prime numbers and the riemann...

141
Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches Institut Heinrich-Heine-Universität zu Düsseldorf Tag der Forschung November 2005

Upload: others

Post on 16-Mar-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Prime Numbers and the Riemann Hypothesis

Benjamin Klopsch

Mathematisches InstitutHeinrich-Heine-Universität zu Düsseldorf

Tag der Forschung ◦ November 2005

Page 2: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

“Investigation of the Distribution of Prime Numbers”

Page 3: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

What will we encounter in the next 45 minutes?

The ‘Building Blocks of Numbers’What are prime numbers?How many prime numbers are there?

Riemann – a Pioneer in Complex AnalysisInfinite Series and Complex FunctionsRiemann and the Zeta Function ζ(s)

A ‘Wonderful Formula’Riemann’s FormulaThe Riemann Hypothesis

Page 4: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

What will we encounter in the next 45 minutes?

The ‘Building Blocks of Numbers’What are prime numbers?How many prime numbers are there?

Riemann – a Pioneer in Complex AnalysisInfinite Series and Complex FunctionsRiemann and the Zeta Function ζ(s)

A ‘Wonderful Formula’Riemann’s FormulaThe Riemann Hypothesis

Page 5: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

What will we encounter in the next 45 minutes?

The ‘Building Blocks of Numbers’What are prime numbers?How many prime numbers are there?

Riemann – a Pioneer in Complex AnalysisInfinite Series and Complex FunctionsRiemann and the Zeta Function ζ(s)

A ‘Wonderful Formula’Riemann’s FormulaThe Riemann Hypothesis

Page 6: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

What are prime numbers?DefinitionA prime number is a natural number p admitting precisely twodistinct divisors, namely 1 and p.Thus the first seven prime numbers are 2, 3, 5, 7, 11, 13, 17.

Theorem (Fundamental Theorem of Arithmetic)Every natural number can written uniquely as a product ofprime numbers, up to re-ordering the factors.For instance, the fairy tale number satisfies

1001

and similarly

112005 = 32 · 5 · 19 · 131.

Page 7: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

What are prime numbers?DefinitionA prime number is a natural number p admitting precisely twodistinct divisors, namely 1 and p.Thus the first seven prime numbers are 2, 3, 5, 7, 11, 13, 17.

Theorem (Fundamental Theorem of Arithmetic)Every natural number can written uniquely as a product ofprime numbers, up to re-ordering the factors.For instance, the fairy tale number satisfies

1001

and similarly

112005 = 32 · 5 · 19 · 131.

Page 8: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

What are prime numbers?DefinitionA prime number is a natural number p admitting precisely twodistinct divisors, namely 1 and p.Thus the first seven prime numbers are 2, 3, 5, 7, 11, 13, 17.

Theorem (Fundamental Theorem of Arithmetic)Every natural number can written uniquely as a product ofprime numbers, up to re-ordering the factors.For instance, the fairy tale number satisfies

1001

and similarly

112005 = 32 · 5 · 19 · 131.

Page 9: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

What are prime numbers?DefinitionA prime number is a natural number p admitting precisely twodistinct divisors, namely 1 and p.Thus the first seven prime numbers are 2, 3, 5, 7, 11, 13, 17.

Theorem (Fundamental Theorem of Arithmetic)Every natural number can written uniquely as a product ofprime numbers, up to re-ordering the factors.For instance, the fairy tale number satisfies

1001

and similarly

112005 = 32 · 5 · 19 · 131.

Page 10: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

What are prime numbers?DefinitionA prime number is a natural number p admitting precisely twodistinct divisors, namely 1 and p.Thus the first seven prime numbers are 2, 3, 5, 7, 11, 13, 17.

Theorem (Fundamental Theorem of Arithmetic)Every natural number can written uniquely as a product ofprime numbers, up to re-ordering the factors.For instance, the fairy tale number satisfies

1001

and similarly

112005 = 32 · 5 · 19 · 131.

Page 11: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

What are prime numbers?DefinitionA prime number is a natural number p admitting precisely twodistinct divisors, namely 1 and p.Thus the first seven prime numbers are 2, 3, 5, 7, 11, 13, 17.

Theorem (Fundamental Theorem of Arithmetic)Every natural number can written uniquely as a product ofprime numbers, up to re-ordering the factors.For instance, the fairy tale number satisfies

1001

and similarly

112005 = 32 · 5 · 19 · 131.

Page 12: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

What are prime numbers?DefinitionA prime number is a natural number p admitting precisely twodistinct divisors, namely 1 and p.Thus the first seven prime numbers are 2, 3, 5, 7, 11, 13, 17.

Theorem (Fundamental Theorem of Arithmetic)Every natural number can written uniquely as a product ofprime numbers, up to re-ordering the factors.For instance, the fairy tale number satisfies

1001

and similarly

112005 = 32 · 5 · 19 · 131.

Page 13: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

What are prime numbers?DefinitionA prime number is a natural number p admitting precisely twodistinct divisors, namely 1 and p.Thus the first seven prime numbers are 2, 3, 5, 7, 11, 13, 17.

Theorem (Fundamental Theorem of Arithmetic)Every natural number can written uniquely as a product ofprime numbers, up to re-ordering the factors.For instance, the fairy tale number satisfies

1001

and similarly

112005 = 32 · 5 · 19 · 131.

Page 14: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

What are prime numbers?DefinitionA prime number is a natural number p admitting precisely twodistinct divisors, namely 1 and p.Thus the first seven prime numbers are 2, 3, 5, 7, 11, 13, 17.

Theorem (Fundamental Theorem of Arithmetic)Every natural number can written uniquely as a product ofprime numbers, up to re-ordering the factors.For instance, the fairy tale number satisfies

1001

and similarly

112005 = 32 · 5 · 19 · 131.

Page 15: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

What are prime numbers?DefinitionA prime number is a natural number p admitting precisely twodistinct divisors, namely 1 and p.Thus the first seven prime numbers are 2, 3, 5, 7, 11, 13, 17.

Theorem (Fundamental Theorem of Arithmetic)Every natural number can written uniquely as a product ofprime numbers, up to re-ordering the factors.For instance, the fairy tale number satisfies

1001

and similarly

112005 = 32 · 5 · 19 · 131.

Page 16: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

What are prime numbers?DefinitionA prime number is a natural number p admitting precisely twodistinct divisors, namely 1 and p.Thus the first seven prime numbers are 2, 3, 5, 7, 11, 13, 17.

Theorem (Fundamental Theorem of Arithmetic)Every natural number can written uniquely as a product ofprime numbers, up to re-ordering the factors.For instance, the fairy tale number satisfies

1001

and similarly

112005 = 32 · 5 · 19 · 131.

Page 17: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

What are prime numbers?DefinitionA prime number is a natural number p admitting precisely twodistinct divisors, namely 1 and p.Thus the first seven prime numbers are 2, 3, 5, 7, 11, 13, 17.

Theorem (Fundamental Theorem of Arithmetic)Every natural number can written uniquely as a product ofprime numbers, up to re-ordering the factors.For instance, the fairy tale number satisfies

1001

and similarly

112005 = 32 · 5 · 19 · 131.

Page 18: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

What are prime numbers?

DefinitionA prime number is a natural number p admitting precisely twodistinct divisors, namely 1 and p.Thus the first seven prime numbers are 2, 3, 5, 7, 11, 13, 17.

