primer principio de la termodinámica · calor específico molar a volumen constante , cv, 1 v v q...

25
1 Primer Principio de la Termodinámica 1. Calor. a. Capacidad calorífica y calor específico. b. Calores específicos de los gases. c. Cambio de fase y calor latente. 2. Trabajo. 3. El experimento de Joule. Equivalente mecánico del calor. 4. Trabajo adiabático. Energía interna. 5. Primer principio de la termodinámica. a. Casos particulares del primer principio de la termodinámica. 1

Upload: nguyendiep

Post on 31-Aug-2018

223 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Primer Principio de la Termodinámica · Calor específico molar a volumen constante , cV, 1 V V Q c ... Consideremos una determinada masa de un gas cualquiera a presión Pencerrada

11

Primer Principio de la Termodinámica

1. Calor.

a. Capacidad calorífica y calor específico.

b. Calores específicos de los gases.

c. Cambio de fase y calor latente.

2. Trabajo.

3. El experimento de Joule. Equivalente mecánico del calor.

4. Trabajo adiabático. Energía interna.

5. Primer principio de la termodinámica.

a. Casos particulares del primer principio de la termodinámica.

1

Page 2: Primer Principio de la Termodinámica · Calor específico molar a volumen constante , cV, 1 V V Q c ... Consideremos una determinada masa de un gas cualquiera a presión Pencerrada

22

1. Calor.

El calor es la energía que se transfiere de un sistema a otro como consecuencia de una diferencia de temperatura entre ambos. Se trata, por tanto, de una energía en tránsito, de tal forma que si cesa el flujo de energía carece de sentido hablar de calor.

Unidades de calor: Dado que el calor es energía en tránsito, se expresa en el S.I. en Julios (J).

� Caloría (cal) – una caloría es la cantidad de calor necesaria para aumentar 1°C la temperatura de 1 g de agua.

� Btu (British thermal unit) – calor necesario para aumentar por 1°F la temperatura de 1 lb de agua.

1 cal 4,184 J====

1 Btu 252 cal 1,054 kJ= == == == =

Page 3: Primer Principio de la Termodinámica · Calor específico molar a volumen constante , cV, 1 V V Q c ... Consideremos una determinada masa de un gas cualquiera a presión Pencerrada

33

1a. Capacidad calorífica y calor específico.

El calor absorbido por un sistema se puede manifestar esencialmente por dos efectos: una aumento de la temperatura o un cambio de estado o de fase. Consideremos el primer caso, y supongamos que un cierto sistema experimenta un aumento de temperatura ∆T al comunicarle una cierta cantidad de calor Q.

� La capacidad calorífica, C, de una de una sustancia se define como la cantidad de calor necesaria para aumentar un grado la temperatura de esa sustancia.

QC Q C T

T∆

∆==== ⇒⇒⇒⇒ ====

� El calor específico, c, de una de una sustancia se define como la capacidad calorífica por unidad de masa, es decir, como la cantidad de calor necesaria para aumentar un grado la temperatura la unidad de masa de esa sustancia.

1C Qc Q m c T

m m T∆

∆= == == == = ⇒⇒⇒⇒ ====

� El calor específico molar, cn, de una de una sustancia se define como la capacidad calorífica por mol de sustancia, es decir, como la cantidad de calor necesaria para aumentar un grado la temperatura de un mol de esa sustancia.

1n

C Qc Q n c T

n n T∆

∆= == == == = ⇒⇒⇒⇒ ====

QC

T

∂∂∂∂====

∂∂∂∂

1 Qc

m T

∂∂∂∂ ====

∂∂∂∂

1n

Qc

n T

∂∂∂∂ ====

∂∂∂∂

Page 4: Primer Principio de la Termodinámica · Calor específico molar a volumen constante , cV, 1 V V Q c ... Consideremos una determinada masa de un gas cualquiera a presión Pencerrada

44

1b. Calores específicos molares de los gases.

En el caso de los sólidos y los líquidos la variación de volumen con la presión es tan pequeña que puede despreciarse. Por esta razón no hemos mencionado que el calor específico varía con variaciones en la presión y el volumen. En el caso de los gases la situación es completamente diferente, ya que las variaciones relativas de la presión y del volumen son importantes.

