princeton university i - unt digital library

36
I PRINCETON UNIVERSITY I PRINCETON, NEW JERSEY This work was supported by U. S. Energy Research and Development Administration Contract E(11-11-3073. Reproduction, translation, publication, use and disposal, in whole or in part, by or for United States Government is pq31$-0F ir~b" - , - - , .- ' . . .-.,"ii%&i

Upload: others

Post on 21-Dec-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

I PRINCETON UNIVERSITY

I PRINCETON, N E W J E R S E Y

This work was supported by U. S. Energy Research and Development Administration Contract E(11-11-3073. Reproduction, translation, publication, use and disposal, in whole or in part, by or for United States Government is pq31$-0F ir~b" - , - - , .-

' . . . - . , " i i % & i

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

NOTICE

This report was prepared as an account of work sponsored by the United States Gov- ernment. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuraoy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Printed in the United States of America.

Available from National Technical Information Service

U. S. Department of Commerce 5285 Port Royal Road

Springfield, Virginia 22151 Price: Printed Copy $ * ; Microfiche $1.45

NTIS Selling Price

T r a n s p o r t E q u a t i o n s I n Axisyrnrnet'ric T o r o i d a l C o o r d i n a t e s

Samuel L. Gra ln i ck

P r i n c e t o n Plasma P h y s i c s Laboratory - - - -

1

employee,, no, a1 their rnnlrsctorr. '

subcontrPctorr or their emPloYcu. maker Ony

wrmnty 01 implied, or a ~ u m e s ic8n1

ir rcrpo"~biity for the accuracy. comPlcteneu '

., uvfulncrr any inlbrmllon, a~v*a tw .p10d~ l~* 1 '

( pmFCU di,dO"d or represents that its would not

( , ln~nnge primtclilo&d rights

L / - - - -----J

ABSTRACT

T h i s a r t i c l e p r e s e n t s a d e r i v a t i o n o f t h e

c o n s e r v a t i o n law form of t he ' s i n g l e e n e r g y . group t r a n s p o r t

equa t ion i n an . axisymrnetric t o r o i d a l c o o r d i n a t e system

formed , by r o t a t i n g a n e s t of smooth, s imp ly c l o s e d , p l a n e

c u r v e s of a r b i t r a r y p a r a m e t r i c d e s c r i p t i o n about an a x i s

which does n o t i n t e r s e c t t h e n e s t . 'l'his g e n e r a l e q u a t i o n

may be used f o r g e n e r a t i n g . e q u a t i o n s s p e c i f l c t o p a r t i c u l a r

c r o s s s e c t i o n g e o m e t r i e s , . o r a s t h e b a s i s o f a f i n i t e

d i f f e r e n c e e q u a t i o n f o r t h e g e n e r a l ca se .

The e f f e c t o f bo th t h e t o r o i d a l . .and . p o l o i d a l

c u r v a t u r e s o f t h e sys tem are i n v e s t i g a t e d , and c r i t e r i a f o r

t h e v a l i d i t y . of c y l i n d r ' i c a l . and . p l a n a r app rox ima t ions . a r e

e s t a b l i s h e d .

The d i f f u s i o n e q u a t i o n f o r t h i s g e o m e t r y ' i s d e r i v e d ,

and it is shown t o be . f o r m a l l y . homologus t o t h e "r-8"

c y l i n d r i c a l d i f f u s i o n , equa t ion i f t h e c o o r d i n a t e sys tem is

o r t h o g o n a l and i f t h e az imu tha l c o o r d i n a t e , . $ ; is i g n o r a b l e .

! \ I ; {$fi!--T? ! 3 ! ~ ~ ~ ~ " T { Q N Oi THIS EOCUhJENT 1s ". -. , . . .,-&

I. INTRODUCTION

The s o l u t i o n o f n e u t r o n and photon t r a n s p o r t proljlems

1-4 i n t h e a n a l y s i s and d e s i g n o f proposed f u s i o n r e a c t o r s ,

and t h e a p p l i c a t i o n o f t h e t e c h n i q u e s o f t r a n s p o r t t h e o r y t o

t h e problems a s s o c i a t e d w i t h t h e t r a n s p o r t of n e u t r a l

p a r t i c l e s i n f u s i o n r e a ' c t o r p lasmas . .

5-7 r e q u i r e t h a t w e

co,ncern otirsel-ves w i t h ax isymmetr lc tdYolda l geoiiie'rrfes.

E x i s t i n g , d i s c r e t e o r d i n a t e t y p e , t r a n s p o r t .codes t h a t have

been t a i l o r e d t o p l a n a r , c y l i n d r i c a l o r s p h e r i c a l geome t r i e s

can , a t b e s t , . b e u sed t o g i v e approximate answers which are

sometimes v a l i d b u t f r e q u e n t l y a r e ex tended beyond t h e i r

r ange o f a p p l i c a b i l i t y . I n f a c t , a r e a s o n a b l e knowledge o f

t h e e r r o r i n t r o d u c e d by u s i n g t h e s e codes can o n l y b e

gues sed a t i n ' t h e absence of t o r o i d a l a n a l y s e s . The

a l t e r n a t i v e , a v a i l a b l e is: t o . u s e Monte C a r l o . s i m u l a t i o n . .

t e c h n i q u e s which are i n h e r e n t l y s u i t a b l e t o compl ica ted

geomet r i e s . T h i s approach , however, ha s no t proven t o b e

u n i v e r s a l l y a c c e p t a b l e and t h e need f o r a ' t o r o i d a l d i s c r e t e

o r d i n a t e t r a n s p o r t code s t i l l e x i s t s .