Theorem (Fundamental Theorem of Arithmetic)Every natural number can written uniquely as a product ofprime numbers, up to re-ordering the factors.For instance, the fairy tale number satisfies

1001 = 7 · 143.

and similarly112005 = 32 · 5 · 19 · 131.

Page 19: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

What are prime numbers?

DefinitionA prime number is a natural number p admitting precisely twodistinct divisors, namely 1 and p.Thus the first seven prime numbers are 2, 3, 5, 7, 11, 13, 17.

Theorem (Fundamental Theorem of Arithmetic)Every natural number can written uniquely as a product ofprime numbers, up to re-ordering the factors.For instance, the fairy tale number satisfies

1001 = 7 · 11 · 13

and similarly112005 = 32 · 5 · 19 · 131.

Page 20: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

What are prime numbers?

DefinitionA prime number is a natural number p admitting precisely twodistinct divisors, namely 1 and p.Thus the first seven prime numbers are 2, 3, 5, 7, 11, 13, 17.

Theorem (Fundamental Theorem of Arithmetic)Every natural number can written uniquely as a product ofprime numbers, up to re-ordering the factors.For instance, the fairy tale number satisfies

1001 = 7 · 11 · 13

and similarly112005 = 32 · 5 · 19 · 131.

Page 21: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

What are prime numbers?

DefinitionA prime number is a natural number p admitting precisely twodistinct divisors, namely 1 and p.Thus the first seven prime numbers are 2, 3, 5, 7, 11, 13, 17.

Theorem (Fundamental Theorem of Arithmetic)Every natural number can written uniquely as a product ofprime numbers, up to re-ordering the factors.For instance, the fairy tale number satisfies

1001 = 7 · 11 · 13

and similarly112005 = 32 · 5 · 19 · 131.

Page 22: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Sieve of Erathostenes

Among the first 100 numbers there are 25 prime numbers.

1 2 3 4 5 6 7 8 9 10 11 1213 14 15 16 17 18 19 20 21 22 23 2425 26 27 28 29 30 31 32 33 34 35 3637 38 39 40 41 42 43 44 45 46 47 4849 50 51 52 53 54 55 56 57 58 59 6061 62 63 64 65 66 67 68 69 70 71 7273 74 75 76 77 78 79 80 81 82 83 8485 86 87 88 89 90 91 92 93 94 95 9697 98 99

Page 23: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Sieve of Erathostenes

Among the first 100 numbers there are 25 prime numbers.

1 2 3 4 5 6 7 8 9 10 11 1213 14 15 16 17 18 19 20 21 22 23 2425 26 27 28 29 30 31 32 33 34 35 3637 38 39 40 41 42 43 44 45 46 47 4849 50 51 52 53 54 55 56 57 58 59 6061 62 63 64 65 66 67 68 69 70 71 7273 74 75 76 77 78 79 80 81 82 83 8485 86 87 88 89 90 91 92 93 94 95 9697 98 99

Page 24: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Sieve of Erathostenes

Among the first 100 numbers there are 25 prime numbers.

2 3 4 5 6 7 8 9 10 11 1213 14 15 16 17 18 19 20 21 22 23 2425 26 27 28 29 30 31 32 33 34 35 3637 38 39 40 41 42 43 44 45 46 47 4849 50 51 52 53 54 55 56 57 58 59 6061 62 63 64 65 66 67 68 69 70 71 7273 74 75 76 77 78 79 80 81 82 83 8485 86 87 88 89 90 91 92 93 94 95 9697 98 99

Page 25: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Sieve of Erathostenes

Among the first 100 numbers there are 25 prime numbers.

2 3 4 5 6 7 8 9 10 11 1213 14 15 16 17 18 19 20 21 22 23 2425 26 27 28 29 30 31 32 33 34 35 3637 38 39 40 41 42 43 44 45 46 47 4849 50 51 52 53 54 55 56 57 58 59 6061 62 63 64 65 66 67 68 69 70 71 7273 74 75 76 77 78 79 80 81 82 83 8485 86 87 88 89 90 91 92 93 94 95 9697 98 99

Page 26: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Sieve of Erathostenes

Among the first 100 numbers there are 25 prime numbers.

2 3 5 7 9 1113 15 17 19 21 2325 27 29 31 33 3537 39 41 43 45 4749 51 53 55 57 5961 63 65 67 69 7173 75 77 79 81 8385 87 89 91 93 9597 99

Page 27: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Sieve of Erathostenes

Among the first 100 numbers there are 25 prime numbers.

2 3 5 7 9 1113 15 17 19 21 2325 27 29 31 33 3537 39 41 43 45 4749 51 53 55 57 5961 63 65 67 69 7173 75 77 79 81 8385 87 89 91 93 9597 99

Page 28: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Sieve of Erathostenes

Among the first 100 numbers there are 25 prime numbers.

2 3 5 7 9 1113 15 17 19 21 2325 27 29 31 33 3537 39 41 43 45 4749 51 53 55 57 5961 63 65 67 69 7173 75 77 79 81 8385 87 89 91 93 9597 99

Page 29: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Sieve of Erathostenes

Among the first 100 numbers there are 25 prime numbers.

2 3 5 7 1113 17 19 2325 29 31 3537 41 43 4749 53 55 5961 65 67 7173 77 79 8385 89 91 9597

Page 30: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Sieve of Erathostenes

Among the first 100 numbers there are 25 prime numbers.

2 3 5 7 1113 17 19 2325 29 31 3537 41 43 4749 53 55 5961 65 67 7173 77 79 8385 89 91 9597

Page 31: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Sieve of Erathostenes

Among the first 100 numbers there are 25 prime numbers.

2 3 5 7 1113 17 19 23

29 3137 41 43 4749 53 5961 67 7173 77 79 83

89 9197

Page 32: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Sieve of Erathostenes

Among the first 100 numbers there are 25 prime numbers.

2 3 5 7 1113 17 19 23

29 3137 41 43 4749 53 5961 67 7173 77 79 83

89 9197

Page 33: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Sieve of Erathostenes

Among the first 100 numbers there are 25 prime numbers.

2 3 5 7 1113 17 19 23

29 3137 41 43 47

53 5961 67 7173 79 83

8997

Page 34: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Sieve of Erathostenes

Among the first 100 numbers there are 25 prime numbers.

2 3 5 7 1113 17 19 23

29 3137 41 43 47

53 5961 67 7173 79 83

8997

Page 35: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

There are infinitely many prime numbers

Theorem (Euclid, around 300 BC)There are infinitely many prime numbers.

Proof.

• Assume, p1 = 2,p2 = 3, . . . ,pr are all the prime numbers.• Set N := p1 · p2 · · · pr + 1.• Then N ≥ 2, but N is not divisible by any prime number.• Contradiction!

Question: How many is “infinitely many”?

Page 36: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

There are infinitely many prime numbers

Theorem (Euclid, around 300 BC)There are infinitely many prime numbers.

Proof.

• Assume, p1 = 2,p2 = 3, . . . ,pr are all the prime numbers.• Set N := p1 · p2 · · · pr + 1.• Then N ≥ 2, but N is not divisible by any prime number.• Contradiction!

Question: How many is “infinitely many”?

Page 37: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

There are infinitely many prime numbers

Theorem (Euclid, around 300 BC)There are infinitely many prime numbers.

Proof.

• Assume, p1 = 2,p2 = 3, . . . ,pr are all the prime numbers.• Set N := p1 · p2 · · · pr + 1.• Then N ≥ 2, but N is not divisible by any prime number.• Contradiction!