En los gases, el calor necesario para producir un aumento de temperatura depende del proceso seguido en el calentamiento. Sin embargo, todos ellos pueden relacionarse con dos procesos diferentes, a presión constante y a volumen constante. Así pues, resulta necesario definir el calor específico molar* de un gas en esas condiciones.

Calor específico molar a presión constante, cP,

1P

P

Qc

n T

∂∂∂∂ ====

∂∂∂∂

Calor específico molar a volumen constante, cV,

1V

V

Qc

n T

∂∂∂∂ ====

∂∂∂∂

Puede demostrarse, a partir de la teoría cinética de los gases, que en el caso de gases ideales se cumple la relación de Mayer, dada por:

donde R es la constante de los gases.

P Vc c R− =− =− =− =

* Con frecuencia se omite el adjetivo molar al referirnos al calor específico de los gases. Perodebe tenerse en cuenta que en el caso de gases se emplea siempre el calor específico molar.

Page 5: Primer Principio de la Termodinámica · Calor específico molar a volumen constante , cV, 1 V V Q c ... Consideremos una determinada masa de un gas cualquiera a presión Pencerrada

55

Monoatómicos

Diatómicos

Poliatómicos

Gas Pc

Vc

Vc R

P Vc c−−−− P V

c c R−−−−

Calores específicos molares (J/mol·K) de varios gases a 25 ºC.

� En los gases monoatómicos , en los diatómicos .

� En todos los casos la relación de Mayer, , se cumple aceptablemente.

32V

c R==== 52V

c R====

(((( ))))P Vc c R− =− =− =− =

Page 6: Primer Principio de la Termodinámica · Calor específico molar a volumen constante , cV, 1 V V Q c ... Consideremos una determinada masa de un gas cualquiera a presión Pencerrada

66

1c. Cambio de fase y calor latente.

Experimentalmente se observa que en un proceso de cambio de fase el calor cedido al sistema no va acompañado de un incremento de temperatura.

Cuando una sustancia pasa del estado líquido, por ejemplo, al gaseoso, sus moléculas, que estaban muy juntas en el líquido, se mueven alejándose unas de otras. Esto supone que se realice un trabajo en contra de las fuerzas de cohesión que mantenían unidas las moléculas. En otras palabras, debe emplearse la energía suministrada (el calor) para separar dichas moléculas. Esta energía añadida se invierte en aumentar la energía potencial más que en aumentar la energía cinética y, por tanto, su temperatura.

El calor necesario para producir el cambio de estado de un gramo de sustancia se llama calor latente de cambio de estado, L. Y se calcula mediante la relación:

Q m L====

Page 7: Primer Principio de la Termodinámica · Calor específico molar a volumen constante , cV, 1 V V Q c ... Consideremos una determinada masa de un gas cualquiera a presión Pencerrada

77

2. Trabajo (I).

Consideremos una determinada masa de un gas cualquiera a presión P encerrada en un cilindro provisto de un pistón o émbolo de área A y de paredes lisas como muestra la figura.

Si el gas realiza una expansión* infinitesimal dx, de forma que el volumen del gas aumente en una cantidad dV, el trabajo realizado por el gas será:

{{{{ }}}}dW F dx P A dx dV A dx P dV= = = = == = = = == = = = == = = = =

dW P dV====

* En lo sucesivo supondremos siempre que los movimientos del pistón son los suficientemente lentos como para poder admitir que el sistema termodinámico no se separa apreciablemente del estado de equilibrio, es decir, supondremos un proceso cuasiestático.

P

V

1

2

V1 V2dV

dW P dV====

Obsérvese que:

� En una expansión (trabajo realizado por el gas sobre el pistón):

� En una compresión (trabajo realizado sobreel gas):

0 0dV dW>>>> ⇒⇒⇒⇒ >>>>

0 0dV dW<<<< ⇒⇒⇒⇒ <<<<

Page 8: Primer Principio de la Termodinámica · Calor específico molar a volumen constante , cV, 1 V V Q c ... Consideremos una determinada masa de un gas cualquiera a presión Pencerrada

88

2. Trabajo (II).

En un proceso isocórico (volumen constante):2

10 0 0dV dW W==== ⇒⇒⇒⇒ ==== ⇒⇒⇒⇒ ====

En un proceso isobárico (presión constante):