I n t h i s a r t i c l e w e w i l l u s e a t e n s o r t r a n s f o r m a t i o n

formal i sm deve loped p r e v i o u s l y 8 t o t r a n s f o r m t h e . s t r e a m i n g

t e r m of a s i n g l e ' energy group. t r a n s p o r t equa t ion t o a system

of ax isymmetr ic , non-or thogonal t o r o i d a l c o o r d i n a t e s . These

c o o r d i n a t e s a r e g e n e r a t e d by r o t a t i n g a n e s t of s imply

c l o s e d smooth c u r v e s about an a x i s which does n o t i n t e r s e c t

t h e n e s t . S e v e r a l p a r t i c u l a r c a s e s have been t r e a t e d

p r e v i o u s l y by o t h e r . a u t h o r s The d ive rgence form of

t h e t r a n s p o r t e q u a t i o n f o r one o f t h e s e w i l l b e d e r i v e d a s

an i l l u s t r a t i v e example; i t .is r e a d i l y . o b t a i n e d from t h e

g e n e r a l e q u a t i o n which we w i l l d e r i v e .

' R ~ c a s t i n g t h e g e n e r a l e q u a t i o n i n a s l i g h t l y a l t e r e d

c y l i n d r i c a l form, i t is p o s s i b l e : to i l l u m i n a t e t h e r o l e s of

bo th t h e t o r o i d a l and p o l o i d a l c u r v a t u r e s of t h e system and

t o demons t r a t e t h e c o n d i t i o n of a p p l i c a b i l i t y o f t h e

c y l i n d r i c a l approximat ion i n which t h e t o r o i d a l c u r v a t u r e is

ignored . S i m i l a r l y i f bo th t h e t o r o i d a l and p o l o i d a l

c u r v a t u r e s a r e i g n o r e d . a p l a n a r ' app rox ima t ion w i l l r e s u l t

which w i l l b e adequa te f o r some pu rposes .

F ina l ly , i t h a s been no ted t h a t t w o of t h e p r e v i o u s l y

t r e a t e d c o o r d i n a t e sys tems ',lo erijoy t h e p r o p e r t y of

y i e l d i n g d i f f u s i o n e q u a t i o n s w h i c h are formal homologs of

t h e c y l i n d r i c a l , "r-0" , d i f f u s i o n e q u a t i o n when t h e t o r o i d s l

c o o r d i n a t e is i g n o r a b l e . By u s i n g t h e same t e n s o r fo rmal i sm

t h a t we have a p p l i e d t o t h e t r a n s p o r t e q u a t i o n w e have

d e r i v e d t h e g e n e r a l axisymrnetric t o r o i d a l d i f f u s i o n

e q u a t i o n . We f i n d t h a t t h e p r o p e r t y of b e i n g homologous t o

t h e c y l i n d r i c a l "r-8" d i f f u s i o n e q u a t i o n is s h a r e d by a l l

d i f f u s i o n equa ' t ions d e r i v e d f o r o r t h o g o n a l , axisymrnetric

t o r o i d a l c o o r d i n a t e sys tems i n which t h e t o r o i d a l c o o r d i n a t e

is i g ~ i u r a b l e .

TOROIDAL COORDINATES

Cons ider a c o o r d i n a t e system i n which t h e c o o r d i n a t e

s u r f a c e s are formed by r o t a t i n g a n e s t o f smooth, s imply

c l o s e d , p l a n e c u r v e s about an a x i s which does n o t i n t e r s e c t

t h e n e s t . ( s e e F i g . 1.) The e q u a t i o n s o f t r a n s f o r m a t i o n

bctwoon t h o . ( y , ) C a r t e ~ i a n c o o r d i n a t e . ~ y s t e m and t h e

( p , 8 , @ ) t o r o i d a l c o o r d i n a t e s a r e

( I n d i c i a 1 n o t a t i o n w i l l b e , u s e d th roughout w i t h r e p e a t e d

1 2 i n d i c i e s summed. ) I n e q u a t i o n s (1) x =x , x =y a n d x3=Z.

4 is t h e t o r o i d a l o r az imutha l ang le . We may chose p t o be

t h e s q u a r e r o o t o f t h e a r e a c o n t a i n e d w i t h i n a member of t h e

n e s t o f c u r v e s and 8 t o b e ' t h e . l e n g t h of a r c a long t h e curve

no rma l i zed t o t h e p e r i m e t e r ,of th.e cu rve ' alth'ough t h i s i s

n o t e s s e n t i a l , o t h e r s e l e c t i o n s o f p ' and 8 b e i n g a c c e p t a b l e .

