principles of direct sequence & frequency hopping …...principles of direct sequence &...

77
Principles of Direct Sequence & Frequency Hopping SSS Professor A. Manikas Imperial College London EE303 - Communication Systems An Overview of Fundamentals Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 1 / 77

Upload: others

Post on 15-Mar-2020

25 views

Category:

Documents


0 download

TRANSCRIPT

Principles ofDirect Sequence & Frequency Hopping SSS

Professor A. Manikas

Imperial College London

EE303 - Communication SystemsAn Overview of Fundamentals

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 1 / 77

Table of Contents1 Introduction

Modelling of PN-signals in SSSEquivalent Energy Unitisation E¢ciency (EUE)Comments

2 Classification of Jammers in SSS3 Direct Sequence SSS

Introductory Concepts and Mathematical ModellingPSD(f ) of a Random Pulse SignalPSD(f ) of a PN-Signal b(t) in DS-SSSsPSD(f ) of DS/BPSK Spread Spectrum Tx Signal s(t)

4 DS-BPSK Spread SpectrumOutput SNIRBit Error Probability with Jamming

5 DS-SSS on the (pe , EUE, BUE)-parameter plane6 Anti-Jam Margin7 Some Comments on DS-QPSK-SSS8 Frequency Hopping SSSs9 Appendices

Appendix A. Block Diagram of a Typical Spread Spectrum SystemAppendix B. BPSK/DS/SS Transmitter and ReceiverAppendix C. QPSK/DS/SS Transmitter and ReceiverAppendix D. Proof of SNIRout (Equation 27)

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 2 / 77

Introduction

Introduction

(a) SSS (jammers): (b) CDMA (K users):

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 3 / 77

Introduction Modelling of PN-signals in SSS

Modelling of PN-signals in SSSConsider

!

({α[n]}=a sequence of ± 10sc(t) = an energy signal of duration Tc , e.g. c(t) = rect

ntTc

o

We have seen that the PN signal b(t) can be modelled as follows:I DS-SSS (Examples: DS-BPSK, DS-QPSK):

b(t) = ∑n

α[n].c(t ! nTc ) (1)

I FH-SSS (Examples: FH-FSK)

b(t) = ∑nexp {j(2πk[n]F1t + φ[n])} .c(t ! nTc ) (2)

where {k[n]} is a sequence of integers such that

{α[n]} 7! {k[n]} (3)

and with φ[n] = random: pdfφ[n] =12π rect

n12π

o

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 4 / 77

Introduction Equivalent Energy Unitisation E¢ciency (EUE)

Equivalent Energy Unitisation E¢ciency (EUE)Remember:

F Jamming source, or, simply Jammer = intentional interferenceF Interfering source = unintentional interference

F With area-B = area-A we can find NjF Pj = 2% areaA = 2% areaB = NjBj ) Nj =

PjBj

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 5 / 77

Introduction Equivalent Energy Unitisation E¢ciency (EUE)

ifBJ = qBss ; 0 < q ' 1 (4)

then

EUEJ =EbNJ

=Ps .BJPJ .rb

=Ps .q.BssPJ .B

= PG% SJRin % q (5)

EUEequ =Eb

N0 +NJ(6)

= PG% SJRin % q| {z }EUEj

%(N0Nj+ 1

)!1(7)

where

SJRin ,PsPJ

(8)

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 6 / 77

Introduction Comments

CommentsEUEequ (or EUEJ ): very important since bit error probabilities aredefined as function of EUEequ (or of EUEJ )For a specified performance

!*the smaller the SIRin ) the better for the signalthe larger the SIRin ) the better for the jammer

Jammer limits the performance of the communication systemi.e. e§ects of channel noise can be ignoredi.e. Jammer Power( Pn ) EUEequ =

EbN0+NJ

' EbNJ= EUEJ

""

N.B. exception to this:i) non-uniform fading channelsii) multiple access channels

9 ∞ number of possible jamming waveformsThere is no single jamming waveform that is worst for all SSSsThere is no single SSS that is best against all jamming waveforms.

