pressure transient analysis - houston university

Upload: puji-lestari

Post on 08-Apr-2018

249 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/7/2019 Pressure Transient Analysis - Houston University

    1/68

    Petroleum Engineering

    UniversityofHouston

    2000-2001 M. Peter Ferrero, IX

    Contents

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    Description of a well test:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    Types of tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    Why we do transient testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    Flow States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    Development of Flow Equations for Flow in Porous Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    Solutions to the Diffusivity Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    Skin Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    Wellbore Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    Wellbore Storage (WBS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    Radius of Investigation (ROI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    Pseudo Steady-State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    Shape Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    Principle of Superposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    Horners Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    Buildup Test Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    Derivative Analysis (Drawdown case) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

    Ideal vs. Actual PBU/DD Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

    Flow Regimes & Model Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

    Gas Well Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    Gas Tests - Pseudo ((P)) Equation Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    Pseudopressure or Real Gas Potential ((P)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    Determination of Skin and D for Gas Wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    Multiple Rate Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    Odeh-Jones Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    Flow Regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

    Horizontal wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    Pressure level in surrounding reservoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

    Drill Stem Tests (DST). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65Conducting Well Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

    Wellbore Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

    Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    Pressure Transient Analysis

    Spring 2001

  • 8/7/2019 Pressure Transient Analysis - Houston University

    2/68

    Pressure Transient Analysis

    Introduction Page 2

    2000-2001 M. Peter Ferrero, IX

    Introduction

    Instructors:

    Grading:

    20% homework

    40% midterm

    40% final

    Textbook:

    Well Testing by John Lee

    Jeff Appemail: [email protected]

    B.S.: Civil Engineering, Rice UniversityM.S.: Chemical Engineering, University

    Currently completing Ph.D. in Chemical Engineering,

    University of Houston

    of Houston

    Dr. Christine Ehlig-Economidesemail: [email protected]

    M.S.: Chemical Engineering, University of KansasPh.D.: Petroleum Engineering, Stanford University

  • 8/7/2019 Pressure Transient Analysis - Houston University

    3/68

    Pressure Transient Analysis

    Description of a well test: Page 3

    2000-2001 M. Peter Ferrero, IX

    Description of a well test:

    Schematic:

    Process:

    flow well at single or multiple rates for time, tp.

    shut well in for pressure buildup (PBU), t. measure P, T, and qs (pressure, temperature, and flow rates, respectively).

    Information gained:

    reservoir fluids [BHS (bottom hole sample), separator samples for PVT analysis]

    reservoir temperature and pressure (from gauge)

    permeability and skin (completion efficiency)

    reservoir description, qualitative (faults, changes in permeability, oil/water contact)

    Fig. 1. Schematic of well test set-up

    Oil

    Gas

    Water

    Choke

    Pressure gauge

    Packer

    Perforations

    Separator

  • 8/7/2019 Pressure Transient Analysis - Houston University

    4/68

    Pressure Transient Analysis

    Types of tests Page 4

    2000-2001 M. Peter Ferrero, IX

    Types of tests

    Drawdown test (DD)

    difficult to maintain constant rate

    this introduces scatter in mea-sured FBHP (flowing bottom holepressure)

    Pressure buildup test (PBU)

    advantage: rate is known, i.e. q=0

    disadvantage: lost production

    Injection test

    advantage: injection rates areeasily controlled

    disadvantage: analysis is compli-cated by multiphase effects and

    possible fracturing

    T im e

    q

    P

    Fig. 2. Drawdown test

    T im e

    q

    P

    Fig. 3. Pressure buildup test

    T im e

    q

    P

    Fig. 4. Injection test

  • 8/7/2019 Pressure Transient Analysis - Houston University

    5/68

    Pressure Transient Analysis

    Why we do transient testing Page 5

    2000-2001 M. Peter Ferrero, IX

    Falloff test

    Interference/pulse test

    Tests connectivity of wells using a producers and observation wells

    Used to estimate transmissibility , and storativity

    Drillstem test (DST)

    Way to go for exploration

    Utilize downhole shut-in which greatly reduces wellbore storage (WBS)

    Accurate production rate measurement

    on site production facilities

    Why we do transient testingWhen we make a rate change, the system goes through a transition state during which thesteady-state solutions are not valid this is known as transient flow. This is the period thatis the basis for well testing or pressure transient analysis.

