principles of remote sensing

Download Principles of Remote Sensing

If you can't read please download the document

Upload: monita

Post on 09-Jan-2016

75 views

Category:

Documents


20 download

DESCRIPTION

Principles of Remote Sensing. Image from NASA – Goddard Space Flight Center, NOAA GOES-8 satellite, 2 Sep ’94, 1800 UT. Scanning planet Earth from space. History of remote sensing. Earliest vehicle was …? Tournachon (‘Nadar’) took 1 st aerial photograph in 1858 (since lost) - PowerPoint PPT Presentation

TRANSCRIPT

  • Principles of Remote Sensing Image from NASA Goddard Space Flight Center, NOAA GOES-8 satellite, 2 Sep 94, 1800 UT

    CS 128/ES 228 - Lecture 9a

  • Scanning planet Earth from space

    CS 128/ES 228 - Lecture 9a

  • History of remote sensingEarliest vehicle was ? Tournachon (Nadar) took 1st aerial photograph in 1858 (since lost) Earliest conserved aerial photograph: Boston, J. Black, 1860 Early applications were in military reconnaissance

    CS 128/ES 228 - Lecture 9a

  • WWII heavy use of aerial reconnaissanceImages: Avery. 1977. Interpretation of Aerial Photographs. 3rd ed. Burgess Press, Minneapolis, MN.

    CS 128/ES 228 - Lecture 9a

  • Spy planes & the Cold War

    CS 128/ES 228 - Lecture 9a

  • Satellite sensingRussian Sputnik (1957) - radio transmitter only Rapid response by US: CORONA (1960) Early applications: military reconnaissance

    CS 128/ES 228 - Lecture 9a

  • Advantages of satellitesWide coverage Vertical (orthogonal) view Multi-spectral data bands Rapid data collection

    CS 128/ES 228 - Lecture 9a

  • Sources of EM radiationKey distinction:passive sensingactive sensing Spectral signaturesTop: Lo & Yeung, fig. 8.1 Bottom: ASTER Spectral Library (http://speclib.jpl.nasa.gov)

    CS 128/ES 228 - Lecture 9a

  • Types of EM radiation usedThree important spectral bands:visible light infrared radiationmicrowave radiationImage from NASA 1987. SAR: Synthetic Aperture Radar. Earth Observing System, Vol. IIf.

    CS 128/ES 228 - Lecture 9a

  • Atmospheric attenuationScatteringcaused by aerosols (water vapor, dust, smoke) more intense at shorter wavelengths why the sky is blue

    Absorptioncaused by gas molecules (H2O, CO2, O2, O3) each molecule absorbs at a specific wave-length result: atmospheric transmission windows

    CS 128/ES 228 - Lecture 9a

  • Transmission windows UV-visible-IR MicrowaveImage from NASA 1987. From Pattern to Process: The Strategy of the Earth Observing System. Vol. II.

    CS 128/ES 228 - Lecture 9a

  • Classes of sensorsPhotographicpanchromatic color

    Infrared (IR)film (near IR)thermal IR sensors for longer wave-lengthsMulti-spectral scanners sensors for many wavelengths image scanned across sensorsRadarRAdio Detection And Ranging active imaging

    CS 128/ES 228 - Lecture 9a

  • Visual sensors: film typespanchromatic near-infrared color

    Both images from Committee on Earth Observation Satellites http://ceos.cnes.fr:8100/cdrom-98/ceos1/irsd/content.htm

    CS 128/ES 228 - Lecture 9a

  • Infrared sensorsIR penetrates haze and light cloud cover can be used at night used by military for camouflage detection IR signature often distinct from visible image

    CS 128/ES 228 - Lecture 9a

  • Color IR filmUsed with yellow (blue-absorbing) filter 3 primary pigments, but not true (visible) color - green vegetation = red - clear water = dark blue - turbid water = bright blue - soil = green - urban areas = pale blue

    Top image: Committee on Earth Observation Satellites http://ceos.cnes.fr:8100/cdrom-98/ceos1/irsd/content.htmBottom image: Avery. 1977. Interpretation of Aerial Photographs. 3rd ed. Burgess Press, Minneapolis, MN.