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 7 / 77

Classification of Jammers in SSS

Classification of Jammers in SSS

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 8 / 77

Direct Sequence SSS Introductory Concepts and Mathematical Modelling

Direct Sequence SSSIntroductory Concepts & Mathematical Modelling

If BPSK digital modulator is employed then the BPSK-signal can bemodelled as:

BPSK s(t) = Ac · sin(2πFc t +m(t) · π2 ) (9)

where the data waveform can be modelled as follows:

m(t) , ∑na[n] · c1(t ! n · Tcs )| {z }

rect{ t!n·TcsTcs }

; nTcs ' t < (n+ 1) · Tcs (10)

with {a[n]} = sequ. of independent data (message) bits (±1’s)

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 9 / 77

Direct Sequence SSS Introductory Concepts and Mathematical Modelling

Equation (9) can be rewritten as follows:

BPSK s(t) = Ac ·m(t) · cos(2πFc t)

) BPSK can be considered as(

PMAM

(11)

remember:

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 10 / 77

Direct Sequence SSS Introductory Concepts and Mathematical Modelling

The PSD(f )’s of m(t) and s(t) are shown below

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 11 / 77

Direct Sequence SSS Introductory Concepts and Mathematical Modelling

If a DS/BPSK modulator is employed, then the SS-transmitted signalis

DS/BPSK : s(t) = Ac sin

0

@2πFc t +

±1z }| {m(t)b(t)

π

2

1

A (12)

= Acm(t)b(t) cos(2πFc t) (13)

where

8>>>>>>>>>><

>>>>>>>>>>:

m(t) , ∑na[n] · c1(t ! nTcs )| {z }

"rect{ t!nTcsTcs }

; nTcs ' t < (n+ 1)Tcs

b(t) = ∑k

α[k ] · c2(t ! kTcs )| {z }"

rect{ t!kTcTc }

; kTc ' t <

chip-duration

(k + 1)#Tc

3333333333333333

(14)

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 12 / 77

Direct Sequence SSS Introductory Concepts and Mathematical Modelling

BPSK DS/CDMA Transmitter & Receiver

TX (see also Appendix-B):

Rx (see also Appendix-B):

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 13 / 77

Direct Sequence SSS Introductory Concepts and Mathematical Modelling

The PN-sequence {α[l ]} (whose elements have values ±1)

is M times faster than the data sequence {α[n]} .

i.e.Tcs = M · Tc (15)

i.e.PN-signal Bandwidth ( data-Bandwidth (16)

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 14 / 77

Direct Sequence SSS Introductory Concepts and Mathematical Modelling

Systems which have coincident data and SS code clocks

are often said to have a “data privacy feature”I such systems are easy to build and can be combined in single units

Tcs =

5qMTc

Note: chip = Tc = smallest time increment

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 15 / 77

Direct Sequence SSS Introductory Concepts and Mathematical Modelling

If the above “data privacy feature” is taken into account

then8>>>><

>>>>:

m(t) , ∑na[n].c1(t ! n · Tcs ) nTcs < t < (n+ 1)Tcs

b(t) = ∑k

α[k ].c2(t ! kTc ) kTc < t < (k + 1)Tc

with Tcs = MTc ;4 kM

5= n;

(17)

where

n · Tcs + k 0 · Tc ' t < n · Tcs + (k 0 + 1) · Tc8k 0 = 0, 1, . . . ,M ! 1 = kmodM

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 16 / 77

Direct Sequence SSS Introductory Concepts and Mathematical Modelling

Conclusion

DS/BPSK similar to BPSK"

except that the apparent data rate is M times faster+

signal spectrum is M times wider

ThereforePG = Bss

B = M (18)

Note:1 message cannot be recovered without knowledge of PN-sequence i.e.PRIVACY

2 typical:F PN-chip-rate ! several M bits/secF data rate ! few bits/sec

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 17 / 77

Direct Sequence SSS Introductory Concepts and Mathematical Modelling

PSD of DS/BPSK/SS Transmitted Signal

Tx signal

s(t) = m(t) · b(t) · Ac · cos(2πFc t)

+PSDs (f ) = PSDm(f ) 0 PSDb(f ) 0 PSDAc cos(2πFc t)(f )