(((( ))))2 2

2

1 2 11 1

W P dV P dV P V V= = = −= = = −= = = −= = = −∫ ∫∫ ∫∫ ∫∫ ∫

En un proceso isotérmico (temperatura constante): considerando el caso de un gas ideal:

n R TP V n R T P

V==== ⇒⇒⇒⇒ ====

2 2 22 2

11 1 1

1

lnn R T dV V

W P dV dV n R T n R TV V V

= = = == = = == = = == = = =∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫

Además, como la temperatura es constante, se tiene que: Y, por tanto:1 1 2 2P V P V====

2 11

2

lnP

W n R TP

====

P2

V

P

P1

P

V1

P

V2P

2

1Isoterma

P1

P2

V1 V2

Isocora

Isobara

V

V

2

2

1

1

P V = constante

Page 9: Primer Principio de la Termodinámica · Calor específico molar a volumen constante , cV, 1 V V Q c ... Consideremos una determinada masa de un gas cualquiera a presión Pencerrada

99

2. Trabajo (III).

Es evidente que el trabajo realizado por un sistema depende de los estados inicial y final y de la trayectoria seguida por el sistema entre dichos estados.

Consideremos tres procesos posibles en un diagrama P-V para un gas que inicialmente estáen el estado (P1, V1) y al final se encuentra en el estado (P2, V2).

El trabajo NO es una propiedad del sistema

Page 10: Primer Principio de la Termodinámica · Calor específico molar a volumen constante , cV, 1 V V Q c ... Consideremos una determinada masa de un gas cualquiera a presión Pencerrada

1010

Ejemplo 1.

Un gas ideal experimenta un proceso cíclico A-B-C-D-A, como muestra la figura. Determinar el trabajo total realizado sobre el gas durante el ciclo.

(((( )))) (((( ))))B

B

A B AA

2 2,5 1 3 atm LW P dV P V V= = − = − = ⋅= = − = − = ⋅= = − = − = ⋅= = − = − = ⋅∫∫∫∫C A

B D0W W= == == == =

(((( )))) (((( ))))D

D

C D CC

1 1 2,5 1,5 atm LW P dV P V V= = − = − = − ⋅= = − = − = − ⋅= = − = − = − ⋅= = − = − = − ⋅∫∫∫∫B C D A

ciclo A B C D3 0 1,5 0 1,5 atm LW W W W W= + + + = + − + = ⋅= + + + = + − + = ⋅= + + + = + − + = ⋅= + + + = + − + = ⋅

2,5 L

ciclo1,5 atm LW = ⋅= ⋅= ⋅= ⋅

101,3 J

1 atm L××××

⋅⋅⋅⋅152 J====

Nótese que el trabajo al recorrer el ciclo podría también haberse calculado a través del área encerrada por dicho ciclo, pero ¿cómo estableceríamos el signo del trabajo?

Page 11: Primer Principio de la Termodinámica · Calor específico molar a volumen constante , cV, 1 V V Q c ... Consideremos una determinada masa de un gas cualquiera a presión Pencerrada

1111

Ejemplo 2.

P = αV 2

P

V1,00 m3 2,00 m3

1

2

Una muestra de gas ideal se expande al doble de su volumen original de 1 m3 en un proceso cuasiestático para el cual , con . Obtener el trabajo realizado de expansión.

65 atm/mα ====

23

2 22 2 3 3

1 2 11 1

13 3

VW P dV V dV V V

αα α

= = = = −= = = = −= = = = −= = = = −

∫ ∫∫ ∫∫ ∫∫ ∫

Sustituyendo valores:

(((( ))))2 3 3 3

1

52 1 11,677 atm m

3W = − = ⋅= − = ⋅= − = ⋅= − = ⋅

Que en unidades del sistema internacional quedaría como:

2 3

1 11,667 atm mW = ⋅= ⋅= ⋅= ⋅3

3

J 10101,3

atm m

⋅⋅⋅⋅××××

⋅⋅⋅⋅

61,18 10 J =1,18 MJ= ⋅= ⋅= ⋅= ⋅

2P Vα====

Page 12: Primer Principio de la Termodinámica · Calor específico molar a volumen constante , cV, 1 V V Q c ... Consideremos una determinada masa de un gas cualquiera a presión Pencerrada

1212

3. El experimento de Joule. Equivalente mecánico del calor.

¿Solo es posible aumentar la temperatura de un sistema suministrándole calor?