    Steady-state equations do not yield unique values for k, h, & s:

    Log derived/core kh values are not always representative of system/reservoir kh.

    Well testing yields macroscopic, average system kh.

    T im e

    q

    P

    Fig. 5. Falloff test

    kh

    ------ hct

    P 141.2qkh

    --------------------------rerw-----ln S+

    =

  • 8/7/2019 Pressure Transient Analysis - Houston University

    6/68

    Pressure Transient Analysis

    Flow States Page 6

    2000-2001 M. Peter Ferrero, IX

    Flow States

    Steady-state, , pressures

    in reservoir/wellbore do not vary

    with time.

    Pseudo steady state,

    , pressures in reservoir/wellbore are changing in a constant (linear) man-

    ner

    P

    rw re

    For all time

    Fig. 6. Steady-state flow regime

    Pt------- 0=

    Pt------- cons ttan=

    Time

    P LinearP

    rw re

    t3

    t2

    t1

    Fig. 7. Pseudo steady-state flow regime

  • 8/7/2019 Pressure Transient Analysis - Houston University

    7/68

    Pressure Transient Analysis

    Development of Flow Equations for Flow in Porous Media Page 7

    2000-2001 M. Peter Ferrero, IX

    Transient, , pres-

    sure in reservoir/wellbore arechanging as a function of both

    time and location.

    Development of Flow

    Equations for Flow in Porous MediaNote: there is a good writeup in Appendix A of Lee.

    Whats needed to derive the diffusivity equation is:

    A. Conservation of Mass (Continuity equation)

    B. Darcys Law

    C. Equation of State (EOS)

    A. Continuity equation, cylindrical coordinates (r, z, )

    P

    rw re

    t3

    t2

    t1

    Fig. 8. Transient flow regime

    P

    t------- f x y z t , , ,( )=

    vzr r dd

    z v

    z( ) zd r rd d+

    v r zdd

    vrr zdd r

    rvr( ) d r zdd+

    dr

    dz

    d

    rd

    vrr zdd

    vzr r dd

    z v

    z( ) zd r rd d+

    vzr r dd

    Fig. 9. Cylindrical coordinate system

  • 8/7/2019 Pressure Transient Analysis - Houston University

    8/68

    Pressure Transient Analysis

    Development of Flow Equations for Flow in Porous Media Page 8

    2000-2001 M. Peter Ferrero, IX

    mass flux,

    [Rate of mass accumulation] + [Rate of mass outflow] - [Rate of mass inflow] = 0

    .... divide by

    .... note that since there is no z or , the last two terms are 0

    .... therefore, for a fully perforated interval, the RADIAL DIFFUSIVITY EQUATIONis

    B. Darcys Law

    Isotropic: k=kr=k=kz

    Assume single slightly compressible fluid - compressibility, c= constant

    By integration:

    v lbm

    ft3

    ----------ft

    s--- lbm

    ft2

    s--------------= =

    t

    r r zddd( ) r r zddd t

    ( )=

    vrr zdd

    r rv

    r( ) d r zdd+ v

    rr zdd[ ] ....r direction

    v r zdd v( ) d r zdd+ v r zdd[ ] .... direction

    vzr r dd

    z v

    z( ) zd r rd d+ v

    zr r dd[ ] ....z direction

    r r zt

    ( )dddr

    rvr( ) r zddd v( ) r zddd z

    vz( )r r zddd+ + + 0=

    r r zddd

    t ( ) 1

    r---

    r rvr( )

    1

    r---

    v( ) z

    vz( )+ + + 0=

    t ( ) 1

    r---

    r rvr( )+ 0=

    k

    --- P=

    rkr----

    rd

    dP=

    k-----

    ddP=

    zkz-----

    zd

    dP=

    t ( ) 1

    r---

    r r

    kr----

    rd

    dP

    + 0=

    or

    1

    r---

    r r

    kr----

    rd

    dP

    t ( )=

    c1

    Vol---------

    Pd

    dVol 1

    ---

    Pd

    dVol

    1

    ---=;