+PSDs (f ) = PSDm(f ) 0 PSDb(f ) 0 PSDAc cos(2πFc t)(f )

remember

PSDAc cos(2πFc t)(f ) =A2c4· (δ (f ! Fc ) + δ (f + Fc ))

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 18 / 77

Direct Sequence SSS PSD(f ) of a Random Pulse Signal

PSD(f) of a Random Pulse SignalFor a random pulse signal m(t) (i.e. a sequence of pulses where thereis an invariant average time of separation Tcs between pulses) with allpulses of the same form but with random amplitudes and statisticalindependent random time of occurrence, then:

PSDm(f ) =1Tcs

· En|Fourier Transform of a single pulse|2

o

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 19 / 77

Direct Sequence SSS PSD(f ) of a Random Pulse Signal

Example: PSD of a random BINARY signal m(t)Consider a random binary sequence of 0’s and 1’s. This binarysequence is transmitted as random signal m(t) with 1’s and 0’s beingsent using the pulses shown below.

For instance a random binary sequence/waveform could be

If 1’s and 0’s are statistically independent with Pr(0) = Pr(1) = 0.5,the PSD of the transmitted signal can be estimated as follows:

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 20 / 77

Direct Sequence SSS PSD(f ) of a Random Pulse Signal

Solution:

PSDm(f ) =1Tcs

· E

8<

:

666666FT

0

@

1

A

666666

29=

;

=1Tcs

· E:a2 · T 2cs · sinc

2(fTcs );

=1Tcs

· T 2cs · sinc2 {fTcs} · E

:a2;

| {z }=(!A2) 12+(+A2)

12

= TcsA2 sinc2 {fTcs}

Rmm(τ) = ? for you!

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 21 / 77

Direct Sequence SSS PSD(f ) of a PN-Signal b(t) in DS-SSSs

PSD(f) of a PN-Signal b(t) in DS-SSSsAutocorrelation function: Rbb(τ) = 1

NcTcRcc (τ)~ Rαα(τ)

where c(t) =rect tTc =

1 Rcc (τ) = TcΛ( τTc)

2 Rαα(τ) , (Nc + 1)repNcTc {δ(τ)}!repTc {δ(τ)}

3 autocorrelation function Rbb(τ) =1

NcTcRcc (τ)~ Rαα(τ)

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 22 / 77

Direct Sequence SSS PSD(f ) of a PN-Signal b(t) in DS-SSSs

i.e.

Rbb(τ) =1

NcTcRcc (τ)~ Rαα(τ)

=1

NcTc(Nc + 1)repNcTc

*TcΛ

Tc

)<

!1

NcTcrepTc

*TcΛ

Tc

)<

=Nc + 1Nc

· repNcTc

*Λ(

τ

Tc

)<!1Nc

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 23 / 77

Direct Sequence SSS PSD(f ) of a PN-Signal b(t) in DS-SSSs

Thus, we have

Rbb(τ) =Nc+1Nc

repNcTcn

Λ=

τTc

>o! 1

Nc(19)

By using the FT tables the PSD(f )= FT{Rbb(τ)} of the signal b(t)is:

PSDb(f ) =Nc+1N 2c

comb 1Nc Tc

:sinc2 {f · Tc}

;! 1

Ncδ(f ) (20)

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 24 / 77

Direct Sequence SSS PSD(f ) of DS/BPSK Spread Spectrum Tx Signal s(t)

PSD(f) of DS/BPSK Spread Spectrum Tx Signal s(t)

s(t) = m(t) · b(t) · Ac · cos(2πFc t)

) PSDs (f ) = PSDm(f ) 0 PSDb(f ) 0A2c4 (δ(f ! Fc ) + δ(f + Fc ))| {z }

term 1

Ignore (for the time being) the e§ects of m(t)

PSDterm1(f ) = A2c4 · PSDb(f ) 0 (δ(f ! Fc ) + δ(f + Fc ))

= A2c4 ·*Nc+1N 2c

· comb 1Nc Tc

:sinc2(f · Tc )

;!1Nc· δ(f )

<

0 (δ(f ! Fc ) + δ(f + Fc ))

= A2c4 ·

Nc+1N 2c

·=comb 1

Nc Tc

:sinc2 {(f ! Fc )Tc}

;

+ comb 1Nc Tc

:sinc2 {(f + Fc )Tc}

;>

!A2c4

1Nc(δ(f ! Fc ) + δ(f + Fc ))

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 25 / 77

Direct Sequence SSS PSD(f ) of DS/BPSK Spread Spectrum Tx Signal s(t)

i.e.