Question: How many is “infinitely many”?

Page 38: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

There are infinitely many prime numbers

Theorem (Euclid, around 300 BC)There are infinitely many prime numbers.

Proof.

• Assume, p1 = 2,p2 = 3, . . . ,pr are all the prime numbers.• Set N := p1 · p2 · · · pr + 1.• Then N ≥ 2, but N is not divisible by any prime number.• Contradiction!

Question: How many is “infinitely many”?

Page 39: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

There are infinitely many prime numbers

Theorem (Euclid, around 300 BC)There are infinitely many prime numbers.

Proof.

• Assume, p1 = 2,p2 = 3, . . . ,pr are all the prime numbers.• Set N := p1 · p2 · · · pr + 1.• Then N ≥ 2, but N is not divisible by any prime number.• Contradiction!

Question: How many is “infinitely many”?

Page 40: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

There are infinitely many prime numbers

Theorem (Euclid, around 300 BC)There are infinitely many prime numbers.

Proof.

• Assume, p1 = 2,p2 = 3, . . . ,pr are all the prime numbers.• Set N := p1 · p2 · · · pr + 1.• Then N ≥ 2, but N is not divisible by any prime number.• Contradiction!

Question: How many is “infinitely many”?

Page 41: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Number of Primes up to a Given Size

DefinitionFor every real number x let π(x) denote thenumber of primes between 1 and x .

x π(x) x/π(x)

100 25 4.01000 168 ≈ 6.0

10,000 1,229 ≈ 8.1100,000 9,592 ≈ 10.4

1,000,000 78,498 ≈ 12.710,000,000 664,579 ≈ 15.0

100,000,000 5,761,455 ≈ 17.4

Page 42: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Number of Primes up to a Given Size

DefinitionFor every real number x let π(x) denote thenumber of primes between 1 and x .

x π(x) x/π(x)

100 25 4.01000 168 ≈ 6.0

10,000 1,229 ≈ 8.1100,000 9,592 ≈ 10.4

1,000,000 78,498 ≈ 12.710,000,000 664,579 ≈ 15.0

100,000,000 5,761,455 ≈ 17.4

Page 43: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Number of Primes up to a Given Size

DefinitionFor every real number x let π(x) denote thenumber of primes between 1 and x .

x π(x) x/π(x)

100 25 4.01000 168 ≈ 6.0

10,000 1,229 ≈ 8.1100,000 9,592 ≈ 10.4

1,000,000 78,498 ≈ 12.710,000,000 664,579 ≈ 15.0

100,000,000 5,761,455 ≈ 17.4

Page 44: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Logarithmic Integral Function

Observation: Viewed from a distance, the function π(x) issurprisingly smooth. The ‘density’ of primes around a largenumber x is about 1/log(x).Remark: log(x) ≈ 2.3 · (# digits before the decimal point of x).Thus one has approximately π(x) ≈ x/ log(x).Gauß suggested the following logarithmic integral Li(x) as amore precise approximation:

Li(x) :=

∫ x

2

1log(t)

dt ≈ 1log(2)

+1

log(3)+ . . .+

1logbxc

.

Page 45: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Logarithmic Integral Function

Observation: Viewed from a distance, the function π(x) issurprisingly smooth. The ‘density’ of primes around a largenumber x is about 1/log(x).Remark: log(x) ≈ 2.3 · (# digits before the decimal point of x).Thus one has approximately π(x) ≈ x/ log(x).Gauß suggested the following logarithmic integral Li(x) as amore precise approximation:

Li(x) :=

∫ x

2

1log(t)

dt ≈ 1log(2)

+1

log(3)+ . . .+

1logbxc

.

Page 46: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Logarithmic Integral Function

Observation: Viewed from a distance, the function π(x) issurprisingly smooth. The ‘density’ of primes around a largenumber x is about 1/log(x).Remark: log(x) ≈ 2.3 · (# digits before the decimal point of x).Thus one has approximately π(x) ≈ x/ log(x).Gauß suggested the following logarithmic integral Li(x) as amore precise approximation:

Li(x) :=

∫ x

2

1log(t)

dt ≈ 1log(2)

+1

log(3)+ . . .+

1logbxc

.

Page 47: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Logarithmic Integral Function

Observation: Viewed from a distance, the function π(x) issurprisingly smooth. The ‘density’ of primes around a largenumber x is about 1/log(x).Remark: log(x) ≈ 2.3 · (# digits before the decimal point of x).Thus one has approximately π(x) ≈ x/ log(x).Gauß suggested the following logarithmic integral Li(x) as amore precise approximation:

Li(x) :=

∫ x

2

1log(t)

dt ≈ 1log(2)

+1

log(3)+ . . .+

1logbxc

.

Page 48: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Logarithmic Integral Function

Observation: Viewed from a distance, the function π(x) issurprisingly smooth. The ‘density’ of primes around a largenumber x is about 1/log(x).Remark: log(x) ≈ 2.3 · (# digits before the decimal point of x).Thus one has approximately π(x) ≈ x/ log(x).Gauß suggested the following logarithmic integral Li(x) as amore precise approximation:

Li(x) :=

∫ x

2

1log(t)

dt ≈ 1log(2)

+1

log(3)+ . . .+

1logbxc

.

Page 49: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Logarithmic Integral Function

Observation: Viewed from a distance, the function π(x) issurprisingly smooth. The ‘density’ of primes around a largenumber x is about 1/log(x).Remark: log(x) ≈ 2.3 · (# digits before the decimal point of x).Thus one has approximately π(x) ≈ x/ log(x).Gauß suggested the following logarithmic integral Li(x) as amore precise approximation:

Li(x) :=

∫ x

2

1log(t)

dt ≈ 1log(2)

+1

log(3)+ . . .+

1logbxc

.

Page 50: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Logarithmic Integral Function

Observation: Viewed from a distance, the function π(x) issurprisingly smooth. The ‘density’ of primes around a largenumber x is about 1/log(x).Remark: log(x) ≈ 2.3 · (# digits before the decimal point of x).Thus one has approximately π(x) ≈ x/ log(x).Gauß suggested the following logarithmic integral Li(x) as amore precise approximation:

Li(x) :=

∫ x

2

1log(t)

dt ≈ 1log(2)

+1

log(3)+ . . .+

1logbxc

.

Page 51: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Logarithmic Integral Function

Observation: Viewed from a distance, the function π(x) issurprisingly smooth. The ‘density’ of primes around a largenumber x is about 1/log(x).Remark: log(x) ≈ 2.3 · (# digits before the decimal point of x).Thus one has approximately π(x) ≈ x/ log(x).Gauß suggested the following logarithmic integral Li(x) as amore precise approximation:

Li(x) :=

∫ x

2

1log(t)

dt ≈ 1log(2)

+1

log(3)+ . . .+

1logbxc

.

Page 52: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

We build infinite series

Page 53: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

We build infinite series

• The harmonic series diverges to infinity:

∞∑n=1

1n

= 1 +12

+13

+14

+15

+ . . . = ∞.

to the proof

Page 54: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

We build infinite series

For∞∑

n=1

1n

= 1 +12

+

(13

+14

)+

(15

+16

+17

+18

)+ . . .

Page 55: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

We build infinite series

For∞∑

n=1

1n

= 1 +12

+

(13

+14

)+

(15

+16

+17

+18

)+ . . .

≥ 1 +12

+

(14

+14

)+

(18

+18

+18

+18

)+ . . .