2 The f u n c t i o n s s a n d X g i v e a p imamet r ic d e s c r i p t i o n of t h e

elements of t h e n e s t - they may be a r b i t r a r i l y specf f ied ,

and i n f a c t , need n o t b e g iven by a n a l y t i c a l fo rmulas ,

numer i ca l f u n c t i o n s s u f f i c i n g . We w i l l r e s t r i c t t h e c h o i c e

o f X' and %such t h a t t h e n e s t so d e s c r i b e d may have a t most

one s i n g u l a r p o i n t a t which t h e J acob ian of T van i shes . 1

\Ve now w r i t e th.e s i n g l e energy ,g roup t r a n s p o r t

equa t ion as a c o n s e r v a t i o n law i n a 5-dimensional Riemannian

R 1 space , hav ing c o o r d i n a t e s . x =x, X2=y, X 3 = ~ , 5 '

4 -1 x = t a n (XZ/hx), X5'XyY (where A x , A Y and X Z a r e t h e x , y ,

and z C a r t e s i a n components of - Q , t h e p ropaga t ion v e c t o r ) ,

and hav ing t h e m e t r i c t e n s o r ,

Ig ( d e n o t e s t h e de t e rminan t o f t h e m e t r i c t e n s o r , Y i s t h e

a n g u l a r f l u x , a is t h e t o t a l c r o s s s e c t i o n and S is t h e

s o u r c e . f u n c t i o n .

~ o l l o w i n ~ t h e ' p r e s c r i p t i o n g iven i n r e f e r e n c e (8 ) we.

apply t h e t r a n s f o r m a t i o n . TI t o e q u a t i o n ( 3 ) . Under t h i s

t r a n s f o r m a t i o n ,

and

I n e q u a t i o n s (4). and ( 5 ) t h e unbar red x ' s r e f e r t o t h e

C a r t e s i a n c o o r d i n a t e s and t h e b a r r e d x ' s r e f e r t o t h e

-i j t o r o i d a l c o o r d i n a t e s . ' The c o n t r a v a r i a n t t e n s o r g is found

. . ,by s o l v i i i g

'where is a Kronecker d e l t a . The s o l u t i o n o f e q u a t i o n s 6k

( 6 ) and t h e e v a l u a t i o n of e q u a t i o n s ( 4 ) and ( 5 ) y i e l d t h e

f o l l o w i n g r e s u 1 . t ~ : . .

axL ax' + -- a , ~ . a e

ax"

where w Z x 4 , yzX5 and

Also ,

The a p p r o p r i a t e o r t h o g o n a l r e p r e s e n t a t i o n of - 52 f o r

t h i s c o o r d i n a t e sys t em w i l l b e i n t e rms of i ts components i n

t h e $ d i r e c t i o n , i n t h e d i r e c t i o n normal t o t h e t o r o i d a l

s u r f a c e and i n t h e d i r e c t i o n o r t h o g o n a l t o t h e s e two which

is t h e d i r e c t i o n o f i n c r e a s i n g 8 . These components are . .

formed by t a k i n g t h e i n n e r p roduc t of R - 'and t h e u n i t v e c t o r

i n t h e p a r t i c u l a r d i r e c t i o n . We deno te t h e u n i t v e c t o r s

( s e e F i g . 1) by f o r t h e u n i t v e c t o r normal to'. t h e t o r o i d a l

s u r f a c e , afid by 8 and f o r t h e u n i t v e c t o r s i n t h e 0 and $ -

d i r e c t i o n s . The components o f - 52 w e w i l l c a l l X,, X g and $ -.

-1' I n t h e . X c o o r d i n a t e sys t em,

a n d consequen t ly ,

Using t h i ' s or thogon.al r e p r e s e n t a t i o n of 2 w e i n t r o d u c e

a n g u l a r c o o r d i n a t e s F4 and 55 by t h e t r a n s f o r m a t i o n .

=4 . = tan

Three sys t ems of c o o r d i n a t e s i n R g have been used.

The o r i g i n a l c o o r d i n a t e sys tem denoted by Xi, (w i thou t

o v e r b a r s ) c o n s i s t s of t h e x , y and z C a r t e s i a n s p a t i a l

c o o r d i n a t e s and w and y as t h e a n g u l a r v a r i a b l e s . The

c o o r d i n a t e sys t em E~ ( s i n g l e o v e r b a r ) r e s u l t s when

t r a n s f o r m a t i o n TI is a p p l i e d t o t h e s p a t i a l v a r i a b l e s .

T h i s c o o r d i n a t e sys t em .has p , 8 and + f o r s p a t i a l v a r i a b l e s

b u t uses t h e o and y a n g u l a r v a r i a b l e s . F i n a l l y when T i s 2

a p p l i e d t h e Ti c o o r d i n a t e system (doub le ' o v e r b a r s ) r e s u l t s .