En una serie de experiencias clásicas, Rumford (1790), Davy (1799), Joule (1840) y Mayer (1842) demostraron la equivalencia entre el calor y el trabajo, en el sentido de que también puede elevarse la temperatura de un sistema realizando trabajo sobre él.

El experimento de Joule: en este célebre experimento se pretendía determinar el trabajo necesario para elevar la temperatura de 1 g de agua en 1 ºC. Utilizando un aparato como el que esquematiza la figura adjunta, Joule pudo demostrar que 4,184 J de trabajo irreversible producen el mismo efecto que el flujo calorífico de una caloría. Este valor se conoce como el equivalente mecánico del calor.

Experiencias de mayor precisión pueden realizarse por métodos eléctricos, a partir del calor cedido por efecto Joule, utilizando la pérdida de energía eléctrica en un conductor al paso de la corriente eléctrica.

Page 13: Primer Principio de la Termodinámica · Calor específico molar a volumen constante , cV, 1 V V Q c ... Consideremos una determinada masa de un gas cualquiera a presión Pencerrada

1313

Criterio de signosCriterio de signos

SISTEMA

Q > 0

W < 0

W > 0

Q < 0

Page 14: Primer Principio de la Termodinámica · Calor específico molar a volumen constante , cV, 1 V V Q c ... Consideremos una determinada masa de un gas cualquiera a presión Pencerrada

1414

4. Trabajo adiabático. Energía Interna.

Una transformación adiabática es aquella que se produce sin intercambio de calor, el intercambio de energía en este caso se produce únicamente en forma de trabajo. Sin embargo, en esta transformación se modifica el estado del sistema.

Se define la energía interna, U, como una propiedad del sistema cuyo valor queda especificado de modo que la variación que experimenta U en un proceso adiabático sea igual al trabajo externo suministrado para que se realice dicho proceso, es decir:

adiab.U W∆ = −= −= −= −

donde el signo menos procede del criterio de signos establecido. Puede decirse también que el trabajo realizado sobre el sistema en un proceso adiabático se invierte exclusivamente en aumentar su energía interna.

¿Qué es la Energía Interna?

Es la energía asociada al estado de movimiento y a la configuración de las individualidades que componen el sistema, y coincide con la suma de las energías cinéticas de cada una de las partículas que constituyen el sistema referidas a su CM y de la energía potencial asociada a las interacciones que tienen lugar entre estas partículas.

La Energía Interna es una función de estado o propiedad del sistema

Page 15: Primer Principio de la Termodinámica · Calor específico molar a volumen constante , cV, 1 V V Q c ... Consideremos una determinada masa de un gas cualquiera a presión Pencerrada

1515

5. Primer Principio de la Termodinámica (I).

Si durante un determinado proceso parte del trabajo realizado sobre el sistema se transfiere al entorno en virtud de una diferencia de temperaturas (calor Q) tendremos ahora que:

W U Q∆− = −− = −− = −− = −

donde el signo menos del calor hace referencia a que se trata de calor cedido por el sistema al entorno. La relación anterior, que suele escribir en la forma:

U Q W∆ = −= −= −= −

constituye la expresión del Primer Principio de la Termodinámica, que también nos permite definir termodinámicamente el calor. Obsérvese que al ser la variación de energía interna independiente del camino seguido en el proceso (propiedad del sistema) y, sin embargo, no así el trabajo, significa que la cantidad de calor debe ser igualmente, distinta en cada proceso y, por tanto, no es una propiedad de estado, sino una propiedad característica del proceso, del mismo carácter que el trabajo.

Cuando la transformación considerada es infinitesimal, la expresión anterior se escribe:

dU Q Wδ δ= −= −= −= −

los símbolos y se utilizan para distinguirlos de que es una diferencial exacta. En otras palabras, aunque el calor y el trabajo dependen del proceso seguido, el cambio de energía interna sólo depende del estado inicial y final.

Qδ Wδ dU

Page 16: Primer Principio de la Termodinámica · Calor específico molar a volumen constante , cV, 1 V V Q c ... Consideremos una determinada masa de un gas cualquiera a presión Pencerrada

1616

5. Primer Principio de la Termodinámica (II).

Otro enunciado del Primer Principio se basa en la imposibilidad de construir máquinas generadoras de trabajo perpetuo, esto es lo que se ha dado en llamar móvil perpetuo de primera especie. Es imposible construir una máquina de funcionamiento periódico que produzca trabajo sin consumir una cantidad equivalente de energía.