Page 56: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

We build infinite series

For∞∑

n=1

1n

= 1 +12

+

(13

+14

)+

(15

+16

+17

+18

)+ . . .

≥ 1 +12

+

(14

+14

)+

(18

+18

+18

+18

)+ . . .

= 1 +12

+24

+48

+ . . .

Page 57: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

We build infinite series

For∞∑

n=1

1n

= 1 +12

+

(13

+14

)+

(15

+16

+17

+18

)+ . . .

≥ 1 +12

+

(14

+14

)+

(18

+18

+18

+18

)+ . . .

= 1 +12

+24

+48

+ . . .

= 1 +12

+12

+12

+ . . . = ∞.

Page 58: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

We build infinite series

• The harmonic series diverges to infinity:

∞∑n=1

1n

= 1 +12

+13

+14

+15

+ . . . = ∞.

to the proof

Page 59: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

We build infinite series

• The harmonic series diverges to infinity:

∞∑n=1

1n

= 1 +12

+13

+14

+15

+ . . . = ∞.

• In contrast, the sum of quadratic reciprocals

∞∑n=1

1n2 = 1 +

122 +

132 + . . . = 1 +

14

+19

+ . . .

is bounded above and converges. to the proof

Page 60: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

We build infinite series

For∞∑

n=1

1n2 = 1 +

∞∑n=2

1n2

Page 61: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

We build infinite series

For∞∑

n=1

1n2 = 1 +

∞∑n=2

1n2 ≤ 1 +

∞∑n=2

1(n − 1)n

Page 62: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

We build infinite series

For∞∑

n=1

1n2 = 1 +

∞∑n=2

1n2 ≤ 1 +

∞∑n=2

1(n − 1)n

= 1 +∞∑

n=2

n − (n − 1)

(n − 1)n= 1 +

∞∑n=2

(1

n − 1− 1

n

)

Page 63: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

We build infinite series

For∞∑

n=1

1n2 = 1 +

∞∑n=2

1n2 ≤ 1 +

∞∑n=2

1(n − 1)n

= 1 +∞∑

n=2

n − (n − 1)

(n − 1)n= 1 +

∞∑n=2

(1

n − 1− 1

n

)= 1 +

(1− 1

2

)+

(12− 1

3

)+

(13− 1

4

)+ . . .

Page 64: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

We build infinite series

For∞∑

n=1

1n2 = 1 +

∞∑n=2

1n2 ≤ 1 +

∞∑n=2

1(n − 1)n

= 1 +∞∑

n=2

n − (n − 1)

(n − 1)n= 1 +

∞∑n=2

(1

n − 1− 1

n

)= 1 +

(1− 1

2

)+

(12− 1

3

)+

(13− 1

4

)+ . . .

= 1 + 1 +

(−1

2+

12

)+

(−1

3+

13

)+

(−1

4+

14

)+ . . .

Page 65: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

We build infinite series

For∞∑

n=1

1n2 = 1 +

∞∑n=2

1n2 ≤ 1 +

∞∑n=2

1(n − 1)n

= 1 +∞∑

n=2

n − (n − 1)

(n − 1)n= 1 +

∞∑n=2

(1

n − 1− 1

n

)= 1 +

(1− 1

2

)+

(12− 1

3

)+

(13− 1

4

)+ . . .

= 1 + 1 +

(−1

2+

12

)+

(−1

3+

13

)+

(−1

4+

14

)+ . . .

= 1 + 1 + 0 + 0 + 0 + . . . = 2.

Page 66: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

We build infinite series

• The harmonic series diverges to infinity:

∞∑n=1

1n

= 1 +12

+13

+14

+15

+ . . . = ∞.

• In contrast, the sum of quadratic reciprocals

∞∑n=1

1n2 = 1 +

122 +

132 + . . . = 1 +

14

+19

+ . . .

is bounded above and converges. to the proof

Page 67: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

We build infinite series

• The harmonic series diverges to infinity:

∞∑n=1

1n

= 1 +12

+13

+14

+15

+ . . . = ∞.

• In contrast, the sum of quadratic reciprocals

∞∑n=1

1n2 = 1 +

122 +

132 + . . . = 1 +

14

+19

+ . . .

is bounded above and converges.

Question: What is the sum of all the quadratic reciprocals?

Page 68: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Euler and the ‘Real Zeta Function’

One has∞∑

n=1

1n2 =

π2

6≈ 1.6449,

where π = 3.1415....

Euler considered more generally the real function

ζ(s) =∞∑

n=1

1ns for s > 1

and he computed ζ(2m) for all even numbers 2, 4,6, 8, . . .

Page 69: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Euler and the ‘Real Zeta Function’

One has∞∑

n=1

1n2 =

π2

6≈ 1.6449,

where π = 3.1415....

Euler considered more generally the real function

ζ(s) =∞∑

n=1

1ns for s > 1

and he computed ζ(2m) for all even numbers 2, 4,6, 8, . . .

Page 70: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Euler and the ‘Real Zeta Function’

One has∞∑

n=1

1n2 =

π2

6≈ 1.6449,

where π = 3.1415....

Euler considered more generally the real function

ζ(s) =∞∑

n=1

1ns for s > 1

and he computed ζ(2m) for all even numbers 2, 4,6, 8, . . .

Page 71: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Euler Product FormulaThe Euler Product Formula yields a interesting connectionbetween the function ζ(s) and prime numbers:

ζ(s) = 1 +12s +

13s +

14s +

15s +

16s + . . .

=

(1 +

12s +

122s +

123s + . . .

)·(

1 +13s +

132s +

133s + . . .

)·(

1 +15s +

152s +

153s + . . .

)· · ·

=∏

p prime

(1 +

1ps +

1p2s +

1p3s + . . .

)=

∏p prime

11− p−s .

Page 72: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Complex Number Plane

The familiar real number line Rextends to the so-calledcomplex number planeC = R + iR.

reelle Achse

1 2 3−1

i

2i

−i

imaginäre Achse

reelle Achse

1 2 3−1

i

2i

−i

imaginäre Achse

z = 2.5 + 2 i

The complex nmber i , called the imaginary unit, has theproperty that its square equals −1.

reelle Achse

1 2 3−1

i

2i

−i

imaginäre Achse

z = 2.5 + 2 i

w = 1 − 0.5 i

reelle Achse

1 2 3−1

i

2i

−i

imaginäre Achse

z = 2.5 + 2 i

3.5 + 1.5 i

z + w =

w = 1 − 0.5 i

The basic arithmetic operationsaddition, subtraction,multiplication and divisionextend from the real numbersto the complex numbers.

Page 73: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Complex Number Plane

The familiar real number line Rextends to the so-calledcomplex number planeC = R + iR.

reelle Achse

1 2 3−1

i

2i

−i

imaginäre Achse

reelle Achse

1 2 3−1

i

2i

−i

imaginäre Achse

z = 2.5 + 2 i

The complex nmber i , called the imaginary unit, has theproperty that its square equals −1.

reelle Achse

1 2 3−1

i

2i

−i

imaginäre Achse

z = 2.5 + 2 i

w = 1 − 0.5 i

reelle Achse

1 2 3−1

i

2i

−i

imaginäre Achse

z = 2.5 + 2 i

3.5 + 1.5 i

z + w =

w = 1 − 0.5 i

The basic arithmetic operationsaddition, subtraction,multiplication and divisionextend from the real numbersto the complex numbers.