  • 8/7/2019 Pressure Transient Analysis - Houston University

    9/68

    Pressure Transient Analysis

    Development of Flow Equations for Flow in Porous Media Page 9

    2000-2001 M. Peter Ferrero, IX

    Note:

    1. Since doesnt change wrt time,

    2. Also, since the pressure gradient is small,

    Canceling s, and dividing through by

    .... therefore, for a fully perforated interval, the RADIAL DIFFUSIVITY EQUATIONincluding Darcys law is

    To solve this you need two boundary conditions and one initial condition. For a closedsystem:

    Initial condition: P = Pi @ t=0

    Boundary condition 1: No flow -

    0ec P P0( )

    c PdP0

    P

    ------ 0 base ;0

    = = =

    r

    c0ec P P0( )

    rP

    cr

    P= =

    r

    c0ec P P0( )

    rP

    cr

    P= =

    1

    r---

    r rk

    ---

    rP

    t ( )=

    1

    r

    ---

    r

    Prk

    ---

    r

    P k

    ---

    r

    P rk

    ---

    r2

    2

    P+ +

    t

    t

    +=

    k

    ---

    1

    r--- cr

    rP

    2

    rP r

    r

    2

    P

    + +

    ct

    P=

    t

    0

    rP

    2

    1 crr

    P

    2

    0;

    r---

    k

    --- rP

    r r

    2

    P

    +

    c t

    P=

    k

    ---

    1

    r---

    rP r

    r

    2

    P

    + c

    k----------

    tP

    =

    1

    r---

    r

    rr

    P 1

    ---

    tP

    where kc----------==

    rP

    re

    0=

  • 8/7/2019 Pressure Transient Analysis - Houston University

    10/68

    Pressure Transient Analysis

    Development of Flow Equations for Flow in Porous Media Page 10

    2000-2001 M. Peter Ferrero, IX

    Boundary condition 2:

    For an infinite reservoir, BC1 becomes as .

    Darcys law came from Darcys investigation of the sewers in Paris. He conducted hisexperiments on flow through gravel.

    Steady-state linear flow:

    Darcy velocity in Cylindrical coordinates

    Examples of tests:

    In transient flow, pressure will decrease wrt time at constant flow rate.

    Separation of log-log and derivative plot indicates skin (larger separation=larger skin)

    1. Derived diffusivity equation based on:

    rP

    rw

    q2hrw----------------=

    P Pi r

    velocity, u 0.001127k

    -------

    ld

    dP =

    q 0.001127kA

    -------

    ld

    dP = l

    P 2

    P 1q

    q

    Pe rm ea bi l i ty , k

    W a ter viscosity, w

    Fig. 10. Steady-state linear flow

    velocity, u 0.001127k

    ---

    rd

    dP =

    q 0.0011272rwk

    ----------------

    rd

    dP =

    qdr

    r-----

    rw

    r2

    0.007082rwk

    ---------------- dP

    Pw

    P2 =

    q 0.00708kh

    -------

    P2 Pw( )r2rw-----

    ln

    ------------------------- =

    h

    rw

    Area, A = 2 rw h (area o f cy l ind er )

    Fig. 11. Darcy velocity in cylindrical coordinates

  • 8/7/2019 Pressure Transient Analysis - Houston University

    11/68

    Pressure Transient Analysis

    Solutions to the Diffusivity Equation Page 11

    2000-2001 M. Peter Ferrero, IX

    Continuity equation

    Darcys law

    EOS

    2. Assumptions:

    a. Radial flow over entire net thickness

    b. Homogeneous and isotropic porous media (kr=k=kz)

    c. Uniform net thickness

    d. q and k are constant (independant of pressure)

    e. Fluid is of small and constant compressibility

    f. Constant g. Small pressure gradients ( )

    h. Negligible gravity forces

    Solutions to the Diffusivity Equation3. Develop solutions to diffusivity equation.

    Exact solution - Van Everdingen & Hurst terminal rate solution (center, bounded, cir-cular system!). (We wont use this!)