Veamos algunos ejemplos:

� Sistema que realiza un proceso cíclico: es decir, el calor total absorbido por el sistema debe ser igual al trabajo realizado por él.

0U Q W∆ ==== ⇒⇒⇒⇒ ====

� Sistema que realiza una transformación abierta y no se suministra energía de ningún tipo:es decir, el trabajo realizado por el sistema procede de la disminución de la energía interna del sistema. Pero ésta no puede ser eterna, ya que el caudal de energía interna es finito y, a lo sumo, disminuirá hasta agotarse.

0Q W U∆==== ⇒⇒⇒⇒ = −= −= −= −

El Primer Principio de la Termodinámica no puede demostrarse analíticamente, pero la evidencia experimental y la imposibilidad de construir el móvil perpetuo de primera especie confirman su validez y se acepta como una ley de la naturaleza sin ningún tipo de restricción.

Page 17: Primer Principio de la Termodinámica · Calor específico molar a volumen constante , cV, 1 V V Q c ... Consideremos una determinada masa de un gas cualquiera a presión Pencerrada

1717

5a. Casos particulares del Primer Principio (I).

Veamos la forma que adquiere el Primer Principio en algunas transformaciones particularmente interesantes:

En una transformación isocora (volumen constante):P2

V

P

P1

Isocora

2

1

2

1 2 1Como 0

VW Q U U U∆==== ⇒⇒⇒⇒ = = −= = −= = −= = −

es decir, el calor puesto en juego en una transformación isocora es igual a la variación de la energía interna del sistema en el proceso.

En una transformación isobárico (presión constante):

(((( ))))2 2

2

1 2 11 1

W P dV P dV P V V= = = −= = = −= = = −= = = −∫ ∫∫ ∫∫ ∫∫ ∫P

V1

P

V2

Isobara

V

21

(((( ))))2 1 2 1PQ U W U U P V V∆= + = − + −= + = − + −= + = − + −= + = − + −

Reordenando, se obtiene para el calor a presión constante:

(((( )))) (((( ))))2 2 1 1PQ U P V U P V= + − += + − += + − += + − +

La función se denomina ENTALPÍA o calor total de un sistema y se representa con la letra en honor a Helmholtz, pudiéndose escribir: y, por tanto:

U P V++++H H U P V= += += += +

2 1PQ H H H∆= − == − == − == − = La entalpía es una función de estado

Page 18: Primer Principio de la Termodinámica · Calor específico molar a volumen constante , cV, 1 V V Q c ... Consideremos una determinada masa de un gas cualquiera a presión Pencerrada

1818

5a. Casos particulares del Primer Principio (II).

En una transformación adiabática (no hay intercambio de calor entre el sistema y su entorno):

Como 0Q dU Wδ δ==== ⇒⇒⇒⇒ = −= −= −= −

En el caso de los gases, como el cambio de energía interna puede identificarse con la cantidad de calor puesta en juego en un proceso a volumen constante, tenemos que:

0V

n c dT P dV+ =+ =+ =+ =

Considerando la ecuación de estado del gas ideal: y diferenciando para nconstante, tenemos que:

P V n R T====

P dV V dPP dV V dP n R dT dT

n R

+++++ =+ =+ =+ = ⇒⇒⇒⇒ ====

que sustituida en la ecuación anterior conduce a:

(((( )))) 0 0V V

dV dPc R P dV c V dP

V Pγ+ + =+ + =+ + =+ + = ⇒⇒⇒⇒ + =+ =+ =+ =

donde se ha definido un coeficiente γ, denominado coeficiente adiabático, dado por:

V P

V V

c R c

c cγ

++++= == == == =

cuyo valor es constante para los gases ideales.

V VdU Q n c dTδ= == == == = Podemos escribir que:

Page 19: Primer Principio de la Termodinámica · Calor específico molar a volumen constante , cV, 1 V V Q c ... Consideremos una determinada masa de un gas cualquiera a presión Pencerrada

1919

5a. Casos particulares del Primer Principio (III).