Page 74: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Complex Number Plane

The familiar real number line Rextends to the so-calledcomplex number planeC = R + iR.

reelle Achse

1 2 3−1

i

2i

−i

imaginäre Achse

reelle Achse

1 2 3−1

i

2i

−i

imaginäre Achse

z = 2.5 + 2 i

The complex nmber i , called the imaginary unit, has theproperty that its square equals −1.

reelle Achse

1 2 3−1

i

2i

−i

imaginäre Achse

z = 2.5 + 2 i

w = 1 − 0.5 i

reelle Achse

1 2 3−1

i

2i

−i

imaginäre Achse

z = 2.5 + 2 i

3.5 + 1.5 i

z + w =

w = 1 − 0.5 i

The basic arithmetic operationsaddition, subtraction,multiplication and divisionextend from the real numbersto the complex numbers.

Page 75: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Complex Functions

Simple transformations of the complex number plane to itself,such as the polynomial function

f (z) = f (x + iy) := z3 − 64z,

can be visualised as landscapes.

Page 76: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Complex Functions

Simple transformations of the complex number plane to itself,such as the polynomial function

f (z) = f (x + iy) := z3 − 64z,

can be visualised as landscapes.

Page 77: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Georg Friedrich Bernhard Riemann

Page 78: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Georg Friedrich Bernhard Riemann

• born 1826 in Breselenz, Lüchow-Dannenberg• student in Göttingen (initially in Theology) and Berlin• 1851 PhD with the seminal Inauguraldissertation

“Grundlagen für eine allgemeine Theorie der Functioneneiner veränderlichen complexen Grösse”

• 1854 Habilitation lecture “Über die Hypothesen, welche derGeometrie zu Grunde liegen” - a cornerstone of modernDifferential Geometry

• 1859 successor of Dirichlet to the Gauß-Chair, publicationof the article “Ueber die Anzahl der Primzahlen unter einergegebenen Grösse”

• deceased 1866 from tuberculosis in Selasca, LagoMaggiore, Italy

Page 79: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Georg Friedrich Bernhard Riemann

• born 1826 in Breselenz, Lüchow-Dannenberg• student in Göttingen (initially in Theology) and Berlin• 1851 PhD with the seminal Inauguraldissertation

“Grundlagen für eine allgemeine Theorie der Functioneneiner veränderlichen complexen Grösse”

• 1854 Habilitation lecture “Über die Hypothesen, welche derGeometrie zu Grunde liegen” - a cornerstone of modernDifferential Geometry

• 1859 successor of Dirichlet to the Gauß-Chair, publicationof the article “Ueber die Anzahl der Primzahlen unter einergegebenen Grösse”

• deceased 1866 from tuberculosis in Selasca, LagoMaggiore, Italy

Page 80: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Georg Friedrich Bernhard Riemann

• born 1826 in Breselenz, Lüchow-Dannenberg• student in Göttingen (initially in Theology) and Berlin• 1851 PhD with the seminal Inauguraldissertation

“Grundlagen für eine allgemeine Theorie der Functioneneiner veränderlichen complexen Grösse”

• 1854 Habilitation lecture “Über die Hypothesen, welche derGeometrie zu Grunde liegen” - a cornerstone of modernDifferential Geometry

• 1859 successor of Dirichlet to the Gauß-Chair, publicationof the article “Ueber die Anzahl der Primzahlen unter einergegebenen Grösse”

• deceased 1866 from tuberculosis in Selasca, LagoMaggiore, Italy

Page 81: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Georg Friedrich Bernhard Riemann

• born 1826 in Breselenz, Lüchow-Dannenberg• student in Göttingen (initially in Theology) and Berlin• 1851 PhD with the seminal Inauguraldissertation

“Grundlagen für eine allgemeine Theorie der Functioneneiner veränderlichen complexen Grösse”

• 1854 Habilitation lecture “Über die Hypothesen, welche derGeometrie zu Grunde liegen” - a cornerstone of modernDifferential Geometry

• 1859 successor of Dirichlet to the Gauß-Chair, publicationof the article “Ueber die Anzahl der Primzahlen unter einergegebenen Grösse”

• deceased 1866 from tuberculosis in Selasca, LagoMaggiore, Italy

Page 82: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Georg Friedrich Bernhard Riemann

• born 1826 in Breselenz, Lüchow-Dannenberg• student in Göttingen (initially in Theology) and Berlin• 1851 PhD with the seminal Inauguraldissertation

“Grundlagen für eine allgemeine Theorie der Functioneneiner veränderlichen complexen Grösse”

• 1854 Habilitation lecture “Über die Hypothesen, welche derGeometrie zu Grunde liegen” - a cornerstone of modernDifferential Geometry

• 1859 successor of Dirichlet to the Gauß-Chair, publicationof the article “Ueber die Anzahl der Primzahlen unter einergegebenen Grösse”

• deceased 1866 from tuberculosis in Selasca, LagoMaggiore, Italy

Page 83: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Georg Friedrich Bernhard Riemann

• born 1826 in Breselenz, Lüchow-Dannenberg• student in Göttingen (initially in Theology) and Berlin• 1851 PhD with the seminal Inauguraldissertation

“Grundlagen für eine allgemeine Theorie der Functioneneiner veränderlichen complexen Grösse”

• 1854 Habilitation lecture “Über die Hypothesen, welche derGeometrie zu Grunde liegen” - a cornerstone of modernDifferential Geometry

• 1859 successor of Dirichlet to the Gauß-Chair, publicationof the article “Ueber die Anzahl der Primzahlen unter einergegebenen Grösse”

• deceased 1866 from tuberculosis in Selasca, LagoMaggiore, Italy

Page 84: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Georg Friedrich Bernhard Riemann

Page 85: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Riemann Zeta Function

The infinite series

ζ(s) =∞∑

n=1

1ns = 1 +

12s +

13s +

14s + . . .

converges for all complex numbers s = x + yi with real partx > 1.Moreover, the function ζ(s), extends uniquely to the entirecomplex number plane, apart from a pole at s = 1.

Page 86: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Riemann Zeta Function

The infinite series

ζ(s) =∞∑

n=1

1ns = 1 +

12s +

13s +

14s + . . .

converges for all complex numbers s = x + yi with real partx > 1.Moreover, the function ζ(s), extends uniquely to the entirecomplex number plane, apart from a pole at s = 1.

Page 87: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Riemann Zeta Function

The infinite series

ζ(s) =∞∑

n=1

1ns = 1 +

12s +

13s +

14s + . . .

converges for all complex numbers s = x + yi with real partx > 1.Moreover, the function ζ(s), extends uniquely to the entirecomplex number plane, apart from a pole at s = 1.

Page 88: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Critical Strip

The ‘real’ function ζ(s) can be extended to theentire complex number plane by means of theFunctional Equation

Λ(s) := π−s/2Γ(s/2)ζ(s) = Λ(1− s).

10 i

20 i

30 i

−10 i

−20 i

1−1−2−3−4

reelle Achse

imaginäre Achse

kritischer Streifen

Pol

10 i

20 i

30 i

−10 i

−20 i

1−1−2−3−4

reelle Achse

imaginäre Achse

kritischer Streifen

triviale Nullstellen für s = −2, −4, −6, ...

Pol

10 i

20 i

30 i

−10 i

−20 i

1−1−2−3−4

reelle Achse

imaginäre Achse

kritischer Streifen

triviale Nullstellen für s = −2, −4, −6, ...

0.5 + i (14.13...)

0.5 + i (21.02...)