    Infinite reservoir, line source well

    - constant rate, q- unbounded (infinite acting) reservoir

    a. Initial condition: P=Pi at t=o for all radius, r

    b. Boundary condition (BC) #1: for t>0...constant rate condition

    c. BC #2: as for all t

    Replace BC#1 to obtain line source approximation

    for t>0

    Line source solution:

    rP

    2

    1

    Pwf Pi141.2q

    kh--------------------------

    2tD

    reD2

    -------- reDln3

    4---+ 2

    e2tD

    J12 reD( )

    2

    J12

    reD J12( )

    ----------------------------------------------------

    1=

    +=

    1

    r---

    r

    rr

    P 1

    ---

    tP

    =

    rr

    P

    rw

    q2kh--------------=

    f

    P Pi r

    rr

    P

    rwr 0lim

    q2kh--------------=

    P r t( , ) Pi 70.6qkh

    ----------Eir2

    4t---------

    where Ei x( )e

    -------- d

    x

    =

    ;+=

  • 8/7/2019 Pressure Transient Analysis - Houston University

    12/68

    Pressure Transient Analysis

    Skin Development Page 12

    2000-2001 M. Peter Ferrero, IX

    DRAWDOWN ONLY

    Constant rate

    Unbounded reservoir

    Limitations of the line source solution (Ei)

    a. Check to insure that Ei solution is valid

    - for , the assumption of zero wellbore radius limits the accuracy of the

    solution

    - for , effects of boundaries are felt, Ei solution no longer

    valid.

    b. If Ei solution is valid, check applicability of ln approximation.

    For wellbore, Pw (if Ei is valid, then its always valid at the wellbore)

    ln approximation but for Ei

    - If Ei function is valid at the wellbore, then ln approximation will always be valid at

    the wellbore!- Even if though the E i function may be valid at radius, r (rw < r < re), the ln approxi-

    mation wont always be valid.

    Skin DevelopmentSkin, S, refers to a region near the wellbore of improved or reduced permeabilitycompared to the bulk formation permeability.

    Impairment (+S):

    Overbalanced drilling (filtrate loss)

    Perforating damage

    Unfiltered completion fluid

    Fines migration after long term production

    Non-darcy flow (predominantly gas well)

    Condensate banking- acts like turbulence

    Stimulation (-S)

    Frac pack (0 to -0.5)

    Acidizing

    100rw2

    --------------- t

    re2

    4-------

    t100rw

    2

    ---------------

    P r t( , ) Pi 70.6qkh

    ----------Eir2

    4t---------

    +=

    Ei x( ) 1.781x( ) x 0.02,ln=

    Eir2

    4t---------

    0.445r2

    t--------------------

    r2

    4t--------- 0.02,ln=

    rw2

    4t--------- 0.02

    rw2

    4t---------

    0.01

    4-----------

  • 8/7/2019 Pressure Transient Analysis - Houston University

    13/68

    Pressure Transient Analysis

    Skin Development Page 13

    2000-2001 M. Peter Ferrero, IX

    Hydraulic fracturing

    Generally S>5 is considered bad; S= -3.5 to -4 is excellent.

    Flow efficiency, FE, is the ratio of flow without skin to the flow with skin,

    Combine with Darcys law:

    Darcy w/o S

    Darcy /w S-------------------------------- or FE

    8

    S 8+-------------,

    Radius

    Pressure

    k of formationk including skin

    Pk

    Ps

    rw rs

    Pks

    Fig. 12. Skin pressure drop

    Ps Pks Pk=

    Ps 141.2qksh----------

    rsrw-----

    ln 141.2qkh

    ----------rsrw-----

    ln=

    Ps 141.2qkh

    ----------k

    ks----- 1

    rsrw-----

    ln=

    We definek

    ks----- 1

    rsrw-----

    ln S=

    Ps 141.2qkh

    ----------S=

    Ptotal PS 0= PS+=

    Ptotal 141.2qkh

    ----------rerw-----

    ln 141.2qkh

    ----------S+ 141.2qkh

    ----------rerw-----

    ln S+= =

    S 0> Damaged ks k

    S 0= Undamaged ks k=

  • 8/7/2019 Pressure Transient Analysis - Houston University

    14/68

    Pressure Transient Analysis

    Skin Development Page 14

    2000-2001 M. Peter Ferrero, IX

    SEM examples of various clays which can cause formation damage

    Fig. 13. Smectite (left) and kaolinite (right) coat grains and fill apore. Note distinct differences in morphology of eachclay ("honeycomb" smectite; vermicular booklets ofkaolinite (x2000)(image courtesey of Westport Technology Center)