I n t h i s c o o r d i n a t e s y s t e m , t h e s p a t i a l v a r i a b l e s a r e p , 8

and @ and t h e a n g u l a r v a r i a b l e s a r e

and

The v , 8 and @ components of 2 i n t h e ;i c o o r d i n a t e sys tem

are

The 5 components o f zi ( i . e . w r i t t e n ' i n ;i c o o r d i n a t e s ) a r e

t h e n ,

\ ax1 a2x2 ax2 a2x1 ) : [($i2 + (a?j2] - - - - - . - ( a e a p a e a e a p a e

1 2 2

( ax a . x - - - - - ax2 i a e a e 2 a e a e 2

. -

= ax1 "v

. . 2 ax1 - - - ax x .X - + kg

;5 = - A. vae x1 1 2 2 2 1 /2

[(%) +(%) 1, . . . . - .. . . - - - . . . . . S i n c e t h e ' c h o i c e o f a n g u l a r c o o r d i n a t e s u s e d g i v e s an

o r t h o g o n a l r e p r e s e n t a t i o n o f $2, t h e J a c o b i a n - o f .8 t r a n s f o r m a t i o n T is . u n i t y . C o n s e q u e n t l y ,

2

We now s u b s t i t u t e i n . t h e d ive rgence e x p r e s s i o n of

e q u a t i o n ( 3 ) w r i t t e n i n t h e c o o r d i n a t e s t o g i v e t h e

s i n g l e energy group t r a n s p o r t equa t ion i n ax isymmetr ic

t o r o i d a l c o o r i n d a t e s . (Note: Th i s e q u a t i o n and t h e

r ema in ing c o n t e n t o f t h i s p a p e r w i l l be w i t h r e f e r e n c e t o

t h e fi system. The o v e r b a r s w i l l now be dropped. )

1

1 2 -1/2

a 1 x~ [i iX 1 + (",'I [ - ( ax ' ax"' ax2 ax2)] 1 +

- - +-- a e a' e a e A~ K A a e ap

. .

1 2 2 a x a x 2 2 1 1 2 ( - - - - a x an) + - a e a p a e a e a p a e C

2 1 2 2 a x 2 a x 3X 3 X - - - C\

a e a e " a e a e "

111. A PARTICULAR COORDINATE SYSTEM OF INTEREST

Here we w i l l d i s p l a y t h e form of t h e t r a n s p o r t

e q u a t i o n f o r a p a r t i c u l a r c o o r d i n a t e system of i n t e r e s t .

Such a c o o r d i n a t e s y s t e m i s s p e c i f i e d when ~ ' ( p , 9 ) and

2 X ( p , 8 ) a r e chosen. The geomet r i c f a c t o r s i n t h e te rms of

1 t h e t r a n s p o r t e q u a t i o n ( 2 1 ) i n v o l v e X , x2 and d e r i v a t i v e s

of t h e s e f u n c t i o n s up t o and i n c l u d i n g o r d e r two. For

1 a n a l y t i c a l l y d e s c r i b e d X . and x2, t h e s e f a c t o r s a r e

e v a l u a t e d and s u b s t i t u t e d i n t o t h e e q u a t i o n . For p u r e l y

numer ica l a p p l i c a t i o n s . i t i s p d s s i b l e t o s p e c i f y X' and x2

a s t a b u l a r f u n c t i o n s and t o g e n e r a t e d e r i v a t i v e t a b l e s t h a t

may then be used i n t h e . s o l u t i o n of t h e e q u a t i o n . The

geomet r i c f a c t o r s . t h a t must. be. e v a l u a t e d a r e :

1 . 1 - ax ax . ~ ~ ~ ~ ' ( p ~ 9 ) = -- ax2 ax2 +. - -

a p . ? 9 a p a 9

a x "

S e v e r a l g e o m e t r i e s .have been cons ide red p r e v 2 o u s l y by

o t h e r a u t h o r s and t h e p r e s e n t writer. Pomraning and

s t evens ' d e r i v e d t h e g r a d i e n t form of t h e t r a n s p o r t e q u a t i o n

and an a p p r o p r i a t e d i f f u s i o n e q u a t i o n f o r n e s t e d c i r c u l a r

t o r o i d s . The d i v e r g e n c e form f o r t h i s sys tem o f c o o r d i n a t e s

h a s been d e r i v e d by t h e p r e s e n t w r i t e r 8 and independen t ly by 4

who h a s a l s o d e r i v e d a set a p p r o p r i a t e f i n i t e

d i f f e r e n c e e q u a t i o n s . Pomraning lo h a s cons ide red two

sys t ems of e l l i p t i c a l - t o r o i d a l c o o r d i n a t e s . We will nnw 1j.ae . .

t h e . g e n e r a l e q u a t i o n .(21) t o d e r i v e t h e d ive rgence form f o r

t h e l a t t e r o f t h e t w o i l l u s t r a t i n g i ts u t i l i t y f o r t h i s

t a s k .