Finalmente, integrando la ecuación:

0 ctedP dV dP dV

P V P Vγ γ+ =+ =+ =+ = ⇒⇒⇒⇒ + =+ =+ =+ =∫ ∫∫ ∫∫ ∫∫ ∫

Resulta:ln ln cte cteP V P V

γγ+ =+ =+ =+ = ⇒⇒⇒⇒ ====

Relación que representa la ecuación característica de los procesos adiabáticos de los gases ideales, y que puede servirnos para determinar el trabajo realizado en una transformación adiabática. En efecto:

21

2 2 22 1

1 11 1

1cte cte cte

1 1

VW P dV V dV V V

γ

γ γ

γ γ

− +− +− +− +

− −− −− −− − = = = == = = == = = == = = = − + −− + −− + −− + −∫ ∫∫ ∫∫ ∫∫ ∫

Pero el producto es igual a la presión. Por tanto:cteVγ−−−−

[[[[ ]]]](((( ))))2 2 12 2 2 1 1

1 1

1

1 1 1

n R T TP V P VW P V

γ γ γ

−−−−−−−−= = == = == = == = =

− − −− − −− − −− − −

Con la ecuación característica de los procesos adiabáticos en combinación con la ecuación de estado de los gases ideales pueden obtenerse otras relaciones útiles, como son:

1

1 1cte cte cteT V T P T P

γ

γ γ γ γ

−−−−

− −− −− −− −= = == = == = == = =

Page 20: Primer Principio de la Termodinámica · Calor específico molar a volumen constante , cV, 1 V V Q c ... Consideremos una determinada masa de un gas cualquiera a presión Pencerrada

2020

Ejemplo 3.

Un gas que se encuentra a 100 kPa de presión y ocupa un volumen de 20 L (estado 1) experimenta un proceso isobárico en el que absorbe 11 kJ y triplica su volumen (estado 2). A continuación incrementa la presión a 200 kPa a volumen constante (estado 3) para lo cual absorbe 11 kJ. Si la energía interna del estado inicial es de 2 kJ, determinar: a) la energía interna del estado 3 y b) del estado 2. c) Si el sistema regresa al estado 1 inicial según una trayectoria recta, ¿cuánto calor se intercambia en este proceso?

En primer lugar representemos el ciclo en un diagrama P-V.

P(kPa

)

V (L)20 60

100

200

12

3

Q12

Q23

a) Proceso 12 (presión constante):

(((( )))) (((( ))))3 3 3

12 2 1 2

N100 10 60 20 10 m 4000 J

mW P V V= − = ⋅ − == − = ⋅ − == − = ⋅ − == − = ⋅ − =

Según el Primer Principio, podemos escribir para el proceso 12 que:

12 12 12 12 11 4 7 kJU Q W U∆ ∆= −= −= −= − ⇒⇒⇒⇒ = − == − == − == − =

12 2 1 2 27 2 9 kJU U U U U∆ = −= −= −= − ⇒⇒⇒⇒ = −= −= −= − ⇒⇒⇒⇒ ====

b) Proceso 23 (volumen constante): 23 23 23Como 0 11 kJW U Q∆==== ⇒⇒⇒⇒ = == == == =

Por tanto:23 3 2 3 311 9 20 kJU U U U U∆ = −= −= −= − ⇒⇒⇒⇒ = −= −= −= − ⇒⇒⇒⇒ ====

Page 21: Primer Principio de la Termodinámica · Calor específico molar a volumen constante , cV, 1 V V Q c ... Consideremos una determinada masa de un gas cualquiera a presión Pencerrada

2121

Ejemplo 3 (continuación).

c) Calculemos el trabajo realizado en este proceso 31. Podemos obtener este trabajo a través del área limitada por la línea que marca el proceso con el eje de abcisa, es decir:

P(kPa

)

V (L)20 60

100

200

12

3

(((( )))) 3 3 3 3 3 3

31 triangulo rectangulo 2 2

1 N N100 10 40 10 m 40 10 m 100 10 6000 J

2 m mW W W

− −− −− −− − = − + = − ⋅ ⋅ + ⋅ ⋅ = −= − + = − ⋅ ⋅ + ⋅ ⋅ = −= − + = − ⋅ ⋅ + ⋅ ⋅ = −= − + = − ⋅ ⋅ + ⋅ ⋅ = −

Y aplicando el Primer Principio al proceso 31, tenemos que:

(((( ))))31 31 31 1 3 31 31U Q W U U Q W∆ = −= −= −= − ⇒⇒⇒⇒ − = −− = −− = −− = −

(((( )))) (((( ))))31 132 20 6 24 kJQ Q− = − −− = − −− = − −− = − − ⇒⇒⇒⇒ = −= −= −= −

Q31

Al resultar una cantidad de calor negativa, significa que sale del sistema.