0.5 − i (21.02...)

0.5 − i (14.13...)

. . .

. . .

Nullstellen

Pol

nicht−triviale

Of particular importance are the zeros of Λ(s).They correspond to the non-trivial zeros of ζ(s)and lie in the critical stripS := {x + yi | 0 ≤ x ≤ 1}.

All known zeros of Λ(s) lie on the lineG := {x + yi | x = 1/2}.

Page 89: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Critical Strip

The ‘real’ function ζ(s) can be extended to theentire complex number plane by means of theFunctional Equation

Λ(s) := π−s/2Γ(s/2)ζ(s) = Λ(1− s).

10 i

20 i

30 i

−10 i

−20 i

1−1−2−3−4

reelle Achse

imaginäre Achse

kritischer Streifen

Pol

10 i

20 i

30 i

−10 i

−20 i

1−1−2−3−4

reelle Achse

imaginäre Achse

kritischer Streifen

triviale Nullstellen für s = −2, −4, −6, ...

Pol

10 i

20 i

30 i

−10 i

−20 i

1−1−2−3−4

reelle Achse

imaginäre Achse

kritischer Streifen

triviale Nullstellen für s = −2, −4, −6, ...

0.5 + i (14.13...)

0.5 + i (21.02...)

0.5 − i (21.02...)

0.5 − i (14.13...)

. . .

. . .

Nullstellen

Pol

nicht−triviale

Of particular importance are the zeros of Λ(s).They correspond to the non-trivial zeros of ζ(s)and lie in the critical stripS := {x + yi | 0 ≤ x ≤ 1}.

All known zeros of Λ(s) lie on the lineG := {x + yi | x = 1/2}.

Page 90: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Critical Strip

The ‘real’ function ζ(s) can be extended to theentire complex number plane by means of theFunctional Equation

Λ(s) := π−s/2Γ(s/2)ζ(s) = Λ(1− s).

10 i

20 i

30 i

−10 i

−20 i

1−1−2−3−4

reelle Achse

imaginäre Achse

kritischer Streifen

Pol

10 i

20 i

30 i

−10 i

−20 i

1−1−2−3−4

reelle Achse

imaginäre Achse

kritischer Streifen

triviale Nullstellen für s = −2, −4, −6, ...

Pol

10 i

20 i

30 i

−10 i

−20 i

1−1−2−3−4

reelle Achse

imaginäre Achse

kritischer Streifen

triviale Nullstellen für s = −2, −4, −6, ...

0.5 + i (14.13...)

0.5 + i (21.02...)

0.5 − i (21.02...)

0.5 − i (14.13...)

. . .

. . .

Nullstellen

Pol

nicht−triviale

Of particular importance are the zeros of Λ(s).They correspond to the non-trivial zeros of ζ(s)and lie in the critical stripS := {x + yi | 0 ≤ x ≤ 1}.

All known zeros of Λ(s) lie on the lineG := {x + yi | x = 1/2}.

Page 91: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Chebyshev ψ-Function

Recall: We are to show that, for large x , the number π(x) ofprime numbers less than or equal to x is closely approximatedby the logarithmic integral Li(x). Grafik

More handy than the prime countingfunction π(x) =

∑p≤x 1 is a variant,

introduced by Chebyshev,

ψ(x) :=∑pk≤x

log(p),

which counts prime numbers with alogarithmic weight.

Loosely speaking, the approximation π(x) ≈ Li(x)is equivalent to ψ(x) ≈ x .

Page 92: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Chebyshev ψ-Function

Recall: We are to show that, for large x , the number π(x) ofprime numbers less than or equal to x is closely approximatedby the logarithmic integral Li(x). Grafik

More handy than the prime countingfunction π(x) =

∑p≤x 1 is a variant,

introduced by Chebyshev,

ψ(x) :=∑pk≤x

log(p),

which counts prime numbers with alogarithmic weight.

Loosely speaking, the approximation π(x) ≈ Li(x)is equivalent to ψ(x) ≈ x .

Page 93: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Chebyshev ψ-Function

Recall: We are to show that, for large x , the number π(x) ofprime numbers less than or equal to x is closely approximatedby the logarithmic integral Li(x). Grafik

More handy than the prime countingfunction π(x) =

∑p≤x 1 is a variant,

introduced by Chebyshev,

ψ(x) :=∑pk≤x

log(p),

which counts prime numbers with alogarithmic weight.

Loosely speaking, the approximation π(x) ≈ Li(x)is equivalent to ψ(x) ≈ x .

Page 94: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Chebyshev ψ-Function

Recall: We are to show that, for large x , the number π(x) ofprime numbers less than or equal to x is closely approximatedby the logarithmic integral Li(x). Grafik

More handy than the prime countingfunction π(x) =

∑p≤x 1 is a variant,

introduced by Chebyshev,

ψ(x) :=∑pk≤x

log(p),

which counts prime numbers with alogarithmic weight.

Loosely speaking, the approximation π(x) ≈ Li(x)is equivalent to ψ(x) ≈ x .

Page 95: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Riemann’s Formula for the Prime Counting Function

The step function ψ(x) can be expressed precisely in terms ofthe complex zeros of the Riemann zeta function:

ψ·(x) = x − log(2π) −∑ρ

ρ− 1

2log(

1− 1x2

).

The following graphics visualise how the prime countingfunction ψ(x) is stepwise approximated using the first 300 pairsof zeros of the Riemann zeta function. Graphics

Page 96: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Riemann’s Formula for the Prime Counting Function

The step function ψ(x) can be expressed precisely in terms ofthe complex zeros of the Riemann zeta function:

ψ·(x) = x − log(2π) −∑ρ

ρ− 1

2log(

1− 1x2

).

The following graphics visualise how the prime countingfunction ψ(x) is stepwise approximated using the first 300 pairsof zeros of the Riemann zeta function. Graphics

Page 97: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Riemann’s Formula for the Prime Counting Function

The step function ψ(x) can be expressed precisely in terms ofthe complex zeros of the Riemann zeta function:

ψ·(x) = x − log(2π) −∑ρ

ρ− 1

2log(

1− 1x2

).

The following graphics visualise how the prime countingfunction ψ(x) is stepwise approximated using the first 300 pairsof zeros of the Riemann zeta function. Graphics

Page 98: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Stepwise Approximation of ψ(x)

Page 99: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Stepwise Approximation of ψ(x)

Page 100: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Stepwise Approximation of ψ(x)

Page 101: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Stepwise Approximation of ψ(x)

Page 102: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Stepwise Approximation of ψ(x)

Page 103: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Stepwise Approximation of ψ(x)

Page 104: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Stepwise Approximation of ψ(x)

Page 105: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Stepwise Approximation of ψ(x)

Page 106: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Stepwise Approximation of ψ(x)

Page 107: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Stepwise Approximation of ψ(x)

Page 108: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Stepwise Approximation of ψ(x)

Page 109: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Stepwise Approximation of ψ(x)

Page 110: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Stepwise Approximation of ψ(x)

Page 111: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Stepwise Approximation of ψ(x)

Page 112: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Stepwise Approximation of ψ(x)

Page 113: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Stepwise Approximation of ψ(x)

Page 114: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Stepwise Approximation of ψ(x)

Page 115: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Riemann Hypothesis

Riemann HypothesisAll non-trivial zeros of the Riemann zeta function lie on the lineG = {x + yi | x = 1/2}.To this day, Riemann’s conjecture has not been proved ordisproved.The Riemann Hypothesis is equivalent to the followingassertion.