    CS 128/ES 228 - Lecture 9a

  • Multispectral sensorsVisible + IR spectra Comparison of film and electronic sensor spectral bandsTop: Avery 1977. Interpretation of Aerial Photography. Burgess Publ., NinneapolisBottom: ASTER Science page (http://www.science.aster.ersdac.or.jp/users/parte1/02-5.htm#3)

    CS 128/ES 228 - Lecture 9a

  • Radar sensorsactive sensing day & night, all weather less affected by scattering (aerosols) vertical or oblique perspectiveLo & Yeung, fig. 8.13

    CS 128/ES 228 - Lecture 9a

  • Uses of radar: altimetry satellite-nadir distance geoid & topographic measurements sea elevation, tides & currents wave/storm measurements

    Both images from NASA 1987. Altimetric System. Earth Observing System, Vol. IIh.

    CS 128/ES 228 - Lecture 9a

  • Uses of radar: SAR glaciology hydrology vegetation science geology

    Image from NASA 1987. SAR: Synthetic Aperture Radar. Earth Observing System, Vol. IIf.

    CS 128/ES 228 - Lecture 9a

  • Sensor resolutionSpatial: size of smallest objects visible on ground. Ranges from < 1m to > 1 km. Inversely related to area covered by image Spectral: wavelengths recorded. Ex. panchromatic film (~0.2 0.7 m); Landsat Thematic Mapper bands (0.06 to 0.24 m wide) Radiometric: # bits/pixel. Ex. Landsat TM (8 bit); AVRIS (12 bit) Temporal: for satellite, time to repeat coverage. Ex. Landsats 5 & 7 (16 days)

    CS 128/ES 228 - Lecture 9a

  • Spatial resolution: analog (film) imagesDepends on:lens quality & camera stability size of negative film grain

    High quality aerial photograph:up to 60 lines/mm 9 x 9 (23 x 23 cm) negative scanned at 3000 dpi = ~725 megapixels if 8 bit image depth, >5 GB image size

    CS 128/ES 228 - Lecture 9a

  • Ground resolutionG. R. = scale factor / film resolution

    CS 128/ES 228 - Lecture 9a

  • Spatial resolution: digital (satellite) imagesA sampler of recent (civilian) satellites:

    CS 128/ES 228 - Lecture 9a

  • Satellite image resolutionQuickbird 2Commercial venture 0.63 m resolution U.S. trying to discourage open access to finer resolution images Digitalglobe.com

    CS 128/ES 228 - Lecture 9a

  • Satellite orbitsGeostationary36,000 km above equator Polarvarying heights often in Sun-synchronous orbits

    Both diagrams from European Organisation for the Exploitation of Meteorological Satelliteswww.eumetsat.de/en/mtp/space/polar.html

    CS 128/ES 228 - Lecture 9a

  • Satellite coverageGeostationaryno polar coveragecoverage is 24/7low ground reso-lution (~ 1 km) Polarglobal coveragecoverage is dis-continuous

    Both diagrams from European Organisation for the Exploitation of Meteorological Satelliteswww.eumetsat.de/en/mtp/space/polar.html

    CS 128/ES 228 - Lecture 9a

  • Geostationary orbitsEx. GOES satellitesMeteorological satellites GOES-8 at 75oW, GOES-9 at 135oW 5 bands (1 visible, 4 thermal infrared)

    Image from NASA Goddard Space Flight Center, NOAA GOES satellite, Hurricane Floyd, 15 Sep 99

    CS 128/ES 228 - Lecture 9a

  • Polar orbitsEx. Landsat & Terra satellites705 km height, ~100 minute orbit 185 km swath

    16 day repeat Sun-synchronous orbits (~0945 a.m. equator crossing)

    Orbit tracking data from NASA http://liftoff.msfc.nasa.gov/realtime/JTrack/eos.html, 5 Mar 03

    CS 128/ES 228 - Lecture 9a