PSDterm1(f ) =A2c4·Nc + 1N2c

·=comb 1

Nc Tc

:sinc2 {(f ! Fc )Tc}

;

+ comb 1Nc Tc

:sinc2 {(f + Fc )Tc}

;>

!A2c41Nc(δ(f ! Fc ) + δ(f + Fc )) (21)

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 26 / 77

Direct Sequence SSS PSD(f ) of DS/BPSK Spread Spectrum Tx Signal s(t)

Above the e§ects of m(t) have not been taken into account.I If m(t) is used,then each discrete frequency in Equation (21) becomes a sinc2

function.I There are two cases:

CASE-1:

1Tcs< 1

2NcTc

CASE-2:

1Tcs1 1

NcTc

the peaks will merge into acontinuous smooth spectrum

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 27 / 77

Direct Sequence SSS PSD(f ) of DS/BPSK Spread Spectrum Tx Signal s(t)

CASE-1:

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 28 / 77

Direct Sequence SSS PSD(f ) of DS/BPSK Spread Spectrum Tx Signal s(t)

CASE-2:

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 29 / 77

Direct Sequence SSS PSD(f ) of DS/BPSK Spread Spectrum Tx Signal s(t)

N.B.:I If

b(t) = random

thens(t) = Acm(t)b(t) cos(2πFc t)

I If the e§ects of m(t) are ignored then

PSDs (f ) = A2cT2c sinc {fTc} 0

14(δ(f ! Fc ) + δ(f + Fc ))

+

PSDs (f ) =Tc4A2c=sinc2 {(f ! Fc )Tc}+ sinc2 {(f + Fc )Tc}

>

i.e. PSD is similar to ‘CASE-2’ above

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 30 / 77

DS-BPSK Spread Spectrum Output SNIR

DS-BPSK Spread Spectrum:Output SNIR

Consider the block diagram of a SS-Communication System whichemploys a BPSK digital modulator:

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 31 / 77

DS-BPSK Spread Spectrum Output SNIR

N.B.: Bss = 1Tc; B = 1

Tcs; PG = Bss

B = TcsTc

Then, at point T1 , we have

s(t) = Ac ·m(t) · b(t) · cos(2πFc t) (22)

and at point^T1 :

s(t) + n(t) + j(t) (for k = 1) (23)

At the input of the receiver the Signal-to-Noise-plus-InterferenceRatio (SNIRin) is:

SNIRin =EUE

PG · (1+ JNRin)=EUEequPG

(24)

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 32 / 77

DS-BPSK Spread Spectrum Output SNIR

at point^T :

(s(t) + n(t) + j(t)) · b(t ! τ) · 2 cos(2πFc t + θ) (25)

at point T0 :

From the analysis presented in Appendix-D we have

Punwanted =

8><

>:

N0Tcs+ A2c

Tcs ·Tc · τ2 · cos2(θ) + Pjout for |τ| ' Tc

N0Tcs+ A2c ·Tc

Tcs· cos2(θ) + Pjout for |τ| > Tc

3333333(26)

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 33 / 77

DS-BPSK Spread Spectrum Output SNIR

Therefore

SNIRout =PdesiredPunwanted

=

8>><

>>:

A2c ·Λ2( τTc )·cos

2(θ)

N0Tcs+ A2cTcs ·Tc ·τ

2 ·cos2(θ)+Pjoutfor |τ| ' Tc

0 for |τ| > Tc

33333333(27)

if τ = 0 and θ = 0 (i.e. the system is synchronized) then:

SNIR out-maxmatched filter

=A2c

N0Tcs+ Pj · TcTcs

=2 · Ps

N0Tcs+

Pj ·TcTcs

=2 · EbTcs

N0Tcs+

Pj ·TcTcs

=2 · Eb

N0 + Pj · Tc| {z }=

PjBss=Nj

or, equivalently

SNIR out-maxmatched filter

= 2EUE equ (28)