Estado P (kPa) V (L) U (kJ)

1 100 20 2

2 100 60 9

3 200 60 20

Page 22: Primer Principio de la Termodinámica · Calor específico molar a volumen constante , cV, 1 V V Q c ... Consideremos una determinada masa de un gas cualquiera a presión Pencerrada

2222

Ejemplo 4.

20 g de hidrógeno, inicialmente a la presión de 1 atm y 27 ºC de temperatura (estado A), sufren la transformación indicada por el ciclo de la figura. Calcular el trabajo realizado, el calor absorbido y la variación de energía interna en cada una de las transformaciones parciales. (Considérese que el hidrógeno se comporta como un gas ideal y cV = 5/2 R, y tómese R como 2 cal·mol-1·K-1).

P(atm

)

V (L)

A

BC

1

0,5

T = cte

El número de moles de gas será:

20 gn ====

2 g10 moles

mol====

Por otra parte, consideremos las relación entre los calores específicos molares a presión y volumen constante, considerando que se trata de un gas diatómico.

1 1

1 1

7 cal mol Kde donde

5 cal mol K

P

P V

V

cc c R

c

− −− −− −− −

− −− −− −− −

= ⋅ ⋅= ⋅ ⋅= ⋅ ⋅= ⋅ ⋅− =− =− =− =

= ⋅ ⋅= ⋅ ⋅= ⋅ ⋅= ⋅ ⋅Calculemos ahora las P, V y T para A, B y C:

Estado A: 1 10 0,082 300 246 LA A A A A A

P V n RT V V→ =→ =→ =→ = ⇒⇒⇒⇒ = ⋅ ⋅= ⋅ ⋅= ⋅ ⋅= ⋅ ⋅ ⇒⇒⇒⇒ ====

Estado B: 1 246 0,5 492 LA A B B B B

P V P V V V→ =→ =→ =→ = ⇒⇒⇒⇒ ⋅ =⋅ =⋅ =⋅ = ⇒⇒⇒⇒ ====

492 246 Estado C: 150 K

300

CB

C

B C C

VVT

T T T→ =→ =→ =→ = ⇒⇒⇒⇒ ==== ⇒⇒⇒⇒ ====

Page 23: Primer Principio de la Termodinámica · Calor específico molar a volumen constante , cV, 1 V V Q c ... Consideremos una determinada masa de un gas cualquiera a presión Pencerrada

2323

Ejemplo 4 (continuación).

Proceso AB (isoterma):

1ln 10 2 300 ln 4158,88 cal

0,5

B A

A

B

PW n R T

P= = ⋅ ⋅ == = ⋅ ⋅ == = ⋅ ⋅ == = ⋅ ⋅ =

Como 0 4158,88 calB B

V A AU n c T Q W∆ ∆= == == == = ⇒⇒⇒⇒ = == == == =

Proceso BC (isóbara):

(((( )))) (((( ))))0,5 246 492 123 atm LC

B B C BW P V V= − = − = − ⋅= − = − = − ⋅= − = − = − ⋅= − = − = − ⋅

24,22 cal

1 atm L××××

⋅⋅⋅⋅= 2978,87 cal−−−−

(((( ))))10 7 150 300 10500 calC

B PQ n c T∆= = ⋅ ⋅ − = −= = ⋅ ⋅ − = −= = ⋅ ⋅ − = −= = ⋅ ⋅ − = −

[[[[ ]]]] [[[[ ]]]] (((( ))))10 5 150 300 7500 calC C

VB BU n c T U∆ ∆ ∆==== ⇒⇒⇒⇒ = ⋅ ⋅ − = −= ⋅ ⋅ − = −= ⋅ ⋅ − = −= ⋅ ⋅ − = −

Proceso CA (isocora):

[[[[ ]]]] (((( ))))Como 0 10 5 300 150 7500 calAA A

C C VCW Q U n c T∆ ∆==== ⇒⇒⇒⇒ = = = ⋅ ⋅ − == = = ⋅ ⋅ − == = = ⋅ ⋅ − == = = ⋅ ⋅ − =

Compruebe que:

1atm L 101,33 J = 24,22 cal⋅ =⋅ =⋅ =⋅ =

Page 24: Primer Principio de la Termodinámica · Calor específico molar a volumen constante , cV, 1 V V Q c ... Consideremos una determinada masa de un gas cualquiera a presión Pencerrada

2424

Ejemplo 5.