[sinh p s i n e

The sca le f a c t o r , s , u s e d i n r e f e r e n c e (10). i s set t o 1 h e r e

w i t h o u t l o s s o f g e n e r a l i t y , and w e n o t e t h a t i n t h i s c a s e p

and g are - n o t t o b e i n t e r p r e t e d as t h e s q u a r e r o o t o f t h e

area a n d f r a c t i o n a l arc l e n g t h . IVe f i n d t h a t f o r t h i s

geomet ry ,

2. 2 G.i = [sinh2 p cos 8 + cosh2 p sin 91

2 2 2 Gii = - [sinh p cos 9 + cosh2 p sin 91

- Giv

- - sinh p cosh p

[sinh p, sin6 + R ] /tanhL p + tanL9

- - tan 8 1 Gvii

I 7 9 , [sinh' p sin9 + R] JtanhL p . +.

and substituting into the transport equation,

-1 X

2 3 2 2 (sinhp sin8 + R) (sinh p cos'8 + cosh p sin 8)

2 2 2 2 { {[Av(slnb p ios 0 - 1 cosh p sin

a - (sinhp sine. + R) 2 2 a e 2 2

Fxe(sinh p cos 8 + cosh2 sin2@) Y ] ) + { (sinh2p cos 8 + cosh p sin28)1/2

a 2 2 2 - - {\ (sin" p "0s 8. + cosh p sin28) Y} + a +

2 2 2 [- (iinhb sin8 + R) (sinh p cos + cosh p sin28.) x a x .

1. . . 3...2, [A (sin8 cos0)' - X8 (sinho coshp) 1 2 2 2 ( (sinh p cos 8 + cosh p 'sin 8) . -

2 ( A + ) (,!@tan8 - Avtanhp),'

+ 2 2 1/2 (Av) + (Ae) * (sinhp sine + R ) (tanh p + tan 8 )

- . ..

. .

2 2 2 2 (Avtan8 + he & {A+(sinh p cos 8 +cash p sin 8) 2 2 .1/2 .(tanh p + tan 8)

T h i s r e s u l t may be compared t o t h a t of Pomraning by n o t i n g

t h a t ,

and forming t h e . g r a d i e n t s t r e a m i n g o p e r a t o r ,

I V . LII.4ITING CASES - THE EFFECT O F CURVATURE

To d a t e , approximate a n a l y s e s u s i n g " r - 8 " c y l i n d r i c a l J

t r a n s p o r t .codes have been employed ' i n t h e s o l u t i o n of

t o r o i d a l f u s i o n , r e a c t o r . problems. These s o l u t i o n s i g n o r e

e f f e c t s i n t r o d u c e d by t h e n o n - c i r c u l a r c h a r a c t e r i s t i c o f . t h e

minor cross s e c t i o n and a r e on ly v a l i d when t h e p h y s i c a l

s c a l e l e n g t h of t h e problem, A, is s m a l l compared t o t h e

i n v e r s e of t h e t o r o i d a l cu rva tu re , . K T' a t t h e p o i n t i n

q u e s t i o n . (We d e f i n e . the t o r o i d a l c u r v a t u r e a t a p o i n t ,

Y ( p , 6, $1, as the c u r v a t u r e of t h e r i g h t c i r c u l a r c y l i n d e r

p a s s i n g th rough tha t p o i n t and hav ing t h e p r i n c i p a l a x i s of

t h e t o r u s a s i t s a x i s . R e f e r r i n g t o F i g . 1, t h e t o r o i d a l

c u r v a t u r e i s e q u a l t o t h e -cur'vature~of~~the~cir-cle l a b e l l e d

curve o i consLant 8 ) . The s t a t e m e n t r e g a r d i n g t h e r a t i o of

X and 1 / r T , t o o u r knowledge, h a s no t been. r i g o r o u s l y

demons t ra ted . We o f f e r a r i g o r o u s proof of i ts v a l i d i t y

h e r e . We . a l s o show t h a t , when i n a d d i t i o n , X i s s m a l l

compared t o t h e i n v e r s e of K t h e p o l o i d a l c u r v a t u r e a t P, P '

a p l a n a r approximat ion i s v a l i d . ( K ~

i s t h e c u r v a t u r e a t a

p o i n t o f t h e c u r v e l a b e l l e d , "curve o f c o n s t a n t (I" i n

F i g . 1 ) . F i n a l l y , we n o t e , that a s b e f o r e we c o n c i d e r

a r b i t r a r i l y chosen c r o s s - s e c t i o n shapes impusiilg o n l y tho , sc

l i m i t a t i o n s d i scussed p r e v i o u s l y .

To b e g i n w i t h , f o r comparison, w e w i l l need t h e

d i v e r g e n c e form of t h e t r a n s p o r t e q u a t i o n f o r a c y l i n d r i c a l

c o o r d i n a t e sys t em of a r b i t r a r y c r o s s s e c t i o n a l shape. . T h i s '

e q u a t i o n is r e a d i l y ' d e r i v e d by i n t r o d u c i n g ' t h e

t r a n s f o r m a t i o n ,

and employing t h e s a m e . t e c h n i q u e a s used p r e v i o u s l y . We

find,

1 2 2 2 1 2 2 a x a x a x a x a e a p a e a e a p a e +

Although c e r t a i n s i m i l a r i t i e s between t h i s e q u a t i o n and t'he

t o r o i d a l e q u a t i o n (,21) a r e a p p a r e n t , a more s t r i k i n g

s i m i l a r i t y can b e ach ieved by p u t t i n g t h e t o r o i d a l e q u a t i o n

i n t o what we s h a l l c a l l c y l i n d r i c a l form. We accomplish

. . t h i s b y i n t r o d u c i n g t h e t r a n s f o r m a t i o n ,

Under t h i s t r a n s f o r m a t i o n t h e t o r o i d a l e q u a t i o n becomes,