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 34 / 77

DS-BPSK Spread Spectrum Output SNIR

However (see Equation 48, Appendix D),

SNIRin =EUE

PG · (1+ JNRin)=EUEequPG

(29)

Therefore,

SNIR out-maxmatched filter

= 2EUEequ= 2.PG.SNIRin (30)

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 35 / 77

DS-BPSK Spread Spectrum Bit Error Probability with Jamming

Bit Error Probability with Jamming

A. CONSTANT POWER BROADBAND JAMMER:

From the “Detection Theory” topic we know that thebit-error-probability pe for a Binary Phase-Shift Key (BPSK)communication system is given by:

pe = T

8<

:p2 · EUE| {z }

SNRout, matched filter

9=

; where EUE =EbN0

(31)

Consider a DS/BPSK SSS which operates in the presence of aconstant amplitude broadband jammer with double sided powerspectral density

PSDj (f ) =Nj2

(32)

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 36 / 77

DS-BPSK Spread Spectrum Bit Error Probability with Jamming

Then,pe = T

np2 · EUEequ

o

where EUEequ =Eb

N0+Njwith Nj =

PJBss

If we make the assumption that Nj ( N0 then

pe = T:p2 · EUEJ

;(33)

where EUEJ =EbNj

This is known as the BASELINE PERFORMANCE of a DS/BPSKSSS

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 37 / 77

DS-BPSK Spread Spectrum Bit Error Probability with Jamming

B. PULSE JAMMER:

Consider a DS/BPSK SSS which operates in the presence of ajammer which transmits “broadband noise” with large power but onlya fraction of the time.

The double-sided power spectral density of the jammer is given by:

PSDj (f ) =Nj2ρ

(34)

whereI ρ , the fraction of time the jammer is “on”.

I Pj = average jamming power

I Pjρ = actual power during a jamming pulse duration

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 38 / 77

DS-BPSK Spread Spectrum Bit Error Probability with Jamming

Let the jammer pulse duration be greater than Tcs (data bit time).

I Then*Pr(jammer = “on” ) = ρPr(jammer = “o§” ) = 1! ρ

and the bit-error-probability is given by:

pe = (1! ρ)T

(s

2EbN0

)

| {z }'0 (very small)

+ ρT

8><

>:

vuut2 Eb

N0 +Njρ

9>=

>;(35)

which can be simplified to

pe = ρ·T{2ρ · EUEJ} where EUEJ =EbNj

(36)

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 39 / 77

DS-BPSK Spread Spectrum Bit Error Probability with Jamming

By plotting the above equation for di§erent values of ρ we get:

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 40 / 77

DS-BPSK Spread Spectrum Bit Error Probability with Jamming

Note thatI the value of which maximizes pe decreases with increasing values ofEUEj

I there is a value of ρ which maximizes the probability of error pe . Thisvalue can be found by di§erentiating Equation-36 with respect to ρ.That is

dpedρ

= 0) ρ0 =

(0.709EUEj

if EUEj > 0.709

1 if EUEj ' 0.709(37)

I Therefore

pemax = maxρ

nρ · T

nq2ρEUEj

oo(38)

pemax = ρ0 · Tnq

2ρ0EUEjo

=) pemax =

(0.083EUEj

if EUEj > 0.709

T:p

2EUEj;

if EUEj ' 0.709(39)

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 41 / 77

DS-BPSK Spread Spectrum Bit Error Probability with Jamming

N.B.:I when jammer pulse length is shorter than a data bit time Tcs then theabove expression is not valid.

I However, Equation-39 represents an UPPER BOUND on thebit-error-probability pe .

The next graph illustratesI the bit-error-prob. plotted against the EUEj for a baseline jammer(i.e. ρ = 1) and

I the worst case jammer (i.e. ρ = ρ0) for a DS/BPSK SSS.

Note the huge di§erence between the two curves.