Un mol de gas ideal de cV = 5 cal/mol·K, inicialmente en condiciones normales, se somete a un calentamiento isocoro hasta doblar su temperatura, a continuación se expande adiabá-ticamente hasta que su temperatura vuelve al valor inicial y, finalmente, se comprime iso-térmicamente hasta recuperar su estado inicial. Represente el diagrama P-V del ciclo y determine el calor, el trabajo y los cambios de energía interna y de entalpía en cada una de las etapas del ciclo. (Tómese R como 2 cal·mol-1·K-1)

1

2

3

V (L) 22,4

1

P(atm

)

Como: 1 17 cal mol Ky

75

PP

P V

V

ccc c R

γ

− −− −− −− − = ⋅= ⋅= ⋅= ⋅− = =− = =− = =− = = ⇒⇒⇒⇒

====

La presión, volumen y temperatura en cada uno de los estados serán:

(((( ))))1

1

1

1atm

1 22,4 L

273 K

P

V

T

====

====

====

(((( ))))2

2

2

2 atm

2 22,4 L

546 K

P

V

T

====

====

====

(((( ))))

3,51

33 2

2

15

213

3 2

2

3

2732 = 0,177 atm

546

2733 22,4 126,7 L

546

273 K

TP P

T

TV V

T

T

γ

γ

γ

−−−−

−−−−−−−−

= == == == =

= = == = == = == = =

====

Page 25: Primer Principio de la Termodinámica · Calor específico molar a volumen constante , cV, 1 V V Q c ... Consideremos una determinada masa de un gas cualquiera a presión Pencerrada

2525

Ejemplo 5 (continuación).

Proceso 12 (isocora):

12 0W ====

(((( )))) (((( ))))12 2 1 1 5 546 273 1365 calV

U n c T T∆ = − = ⋅ ⋅ − == − = ⋅ ⋅ − == − = ⋅ ⋅ − == − = ⋅ ⋅ − =

(((( )))) (((( ))))23 3 2 1 7 273 546 1911 calP

H n c T T∆ = − = ⋅ ⋅ − = −= − = ⋅ ⋅ − = −= − = ⋅ ⋅ − = −= − = ⋅ ⋅ − = −

Proceso 23 (adiabática):

23 0Q ====

(((( )))) (((( ))))23 3 2 1 5 273 546 1365 calV

U n c T T∆ = − = ⋅ ⋅ − = −= − = ⋅ ⋅ − = −= − = ⋅ ⋅ − = −= − = ⋅ ⋅ − = −

(((( ))))23 23 23 23 23 23 0 1365 1365 calU Q W W Q U∆ ∆= −= −= −= − ⇒⇒⇒⇒ = − = − − == − = − − == − = − − == − = − − =

(((( )))) (((( ))))12 2 1 1 7 546 273 1911 calP

H n c T T∆ = − = ⋅ ⋅ − == − = ⋅ ⋅ − == − = ⋅ ⋅ − == − = ⋅ ⋅ − =

Proceso 31 (isoterma):

(((( )))) (((( ))))31 3 1 1 5 273 273 0 calV

U n c T T∆ = − = ⋅ ⋅ − == − = ⋅ ⋅ − == − = ⋅ ⋅ − == − = ⋅ ⋅ − =

(((( )))) (((( ))))31 3 1 1 7 273 273 0 calP

H n c T T∆ = − = ⋅ ⋅ − == − = ⋅ ⋅ − == − = ⋅ ⋅ − == − = ⋅ ⋅ − =

131 31

3

22,4ln 1 2 273 ln 946,1cal

126,7

VQ W n R T

V= = = ⋅ ⋅ = −= = = ⋅ ⋅ = −= = = ⋅ ⋅ = −= = = ⋅ ⋅ = −