Equivalent Formulation of the Riemann HypothesisThere is a constant C such that π(x) does not deviate fromLi(x) by more than C ·

√x log(x).

Page 116: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Riemann Hypothesis

Riemann HypothesisAll non-trivial zeros of the Riemann zeta function lie on the lineG = {x + yi | x = 1/2}.To this day, Riemann’s conjecture has not been proved ordisproved.The Riemann Hypothesis is equivalent to the followingassertion.

Equivalent Formulation of the Riemann HypothesisThere is a constant C such that π(x) does not deviate fromLi(x) by more than C ·

√x log(x).

Page 117: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Riemann Hypothesis

Riemann HypothesisAll non-trivial zeros of the Riemann zeta function lie on the lineG = {x + yi | x = 1/2}.To this day, Riemann’s conjecture has not been proved ordisproved.The Riemann Hypothesis is equivalent to the followingassertion.

Equivalent Formulation of the Riemann HypothesisThere is a constant C such that π(x) does not deviate fromLi(x) by more than C ·

√x log(x).

Page 118: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Riemann Hypothesis

Riemann HypothesisAll non-trivial zeros of the Riemann zeta function lie on the lineG = {x + yi | x = 1/2}.To this day, Riemann’s conjecture has not been proved ordisproved.The Riemann Hypothesis is equivalent to the followingassertion.

Equivalent Formulation of the Riemann HypothesisThere is a constant C such that π(x) does not deviate fromLi(x) by more than C ·

√x log(x).

Page 119: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Riemann Hypothesis

Riemann HypothesisAll non-trivial zeros of the Riemann zeta function lie on the lineG = {x + yi | x = 1/2}.To this day, Riemann’s conjecture has not been proved ordisproved.The Riemann Hypothesis is equivalent to the followingassertion.

Equivalent Formulation of the Riemann HypothesisThere is a constant C such that π(x) does not deviate fromLi(x) by more than C ·

√x log(x).

Page 120: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The Riemann Hypothesis

"‘. . . Man findet nun in der That etwa so viel reelleWurzeln innerhalb dieser Grenzen, und es ist sehrwahrscheinlich, dass alle Wurzeln reell sind. Hiervonwäre allerdings ein strenger Beweis zu wünschen; ichhabe indess die Aufsuchung desselben nach einigenflüchtigen vergeblichen Versuchen vorläufig bei Seitegelassen, da er für den nächsten Zweck meinerUntersuchung entbehrlich schien. . . . "’

Riemann

Page 121: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

Following Riemann’s Pioneering Work . . .

. . . von Mangoldt . . . Hadamard . . . de la Vallée Poussin. . . Hardy . . . Littlewood . . . Selberg . . . Montgomery . . .

Page 122: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Prime Numbers From Euler to Riemann A ‘Wonderful Formula’ The End

The End

Many Thanksfor your kind attention

and credits toTobias Ebel

for the computer-technical assistance

Page 123: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Appendix with Pictures and Graphics

Page 124: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

There are infinitely many prime numbers

Theorem (Euclid, around 300 BC)There are infinitely many prime numbers.

Proof.

• Assume, p1 = 2,p2 = 3, . . . ,pr are all the prime numbers.• Set N := p1 · p2 · · · pr + 1.• Then N ≥ 2, but N is not divisible by any prime number.• Contradiction!

Question: How many is “infinitely many”?

Page 125: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Number of Primes up to a Given Size

DefinitionFor every real number x let π(x) denote thenumber of primes between 1 and x .

x π(x) x/π(x)

100 25 4.01000 168 ≈ 6.0

10,000 1,229 ≈ 8.1100,000 9,592 ≈ 10.4

1,000,000 78,498 ≈ 12.710,000,000 664,579 ≈ 15.0

100,000,000 5,761,455 ≈ 17.4

Page 126: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Number of Primes up to a Given Size

DefinitionFor every real number x let π(x) denote thenumber of primes between 1 and x .

x π(x) x/π(x)

100 25 4.01000 168 ≈ 6.0

10,000 1,229 ≈ 8.1100,000 9,592 ≈ 10.4

1,000,000 78,498 ≈ 12.710,000,000 664,579 ≈ 15.0

100,000,000 5,761,455 ≈ 17.4

Page 127: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Euler and the ‘Real Zeta Function’One has∞∑

n=1

1n2 =

π2

6≈ 1.6449,

where π = 3.1415....

Euler considered more generally the real function

ζ(s) =∞∑

n=1

1ns for s > 1

and he computed ζ(2m) for all even numbers 2, 4,6, 8, . . .

Page 128: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Euler and the ‘Real Zeta Function’

One has∞∑

n=1

1n2 =

π2

6≈ 1.6449,

where π = 3.1415....

Euler considered more generally the real function

ζ(s) =∞∑

n=1

1ns for s > 1

and he computed ζ(2m) for all even numbers 2, 4,6, 8, . . .

Page 129: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

The Complex Number Plane

The familiar real number line Rextends to the so-calledcomplex number planeC = R + iR.

reelle Achse

1 2 3−1

i

2i

−i

imaginäre Achse

reelle Achse

1 2 3−1

i

2i

−i

imaginäre Achse

z = 2.5 + 2 i

The complex nmber i , called the imaginary unit, has theproperty that its square equals −1.

reelle Achse

1 2 3−1

i

2i

−i

imaginäre Achse

z = 2.5 + 2 i

w = 1 − 0.5 i

reelle Achse

1 2 3−1

i

2i

−i

imaginäre Achse

z = 2.5 + 2 i

3.5 + 1.5 i

z + w =

w = 1 − 0.5 i

The basic arithmetic operationsaddition, subtraction,multiplication and divisionextend from the real numbersto the complex numbers.

Page 130: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

The Complex Number Plane

The familiar real number line Rextends to the so-calledcomplex number planeC = R + iR.

reelle Achse

1 2 3−1

i

2i

−i

imaginäre Achse

reelle Achse

1 2 3−1

i

2i

−i

imaginäre Achse

z = 2.5 + 2 i

The complex nmber i , called the imaginary unit, has theproperty that its square equals −1.

reelle Achse

1 2 3−1

i

2i

−i

imaginäre Achse

z = 2.5 + 2 i

w = 1 − 0.5 i

reelle Achse

1 2 3−1

i

2i

−i

imaginäre Achse

z = 2.5 + 2 i

3.5 + 1.5 i

z + w =

w = 1 − 0.5 i

The basic arithmetic operationsaddition, subtraction,multiplication and divisionextend from the real numbersto the complex numbers.

Page 131: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

The Complex Number Plane

The familiar real number line Rextends to the so-calledcomplex number planeC = R + iR.

reelle Achse

1 2 3−1

i

2i

−i

imaginäre Achse

reelle Achse

1 2 3−1

i

2i

−i

imaginäre Achse

z = 2.5 + 2 i

The complex nmber i , called the imaginary unit, has theproperty that its square equals −1.

reelle Achse

1 2 3−1

i

2i

−i

imaginäre Achse

z = 2.5 + 2 i

w = 1 − 0.5 i

reelle Achse

1 2 3−1

i

2i

−i

imaginäre Achse

z = 2.5 + 2 i

3.5 + 1.5 i

z + w =

w = 1 − 0.5 i

The basic arithmetic operationsaddition, subtraction,multiplication and divisionextend from the real numbersto the complex numbers.