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 42 / 77

DS-BPSK Spread Spectrum Bit Error Probability with Jamming

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 43 / 77

DS-SSS on the (pe , EUE, BUE)-parameter plane

DS-SSS on the ( pe, EUE, BUE)-parameter plane

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 44 / 77

Anti-Jam Margin

Anti-Jam Margin

An important parameter of SSS is the ANTIJAM MARGIN which isdefined as follows:

dB(AJM) , dB(EUEequ) ! dB(EUE which corresponds to the pe ,PR )

) dB(AJM) , 10 0 log(EUEequ)! 10 0 log(EUEpe ,PR )

AJM represents a safety margin against jammer (or against jammerplus noise).

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 45 / 77

Some Comments on DS-QPSK-SSS

Some Comments on DS-QPSK-SSSIn a DS-QPSK-SSS the binary information is represented by twodi§erent data signals mI (t) and mQ (t) and two di§erent PN-signalbI (t) and bQ (t)

data signals and PN-signals:

8>>>>>>>>>><

>>>>>>>>>>:

inphase

8>><

>>:

mI (t) , ∑n(even)

a[n] · rectnt!n·TcsTcs

o

bI (t) , ∑k (even)

α[k ] · rectnt!k ·TcTc

o

quadrature

8>><

>>:

mQ (t) , ∑n(odd )

a[n] · rectnt!n·TcsTcs

o

bQ (t) , ∑k (odd )

α[k ] · rectnt!k ·TcTc

o

(40)

with

Tcs = PGTc ;FkPG

G= n;

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 46 / 77

Some Comments on DS-QPSK-SSS

Note that mI (t) is formed by the even data bits and mQ (t) by theodd ones. At each transmitter, the two data signals are firstlymultiplied by two di§erent code waveforms bI (t) and bQ (t), and thenby two di§erent carriers

Acp2· cos(2πFc t + φ) and

Acp2· sin(2πFc t + φ) (41)

while the transmitted signal s(t) is formed by the sum of these twocomponents:

s(t) = Acp2·mI (t) · bI (t) · cos(2πFc t + φ)

+ Acp2·mQ (t) · bQ (t) · sin(2πFc t + φ)

(42)

where Ac and Fc are assumed common for all carriers.It is important to point out that now the amplitude of the carriers haschanged from Ac to Acp

2so that the power of the transmitted signal

s(t) still remains equal to A2c2 .

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 47 / 77

Some Comments on DS-QPSK-SSS

DS-QPSK-SSS implementation No.1: QPSK1

(Note: if = Tc2 delay is inserted then OQPSK1 - o§set QPSK1)

Transmitter:

s(t) =p2Ps · cos(2πFc t +

tan!1(bQ (t)·mQ (t)bI (t)·mI (t)

)

z}|{ψ(t) )

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 48 / 77

Some Comments on DS-QPSK-SSS

Receiver:

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 49 / 77

Some Comments on DS-QPSK-SSS

DS-QPSK-SSS implementation No.2: QPSK2

(Note: if = Tc2 delay is inserted then OQPSK2)

Transmitter:

s(t) =p2Ps · cos(2πFc t +

tan!1(bQ (t)·m(t)bI (t)·m(t)

)

z}|{ψ(t) )

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 50 / 77

Some Comments on DS-QPSK-SSS

Receiver:

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 51 / 77

Frequency Hopping SSSs

Frequency Hopping SSSs

Consider that the following part of the spectrum has been allocatedto a FH/SSS:

Let us partition the above spectrum onto L di§erent frequency slotsof bandwidth F1 (or of bandwidth qF1 where q is a constant). ThenBss = q · F1 · L

L = 2m

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 52 / 77

Frequency Hopping SSSs

Define the following symbols:Tc = hop duration (i.e. hop rate rhop = 1

Tc)

Tcs = message bit duration (i.e. bit rate rb = 1Tcs)

M = number of hops per message bit (i.e. Tcs = M · Tc )

FH/SSS:

8<

:

Fast hop ! rhop > rbslow hop ! rhop < rbbalance hop ! rhop = rb

The frequency slot is constant in each time chip Tc , BUT changesfrom chip-to-chip.This can be represented by the following diagram:

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 53 / 77

Frequency Hopping SSSs

In general, the No. of di§erent frequency slots L over which the signalmay hop, is a power of 2.