Equat ion ( 30) i s t h e same a s equa t ion ( 2 8 ) s a v e f o r t h e

appearance of a d d i t i o n a l t e rms due t o t h e e f f e c t of t o r o i d a l

c u r v a t u r e . To f a c i l i t a t e o u r d i s c u s s i o n of t h e s e t o r o i d a l

e f f e c t s w e s t a t e t h e f o l l o w i n g in fo rma t ion about t h e s u r f a c e

p=const . ( s e e F ig . 1 ) : The c u r v e s 9=cons t . and $=cons t . a r e

l i n e s of c u r v a t u r e of t h i s s u r f a c e and t h e d i r e c t i o n s

d e f i n e d by t h e u n i t t a n g e n t v e c t o r s t o t h e s e c u r v e s a r e t h e

p r i n c i p a l d i r e c t i o n s of normal c u r v a t u r e of t h e s u r f a c e .

The p r i n c i p a l . . . c u r v a t u r e s a r e ,

and

We n o t e t h a t ,

The geodes i c c u r v a t u r e of the B=cpnst.. cu rve i s ,

F i n a l l y and i m p o r t a n t l y w e p o i n t o u t t h a t ,

A f t e r s c a l i n g a l l l e n g t h s t o A , t h e p h y s i c a l s c a l e l en ' g th of

t h e problem, w e s e e . f r o m e q u a t i o n (35) which c o n t a i n s a sum

o f s q u a r e t e r m s on t h e l e f t hand s i d e t h a t t h e n e c e s s a r y and

s u f f i c i e n t c o n d i t i o n f o r t h e n e g l e c t o f t h e t o r o i d a l e f f e c t s

i s t h a t , '

If i n a d d i t i o n ,

a l l of ' t h e e f f e c t s of c u r v a t u r e v a n i s h and a p l a n a r problem

r e s u l t s .

V. . DIFFUSION.EQUATIONS

The g e n e r a l form o f t h e d i f f u s i o n e q u a t i o n f o r an

ax i symmet r i c t o r o i d a l geometry may be found by s u b s t i t u t i n g

t h e a p p r o p r i a t e q u a n t i t i e s i n t o ,

where Jj,. a r e - t he c o v a r i a n t components of t h e c u r r e n t ,

. r e l a t e d t o t h e s c a l a r . . f lux . , T,, by,

'a i s t h e a b s o r p t i o n c r o s s s e c t i o n and t h e metric . t e n s o r d i j

i s formed by a p p l y i n g TI, t o t h e m e t r i c f o r C a r . t e s i a n t h r e e

s p a c e . I n terms o f t h e ( p , 8 , @ ) c o o r d i n a t e s t h e e q u a t i o n is

J d e f i n e d a s b e f o r e in e q u a t i o n (:9 1. W e : now t u r n o u r

a t t e n t i o n t o t h e ( 2 x . 2 ) s u b m a t r i x ,

of t h e metric dij F i r s t w e n o t e that ,

and now assume t h a t it is p o s s i b l e , by a s u i t a b l e change of

v a r i a b l e s , t o w r i t e .

where 6ij i s a Kronecker d e l t a . T h i s can a lways be

accompl i shed f o r an o r t h o g o n a l c o o r d i n a t e sys tem, ( i . e . one ~.

f o r wh ich . dI2 - - d 2 1 = 0 ) , by i n t r o d u c i n g . v a r i a b l e s p 1 and € I 1

d e f i n e d by

and

The e lement of a r c f o r t h e s e c o o r d i n a t e s is

, f r o m which.we see t h a t

For s u c h a sys tem of o r t h o g o n a l c o o r d i n a t e s t h e d i f f u s i o n

e q u a t i o n is

2 . Noting t h a t J = v ' and e l i m i n a t i n g t h e independent v a r i a b l e

p 1 i n f a v o r o f v . b y a l o g r i t h m i c t r a n s f o r m a t i o n ,

where w e have used D 1 (1/30). ~ o r n r a n i n ~ ~ ' ~ ~ h a s no ted t h a t '

i f t h e 4 d e r i v a t i v e te rm i s dropped and i f t h e d i f f u s i o n

c o e f f i c i e n t a b s o r p t i o n c o e f f i c i e n t , and s o u r c e f u n c t i o n a r e

r e d e f i n e d as .

and

t h a t a fo rmal ly i d e n t i c a l s t r u c t u r e t o . t h e "r-8" c y l i n d r i c a l

d i f f u s i o n equa t ion i s . o b t a i n e d f o r t h e two cases of.

c o n c e n t r i c c i r c u l a r . and o r t h o g o n a l - e l l i p t i c a l t o r o i d a l

c o o r d i n a t e s . . \Ye have proven t h a t t h i s homology i s ob ta ined

f o r a l l orthogon.al , axisyrnmetri'c t o r o i d a l c o o r d i n a t e systems

p r o v i d i n g t h e t o r o i d a l c o o r d i n a t e i s ignorab le i n t h e

, problem of i n t e r e s t .