Page 132: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

The Complex Number Plane

The familiar real number line Rextends to the so-calledcomplex number planeC = R + iR.

reelle Achse

1 2 3−1

i

2i

−i

imaginäre Achse

reelle Achse

1 2 3−1

i

2i

−i

imaginäre Achse

z = 2.5 + 2 i

The complex nmber i , called the imaginary unit, has theproperty that its square equals −1.

reelle Achse

1 2 3−1

i

2i

−i

imaginäre Achse

z = 2.5 + 2 i

w = 1 − 0.5 i

reelle Achse

1 2 3−1

i

2i

−i

imaginäre Achse

z = 2.5 + 2 i

3.5 + 1.5 i

z + w =

w = 1 − 0.5 i

The basic arithmetic operationsaddition, subtraction,multiplication and divisionextend from the real numbersto the complex numbers.

Page 133: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Complex Functions

Simple transformations of the complex number plane to itself,such as the polynomial function

f (z) = f (x + iy) := z3 − 64z,

can be visualised as landscapes.

Page 134: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

Georg Friedrich Bernhard Riemann

Page 135: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

The Riemann Zeta Function

The infinite series

ζ(s) =∞∑

n=1

1ns = 1 +

12s +

13s +

14s + . . .

converges for all complex numbers s = x + yi with real partx > 1.Moreover, the function ζ(s), extends uniquely to the entirecomplex number plane, apart from a pole at s = 1.

Page 136: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

The Riemann Zeta Function

The infinite series

ζ(s) =∞∑

n=1

1ns = 1 +

12s +

13s +

14s + . . .

converges for all complex numbers s = x + yi with real partx > 1.Moreover, the function ζ(s), extends uniquely to the entirecomplex number plane, apart from a pole at s = 1.

Page 137: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

The Critical Strip

The ‘real’ function ζ(s) can be extended to theentire complex number plane by means of theFunctional Equation

Λ(s) := π−s/2Γ(s/2)ζ(s) = Λ(1− s).

10 i

20 i

30 i

−10 i

−20 i

1−1−2−3−4

reelle Achse

imaginäre Achse

kritischer Streifen

Pol

10 i

20 i

30 i

−10 i

−20 i

1−1−2−3−4

reelle Achse

imaginäre Achse

kritischer Streifen

triviale Nullstellen für s = −2, −4, −6, ...

Pol

10 i

20 i

30 i

−10 i

−20 i

1−1−2−3−4

reelle Achse

imaginäre Achse

kritischer Streifen

triviale Nullstellen für s = −2, −4, −6, ...

0.5 + i (14.13...)

0.5 + i (21.02...)

0.5 − i (21.02...)

0.5 − i (14.13...)

. . .

. . .

Nullstellen

Pol

nicht−triviale

Of particular importance are the zeros of Λ(s).They correspond to the non-trivial zeros of ζ(s)and lie in the critical stripS := {x + yi | 0 ≤ x ≤ 1}.

All known zeros of Λ(s) lie on the lineG := {x + yi | x = 1/2}.

Page 138: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

The Critical Strip

The ‘real’ function ζ(s) can be extended to theentire complex number plane by means of theFunctional Equation

Λ(s) := π−s/2Γ(s/2)ζ(s) = Λ(1− s).

10 i

20 i

30 i

−10 i

−20 i

1−1−2−3−4

reelle Achse

imaginäre Achse

kritischer Streifen

Pol

10 i

20 i

30 i

−10 i

−20 i

1−1−2−3−4

reelle Achse

imaginäre Achse

kritischer Streifen

triviale Nullstellen für s = −2, −4, −6, ...

Pol

10 i

20 i

30 i

−10 i

−20 i

1−1−2−3−4

reelle Achse

imaginäre Achse

kritischer Streifen

triviale Nullstellen für s = −2, −4, −6, ...

0.5 + i (14.13...)

0.5 + i (21.02...)

0.5 − i (21.02...)

0.5 − i (14.13...)

. . .

. . .

Nullstellen

Pol

nicht−triviale

Of particular importance are the zeros of Λ(s).They correspond to the non-trivial zeros of ζ(s)and lie in the critical stripS := {x + yi | 0 ≤ x ≤ 1}.

All known zeros of Λ(s) lie on the lineG := {x + yi | x = 1/2}.

Page 139: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

The Critical Strip

The ‘real’ function ζ(s) can be extended to theentire complex number plane by means of theFunctional Equation

Λ(s) := π−s/2Γ(s/2)ζ(s) = Λ(1− s).

10 i

20 i

30 i

−10 i

−20 i

1−1−2−3−4

reelle Achse

imaginäre Achse

kritischer Streifen

Pol

10 i

20 i

30 i

−10 i

−20 i

1−1−2−3−4

reelle Achse

imaginäre Achse

kritischer Streifen

triviale Nullstellen für s = −2, −4, −6, ...

Pol

10 i

20 i

30 i

−10 i

−20 i

1−1−2−3−4

reelle Achse

imaginäre Achse

kritischer Streifen

triviale Nullstellen für s = −2, −4, −6, ...

0.5 + i (14.13...)

0.5 + i (21.02...)

0.5 − i (21.02...)

0.5 − i (14.13...)

. . .

. . .

Nullstellen

Pol

nicht−triviale

Of particular importance are the zeros of Λ(s).They correspond to the non-trivial zeros of ζ(s)and lie in the critical stripS := {x + yi | 0 ≤ x ≤ 1}.

All known zeros of Λ(s) lie on the lineG := {x + yi | x = 1/2}.

Page 140: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

The Critical Strip

The ‘real’ function ζ(s) can be extended to theentire complex number plane by means of theFunctional Equation

Λ(s) := π−s/2Γ(s/2)ζ(s) = Λ(1− s).

10 i

20 i

30 i

−10 i

−20 i

1−1−2−3−4

reelle Achse

imaginäre Achse

kritischer Streifen

Pol

10 i

20 i

30 i

−10 i

−20 i

1−1−2−3−4

reelle Achse

imaginäre Achse

kritischer Streifen

triviale Nullstellen für s = −2, −4, −6, ...

Pol

10 i

20 i

30 i

−10 i

−20 i

1−1−2−3−4

reelle Achse

imaginäre Achse

kritischer Streifen

triviale Nullstellen für s = −2, −4, −6, ...

0.5 + i (14.13...)

0.5 + i (21.02...)

0.5 − i (21.02...)

0.5 − i (14.13...)

. . .

. . .

Nullstellen

Pol

nicht−triviale

Of particular importance are the zeros of Λ(s).They correspond to the non-trivial zeros of ζ(s)and lie in the critical stripS := {x + yi | 0 ≤ x ≤ 1}.

All known zeros of Λ(s) lie on the lineG := {x + yi | x = 1/2}.

Page 141: Prime Numbers and the Riemann Hypothesisreh.math.uni-duesseldorf.de/~klopsch/mathematics/PraesentationsFolien/... · Prime Numbers and the Riemann Hypothesis Benjamin Klopsch Mathematisches

The Chebyshev ψ-Function

Recall: We are to show that, for large x , the number π(x) ofprime numbers less than or equal to x is closely approximatedby the logarithmic integral Li(x). Grafik

More handy than the prime countingfunction π(x) =

∑p≤x 1 is a variant,

introduced by Chebyshev,

ψ(x) :=∑pk≤x

log(p),

which counts prime numbers with alogarithmic weight.

Loosely speaking, the approximation π(x) ≈ Li(x)is equivalent to ψ(x) ≈ x .