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 54 / 77

Frequency Hopping SSSs

F1 is, in general, equal to 1Tc,

i.e. F1 = 1Tc(but this is not a necessary requirement).

several FH signals occupy a common RF channel

FH model of b(t) - (complex representation):

b(t) = ∑nexp {j(2π.k [n].F1t + φn)} · rect

*t ! nTcTc

<

where

I k [n] =f{PN-sequ {α[n]}}I k [n] is an integer that is formed by a codeword which is formed by oneor more m-sequences

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 55 / 77

Frequency Hopping SSSs

Transmitter-Receiver path:

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 56 / 77

Frequency Hopping SSSs

A Di§erent Implementation:

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 57 / 77

Frequency Hopping SSSs

L frequencies are produced by the digital Frequ. Synthesizer,separated by F1

Bs ' q · F1 · L (43)

Note:I if reception= coherent :

F more di¢cult to achieveF places constraints on the transmitted signal and transmitted medium

I if reception= non-coherent :

F PN-gen. can run at a considerably slower rate in this type of systemthan in a DS system

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 58 / 77

Frequency Hopping SSSs

FH: non-coherent ) poorer performance against thermal noise.

Performance:I Coherent FSK (CFSK)

pe ,CFSK = Tnp

EUEo

I Non-Coherent FSK (NFSK)

pe ,NFSK =12exp

(!EUE2

)

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 59 / 77

Frequency Hopping SSSs

A serious problem is the

very strong signals at receiver

swapping out the e§ects

of weaker signal

*z }| {“near-far” problem :

I DS: severe problemI FH: much more susceptible

acquisition: much faster in FH than in DS

PG = BssB = it is not very good criterion for FH

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 60 / 77

AppendicesAppendix A. Block Diagram of a Typical Spread Spectrum

System

AppendicesAppendix A. Block Diagram of a Typical SSS

(terrestrial & satellite comm. systems)

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 61 / 77

Appendices Appendix B. BPSK/DS/SS Transmitter and Receiver

Appendix B. BPSK/DS/SS Transmitter and ReceiverBPSK/DS/SS Transmitter

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 62 / 77

Appendices Appendix B. BPSK/DS/SS Transmitter and Receiver

BPSK/DS/SS Receiver

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 63 / 77

Appendices Appendix C. QPSK/DS/SS Transmitter and Receiver

Appendix C. QPSK/DS/SS Transmitter and Receiver

Transmitter

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 64 / 77

Appendices Appendix C. QPSK/DS/SS Transmitter and Receiver

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 65 / 77

Appendices Appendix C. QPSK/DS/SS Transmitter and Receiver

Receiver:

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 66 / 77

Appendices Appendix D. Proof of SNIRout (Equation 27)

Appendix D. Proof of SNIRout (Equation 27)

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 67 / 77

Appendices Appendix D. Proof of SNIRout (Equation 27)

N.B.: Bss = 1Tc; B = 1

Tcs; PG = Bss

B = TcsTc

Then at point T1 we have

s(t) = Ac ·m(t) · b(t) · cos(2πFc t) (44)

and at point^T1 :

s(t) + n(t) + j(t) (for k = 1) (45)

At the input of the receiver the Signal-to-Noise-plus-InterferenceRatio (SNIRin) is:

SNIRin = PsPn+Pj

= Ps/Pn1+Pj/Pn

=Ps ·Tcs

N0 ·Bss ·Tcs1+JNRin

=EUE

Bss ·Tcs1+JNRin

= EUEPG·(1+JNRin)

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 68 / 77

Appendices Appendix D. Proof of SNIRout (Equation 27)

i.e.