. .

V I . CONCLUDING REMARKS

In t h i s paper w e have presente 'd s e v e r a l r e s u l t s of

importance i n t h e a p p l i c a t i o n of d i s c r e t e o r d i n a t e methods

t o the. s o l u t i o n of t r a n s p o r t problems ' i n t o r o i d a l

geometries. Such problems a r i s e i n t h e design and a n a l y s i s

of t h e b l a n k e t s t r u c t u r e s of proposed f u s i o n r e a c t o r s , a s . .

w e l l as i n a t t e m p t i n g t o apply t h e s e techniques t o t h e

a n a l y s i s of t h e - ' t r a n s p o r t of n e u t r a l p a r t i c l e s i n a , tokamak . .

plasma.

The axisymmetr ic t o r o i d a l c o o r d i n a t e s system i n which

we have w r i t t e n t h e s i n g l e energy group t r a n s p o r t e q u a t i o n ,

a l l ows f o r t h e s e l e c t i o n o f c o o r d i n a t e s u r f a c e s c o i n c i d e n t

w i t h s u r f a c e s d e l i m i t i n g r e g i o n s of c o n s t a n t p h y s i c a l

p r o p e r t i e s i n t y p i c a l tokamak d e v i c e s . T h i s e l m i n a t e s t h e

need t o model t o r o i d a l r e g i o n s w i t h compl ica ted combina t ions

of non - to ro ida l geome t r i c e l emen t s . Equa t ion ( 2 1 ) h a s been

w r i t t e n ' i n c o n s e r v a t i o n law form a p p r o p r i a t e t o t h e

d e r i v a t i o n o f f i n i t e d i f f e r e n c e e q u a t i o n s by i n t e g r a t i o n .

1 2 The g e n e r a l n a t u r e of , t h e e q u a t i o n , X ( p ,8 ) and X ( p ,8 ) a r e .

u n s p e c i f i e d , a l l o w s one t o c o n s i d e r t h e des ign of a g e n e r a l

purpose t o r o i d a l t r a n s p o r t code which would a c c e p t a s i n p u t

2 d a t a t h e s p e c i f i c a t i o n of X1 and X . A l t e r n a t i v e l y

equa t ion (21) 'can be used t o . . q u i c k l y d e r i v e t r a n s p o r t

equa t ion ' s f o r p a r t i c u l a r geomet r i e s of i n t e r e s t . T h i s has

bee11 i l l u s t r a t e d . i n S e c t i o n 1'11.

I t i s c l e a r from t h e a n a l y s i s g iven i n S e c t i o n I V .

t h a t many c i r cums tances can b e env i s iongd i n which t h e

n e g l e c t of t h e e f f e c t s of o n e , o r bo th o f t h e c u r v a t u r e s of

th.e sys tem would l e a d t o s e r i o u s e r r o r s . Fo r example,

4 - Fig . 2 is a s chema t i c r e p r e s e n t a t i o n o f a s e t of

supe rconduc t ing t o r o i d a l f i e l d c o i l s . f o r a f u t u r e tokamak .-

dev ice . Accura t e d e t e r m i n a t i o n s w i l l have t o be made of t h e

.. --. .. . . ' - .radiat . ion ..and. n e u t r o n . f l u x e s . . t o .. dete rmine ... t h e . .hea t l o a d on

t h e c r y o s t a t s , e s p e c i a l l y i n t h e c e n t r a l c o r e r e g i o n where

t h e s p a c e a v a i l a b l e f o r s h i e l d i n g is a t a premium.

P a r t i c u l a r l y . h e r e , where x1 is s m a l l , (comparable t o

c h a r a c t e r i s t i c , mean-free p a t h s ) . Accura te answers . w i l l

r e q u i r e t h a t t h e c u r v a t u r e e f f e c t s n o t . b e n e g l e c t e d .

E q u a t i o n . ( 2 1 ) is s u i t e d t o t h e s o l u t i o n o f t h i s - t y p e of

problem.

In 3 e c t i o n V: a n impor t an t c o n c l u s i o n about d i f f u s i o n

e q u a t i o n s is reached . The d i f f u s i o n e q u a t i o n f o r any

o r t h o g o n a l , axisyrnmetr ic t o r o i d a l c o o r d i n a t e system i n which

t h e r e - a r e no v a r i a t 5 o n s . i n t h e t o r o i d a l d i r e c t i o n , can be

w r i t t e n i n a form which is f o r m a l l y homologous t o t h e "r-0"

c y l i n d r i c a l d i f f u s i o n e q u a t i o n . T h i s s i m i l a r i t y of

s t r u c t u r e w a s f i r s t p o i n t e d o u t by Pornraning and S tevens 9

f o r a t o r o i d a l . sys tem' hav ing c i r c u l a r c r o s s s e c t i o n s and

l a t e r ~omraning' ' found the, same ' r e s u l t f o r an o r thogona l

e l l i p t i c a l t o r o i d a l sys tem. Our a n a l y s i s e x t e n d s ' t h i s

r e s u l t t o a g e n e r a l c l a s s o f t o r o i d a l c o o r d i n a t e systems. \

REFERENCES

h. G. M i l l s , e d . , "A Fus ion Power P l a n t " , P r i n c e t o n

Plasma P h y s i c s Labora tory Report MATT-1050 (1974) .