    Fig. 14. Delicate wisps of "hairy" illite project into a pore. Notethat the fibers not only form a highly rugose surfacewithin the pore, but the fibers could break and migrateunder extreme fluid pressures (x2500)(image courtesey of Westport Technology Center)

    Fig. 15. Well-formed chlorite platelets form partial rosettesadjacent to, and coating quartz overgrowths (x2500)(image courtesey of Westport Technology Center)

    Fig. 16. Well-formed, but rather randomly oriented kaolinitebooklets post-date quartz overgrowths (x700)(image courtesey of Westport Technology Center)

  • 8/7/2019 Pressure Transient Analysis - Houston University

    15/68

    Pressure Transient Analysis

    Skin Development Page 15

    2000-2001 M. Peter Ferrero, IX

    SEM examples of formation damage and stimulation

    Fig. 17. SEM image of perforation damage with percussion fines(x305)

    Fig. 18. SEM image of completion damage with polymerfilament (x105)

    Fig. 19. SEM image of pre-acid treatment (x3100) Fig. 20. SEM image of post-acid treatment (x3100)

  • 8/7/2019 Pressure Transient Analysis - Houston University

    16/68

    Pressure Transient Analysis

    Wellbore Solutions Page 16

    2000-2001 M. Peter Ferrero, IX

    Wellbore Solutions1. Ideal reservoir (no skin)

    2. Solution at sandface (including skin)

    Wellbore Storage (WBS)

    Unit slope on log-log plot of P vs. time Straight line on cartesian,

    Storage between the sandface and shut-in valve allow the formation to continue to flowwhen we affect a shut-in. This is due to fluid compressibility.

    We will consider two cases:

    1. A well with a gas-liquid interface

    2. A liquid filled well

    Pw r t( , ) Pi 70.6qkh

    ----------0.445rw

    2

    t--------------------

    where 2.637410 k

    ct---------------------------------=;ln+=

    Pw t( ) Pi 70.6qkh

    ----------1688ctrw

    2

    ktp-------------------------------

    from Lee;ln+=

    Pwf Pi Pwf Pk Pskin+ 70.6qkh

    ----------0.445rw

    2

    t--------------------

    ln 141.2qkh

    ----------S+= = =

    Pwf 70.6qkh

    ----------0.445rw

    2

    t-------------------- 2S

    ln=

    Pwf Pi 70.6qkh

    ----------0.445rw

    2

    t--------------------

    2Sln 2.637410 k

    ct

    ---------------------------------=;+=

    b 0

  • 8/7/2019 Pressure Transient Analysis - Houston University

    17/68

    Pressure Transient Analysis

    Wellbore Storage (WBS) Page 17

    2000-2001 M. Peter Ferrero, IX

    General definitions

    Vwb = volume of liquid in well (ft3)

    Awb = cross-sectional area of well (ft2)

    l = density of wellbore fluid (lbm/ft3)

    h = height of liquid column inwellbore (ft)

    Gas-liquid interface

    pumping wells, gas lift wells

    injection wells (on vacuum)

    an approximation for most natu-

    rally flowing oil wells (excepthighly undersaturated oils, P>Pb)

    Wellbore mass balance

    [Mass inflow] - [Mass outflow] = Accumulation of Mass

    Assume constant density, l

    Note:

    Vwb

    Awbhliquid

    dh

    Pt

    q ((((RB/D)

    qSF ((((RB/D) Pw + Pt + lgh144

    Fig. 21. Wellbore storage definitions

    qSF q( )24

    5.615---------------

    td

    d vWB( )=

    bbl

    D

    --------lbm

    ft3

    ---------- ft

    3

    bbl

    --------24

    5.615

    ---------------lbm

    ft3

    ---------- ft3

    =

    qSF q( )24

    5.615---------------

    td

    dvWB where vWB AWBh td

    dvWB AWB td

    dh=;=;=

    qSF q( )24

    5.615---------------AWB td

    dh=

    h144 Pw Pt( )

    g----------------------------------=

    td

    dh 144

    g----------

    td

    dPwassume

    td

    dPt=;=

    qSF q( ) )24

    5.615---------------

    144AWBg

    ----------------------td

    dPw=

  • 8/7/2019 Pressure Transient Analysis - Houston University

    18/68

    Pressure Transient Analysis

    Wellbore Storage (WBS) Page 18

    2000-2001 M. Peter Ferrero, IX

    Definition: Wellbore storage coefficient for a gas-liquid interface

    Example:

    3.5 tubing, AWB = 0.041 ft2

    o = 50 lbm/ft3vwb = 100 bbl

    depth = 17,000 ft

    Solution

    (note that for a gas-liquid interface the cs is independent of well depth!)