8><

>:

SNIRin = PsPn+Pj

EUEPG·(1+JNRin)

or

SNIRin =A2c/2

N0 ·Bss+Pj

(46)

However,

EUEequ =Eb

No +Nj=

Eb/N01+ Pj

BssN0

=EUE

1+ PjPn

=EUE

1+ JNRin(47)

Therefore,

SNIRin =EUE

PG · (1+ JNRin)=EUEequPG

(48)

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 69 / 77

Appendices Appendix D. Proof of SNIRout (Equation 27)

at point^T :

(s(t) + n(t) + j(t)) · b(t ! τ) · 2 cos(2πFc t + θ) (49)

at point T0 :

i) signal term:

m0(t) =AcTcs

·Z Tcs

0m(t) · b(t) · b(t ! τ) · cos(θ) · dt

= ±AcTcs

· cos(θ) ·Z MTc

0b(t) · b(t ! τ) · dt

) m0(t) = ±Ac · RMbb(τ) · cos(θ) (50)

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 70 / 77

Appendices Appendix D. Proof of SNIRout (Equation 27)

However,

Pm0 = E:m20(t)

;= A2c · E

nRM

2

bb (τ)o· cos2(θ)

+

Pm0 = A2c ·=Var

nRMbb(τ)

o+ E2

nRMbb(τ)

o>· cos2(θ)

=) Pm0 = A2c · Var

nRMbb(τ)

o· cos2(θ)

"due to Code Noise

+ A2c · E2nRMbb(τ)

o· cos2(θ)

"desired term

(51)

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 71 / 77

Appendices Appendix D. Proof of SNIRout (Equation 27)

However:

E {m0(t)} =

8<

:

±Ac · E:RMbb(τ)

;· cos(θ) for |τ| ' Tc

0 for |τ| > Tc

333333(52)

i.e.power of

desired signal part= Pdesired = E2 {m0(t)} (53)

=

8><

>:

A2c ·Λ2=

τTc

>· cos2(θ) for |τ| ' Tc

0 for |τ| > Tc

3333333

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 72 / 77

Appendices Appendix D. Proof of SNIRout (Equation 27)

In addition

Var {m0(t)} = Varn±AcRMbb(τ) cos(θ)

o

= A2cVarnRMbb(τ)

ocos2(θ)

) Pcode-noise = Var {m0(t)}

if 0 ' τ ' Tc then

Var {m0(t)} = A2cVarnRMbb(τ)

ocos2(θ)

= A2cR2cc (τ ! Tc )M · T 2c

cos2(θ)

=A2cTcTcs

τ2

T 2ccos2(θ) (54)

if τ > Tc then

Var {m0(t)} = A2cVarnRMbb(τ)

ocos2(θ)

= A2c1Mcos2(θ)

=A2cTcTcs

cos2(θ) (55)

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 73 / 77

Appendices Appendix D. Proof of SNIRout (Equation 27)

ii) noise term

nout (t) =1Tcs

Z Tcs

0n(t) · b(t ! τ) · 2 cos(2πFc t + θ) · dt

Pn!out = E:n2out (t)

;= . . . for you . . .

. . . ) Pn!out = N0Tcs

(56)

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 74 / 77

Appendices Appendix D. Proof of SNIRout (Equation 27)

iii) jammer

If Bj 5 Bssthen Jammer = Narrowband wrt the desired SS-Signal.

In this case the jammer j(t) can be modelled as:

j(t) = Aj (t) · cos(2πFj t + φj (t))

and the jout (t) can be estimated as follows:

jout (t) =1Tcs

Z Tcs

0j(t) · b(t ! τ) · 2 cos(2πF0t + θ) · dt

= for you . . .Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 75 / 77

Appendices Appendix D. Proof of SNIRout (Equation 27)

for you . . .

) Pjout =PjPG (57)

N.B.: If jammer = wideband, i.e. if Bj 6 Bss , then Pjout = ?

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 76 / 77

Appendices Appendix D. Proof of SNIRout (Equation 27)

From the previous analysis we have

Punwanted =

8><

>:

N0Tcs+ A2c

Tcs ·Tc · τ2 · cos2(θ) + Pjout for |τ| ' Tc

N0Tcs+ A2c ·Tc

Tcs· cos2(θ) + Pjout for |τ| > Tc

3333333(58)

Therefore

SNIRout =PdesiredPunwanted

=

8>><

>>:

A2c ·Λ2( τTc )·cos

2(θ)

N0Tcs+ A2cTcs ·Tc ·τ

2 ·cos2(θ)+Pjoutfor |τ| ' Tc

0 for |τ| > Tc

33333333(59)

Prof. A. Manikas (Imperial College) EE303: DS & FH SSS 30 Nov 2011 77 / 77