2 ~ . Badger e t . a l . , "Wisconsin Tokamak Reac tor

Design", Vol. 1, Report UWFDM-68, U n i v e r s i t y of isc cons in,

Madison,'. Wisconsin (1974) .

1 . 1. l . Stacey , Jr. e t . a 1 . , Tbkamak Exper imenta l Power

Reac tor S tud ie s .Argonne N a t i o n a l Labora to ry . CTR. T e c h n i c a l , .

Memorandum-75-2 (1975) .

4 ~ e n e r a l Atomic Eng inee r ing S t a f f , Exper imenta l Power,

Reac tor Conceptual Design S tudy , ( P r o g r e s s Report f o r

J u l y 1, 1974 - June 30, 1975) GA-A13534 (1975) .

.p

5 ~ . Greenspan, C a l c u l a t i o n of t h e T r a n s p o r t of N e u t r a l

Atoms i n Highly I o n i z e d ~ l a s m a s Using Neutron T r a n s p o r t

Methods, Nuclear Fusion -9 1 4 771-778. (1974) .

6 ~ . G. 6 1 1 L i g n . n , S, T.!. C r r l n i c k , W. Price, Jr. , '

T r a n s p o r t of N e u t r a l Impur i ty ~ t o m s th rough a Plasma, B u l l .

A m e r . Phys. Soc. 1 1 , - 1 9 853, (1974) .

7 ~ . L. Miller and G. H. Mlley, Monte Ca r lo S imula t ion

of N e u t r a l Beam I n j e c t i o n I n t o Fusion R e a c t o r s , Second

I n t e r n a t i o n a l Conference on Plasma S c i e n c e (Ann Arbor ,

l , f ichigan, May 1975) , t o be p u b l i s h e d .

8 ~ . L. G r a l n i c k , A Tensor Transformat ion Technique f o r

t h e T r a n ~ p o r t E q u a t i o n , (Submi t ted f o r p u b l i c a t i o n i n

Nuc lea r ,Sc ience & E n g i n e e r i n g ) ; P r i n c e t o n Plasma P h y s i c s

k!a..boratory Repor t .MATT-1154 (1975) .

'G. C. Pomraning a n d C. A . S t e v e n s , T r a n s p o r t and - .

D i f f u s i o n E q u a t i o n s i n ' T o r o i d a l Geometry, N u c l e a r s c i e n c e

and E n g i n e e r i n g , - 55, 359-367 (1974) .

'OG. C. Pomraning , E l l i p t i c a l T o r o i d a l Geometry - A

Geometr ic T r a n s p o r t C o r r e c t i o n , . Nuclear Scfence and

E n g i n e e r i n g -9 5 7 188-195 (1975) .

"J. Jung , F i n i t e D i f f e r e n c e ~ ~ u a t i d n s Fo r T r a n s p o r t

Equa t ion I n T o r o i d a l G e u n ~ e t ~ y , Argonne N a t i o n a l Labora tory

CTR T e c h n i c a l EJemorandum .No. 52 (1975) .

1 2 ~ . W. Drawbaugh, The Tensor Form ' o f t h e

Nedtron-Transpui:t Equa t ion w i t h A p p l i c a t i nn t o F i n i t e

D i f f e r e n c i n g , Nuc lea r S c i e n c e and Eng inee r ing "44 58-65 -9

The a u t h o r w i s h e s t o t h a n k h i s many c o l l e a g u e s a t t h e 'i

P r i n c e t o n Plasma P h y s i c s L a b o r a t o r y f o r t h e i r c o n t i n u i n g

1 a s s i s t a n c e . I n , p a r t i c u l a r , I w i s h t o t h a n k Dr ' . W i l l i a m G.

P r i c e , Jr. f o r many h e l p f u l and i l l u m i n a t i n g d i s c u s s i o n s .

T h i s r e s e a r c h . w a s s u p p o r t e d by t h e Energy R e s e a r c h and

Development A d m i n i s t r a t i o n u n d e r c o n t r a c t E(11-1)-3073.

curves of constont 8

curves of constont

Fig. 1. Geometry of the p , 0 , $. axisymmetric~ toroidal coordinate system generated by rotating a nest of smooth curves about the Y axis.

/ . .: -- _-_ _ . . SEGMENTED SUPPORTING CY,LINDER-

. . .:. . . , ". , . ,. ... ., .. ' --- . . , . .

Fig. 2. Toroidal Field Coils proposed for a future Tokamak power reactor (see Reference 1). :