. xi C xi = x

Page 66: Probabilistic Inference Lecture  5

Dual Decomposition

minx,xi ∑i gi(xi)

s.t. xi C

Page 67: Probabilistic Inference Lecture  5

Dual Decomposition

minx,xi ∑i gi(xi) + ∑i λi

T(xi-x)

s.t. xi Cmaxλi

KKT Condition: ∑i λi = 0

Page 68: Probabilistic Inference Lecture  5

Dual Decomposition

minx,xi ∑i gi(xi) + ∑i λi

Txi

s.t. xi Cmaxλi

Page 69: Probabilistic Inference Lecture  5

Dual Decomposition

minxi ∑i (gi(xi) + λi

Txi)s.t. xi C

Projected Supergradient Ascent

maxλi

Supergradient s of h(z) at z0

h(z) - h(z0) ≤ sT(z-z0), for all z in the feasible region

Page 70: Probabilistic Inference Lecture  5

Dual Decomposition

minxi ∑i (gi(xi) + λi

Txi)s.t. xi C

Initialize λi0

= 0

maxλi

Page 71: Probabilistic Inference Lecture  5

Dual Decomposition

minxi ∑i (gi(xi) + λi

Txi)s.t. xi C

Compute supergradients

maxλi

si = argminxi ∑i (gi(xi) + (λi

t)Txi)

Page 72: Probabilistic Inference Lecture  5

Dual Decomposition

minxi ∑i (gi(xi) + λi

Txi)s.t. xi C

Project supergradients

maxλi

pi = si - ∑j sj/m

where ‘m’ = number of subproblems (slaves)

Page 73: Probabilistic Inference Lecture  5

Dual Decomposition

minxi ∑i (gi(xi) + λi

Txi)s.t. xi C

Update dual variables

maxλi

λit+1

= λit + ηt pi

where ηt = learning rate = 1/(t+1) for example

Page 74: Probabilistic Inference Lecture  5

Dual DecompositionInitialize λi

0 = 0

Compute projected supergradients

si = argminxi ∑i (gi(xi) + (λi

t)Txi)

pi = si - ∑j sj/m

Update dual variables

λit+1

= λit + ηt pi

REPEAT

Page 75: Probabilistic Inference Lecture  5

Dual DecompositionKomodakis et al., 2007

Va Vb Vc

Vd Ve Vf

Vg Vh Vi

Va Vb Vc

Vd Ve Vf

Vg Vh Vi

1

2

3

4 5 6

1

0s1

a =

1

0s4

a =

Slaves agree on label for Va

Page 76: Probabilistic Inference Lecture  5

Dual DecompositionKomodakis et al., 2007

Va Vb Vc

Vd Ve Vf

Vg Vh Vi

Va Vb Vc

Vd Ve Vf

Vg Vh Vi

1

2

3

4 5 6

1

0s1

a =

1

0s4

a =

0

0p1

a =

0

0p4

a =

Page 77: Probabilistic Inference Lecture  5

Dual DecompositionKomodakis et al., 2007

Va Vb Vc

Vd Ve Vf

Vg Vh Vi

Va Vb Vc

Vd Ve Vf

Vg Vh Vi

1

2

3

4 5 6

1

0s1

a =

0

1s4

a =

Slaves disagree on label for Va

Page 78: Probabilistic Inference Lecture  5

Dual DecompositionKomodakis et al., 2007

Va Vb Vc

Vd Ve Vf

Vg Vh Vi

Va Vb Vc

Vd Ve Vf

Vg Vh Vi

1

2

3

4 5 6

1

0s1

a =

0

1s4

a =

0.5

-0.5p1

a =

-0.5

0.5p4

a =

Unary cost increases

Page 79: Probabilistic Inference Lecture  5

Dual DecompositionKomodakis et al., 2007

Va Vb Vc

Vd Ve Vf

Vg Vh Vi

Va Vb Vc

Vd Ve Vf

Vg Vh Vi

1

2

3

4 5 6

1

0s1

a =

0

1s4

a =

0.5

-0.5p1

a =

-0.5

0.5p4

a =

Unary cost decreases

Page 80: Probabilistic Inference Lecture  5

Dual DecompositionKomodakis et al., 2007

Va Vb Vc

Vd Ve Vf

Vg Vh Vi

Va Vb Vc

Vd Ve Vf

Vg Vh Vi

1

2

3

4 5 6

1

0s1

a =

0

1s4

a =

0.5

-0.5p1

a =

-0.5

0.5p4

a =

Push the slavestowards agreement

Page 81: Probabilistic Inference Lecture  5

ComparisonTRW DD

Fast Slow

Local Maximum Global Maximum

RequiresMin-Marginals

RequiresMAP Estimate

Other forms of slavesTighter relaxations

Sparse high-order potentials