    Governing Equation (WBS)

    qsf = sandface flowrate, STB/D

    q = surface flowrate, STB/D

    cs = WBS coefficient, bbl/psi

    = formation volume factor, RB/STB

    = change in BHP wrt time

    BIG NOTE: Using downhole shut-in eliminates most WBS

    Pure Wellbore Storage

    B - Unit slope on log-log plot

    A - straight line on cartesian plot

    Why?A - 100% WBS, q=0 (PBU)

    Therefore, cs can be calcu-

    lated from the slope of a straightline (intercept must be zero!)

    B - Log-log plot, 100% WBS,q=0 @surface (PBU)

    cs144ABW5.615l----------------------

    25.65ABWl

    ---------------------------= =bbl

    psi--------

    cs 25.65AWB

    l------------ 25.65

    0.041

    50---------------

    0.02 bblps i--------= = =

    qSF q( ) 24cs

    ----- tddPw

    =

    td

    dPw

    t

    P qSF24cs------------- m=

    Fig. 22. cs from cartesian plot

    qSF 24cs-----

    td

    dPw=

  • 8/7/2019 Pressure Transient Analysis - Houston University

    19/68

    Pressure Transient Analysis

    Wellbore Storage (WBS) Page 19

    2000-2001 M. Peter Ferrero, IX

    Estimate cs from any ( )

    pair on unit slope line

    Completely liquid filled wellbore

    Wellbore mass balance

    [Mass inflow] - [Mass outflow] = Accumulation of Mass

    log t

    log Pwm = 1

    qSF24cs-------------

    Fig. 23. cs from log-log plot. Estimate cs from any (Pw, t) pair on unit slopeline

    qSF 24cs-----

    Pt--------=

    PwqSF24cs-------------t=

    Pw( )log qSF

    24cs-------------tlog=

    Pw( )log m t( )logqSF24cs-------------

    log+=

    Pwt,

    tlndd

    x( )

    td

    dx( )

    td

    dt( )ln

    t( )lndd

    x( ) tt( )lnd

    dx( )= =

    td

    d x( ) tt( )lnd

    d x( )=

    PW tdd PW( ) t

    qSF24cS-------------= =

    Take log of both sides[ ]

    td

    d PW( )log t( )logqSF24cS-------------

    log+=

    m 1 interceptqSF24cS------------- for P==

  • 8/7/2019 Pressure Transient Analysis - Houston University

    20/68

    Pressure Transient Analysis

    Wellbore Storage (WBS) Page 20

    2000-2001 M. Peter Ferrero, IX

    Example:

    vWB = 100 bblc= 1X10-5 psi -1

    Solution

    Note: for cs < 0.003 there is basically no WBS

    Determining the end of WBS

    Drawdown case (100% WBS)

    Buildup case (100% WBS)

    q = rate prior to a PBU

    qSF q( )24

    5.615---------------

    td

    d vWB( )=

    Note vWB AWBh=[ ]

    qSF q( )24

    5.615

    ---------------vWBtd

    d

    =

    by chain rule c1

    ---

    P

    td

    dPPwd

    d

    td

    dPw c

    td

    dPw= =

    qSF q( )24

    5.615---------------vWBc td

    dPw=

    qSF q( )24

    5.615---------------vWBc td

    dPw=

    csvWBc

    5.615--------------- bb l

    ps i-------- where c = average fluid compressibility

    csvWBc

    5.615---------------

    100 1510( )

    5.615--------------------------------- 0.0002= = =

    bb l

    ps i--------

    qSF q 24cs-----

    td

    dPw=

    qSF 0 initially as open to rate q=

    q 24cs-----

    td

    dPw=

    q 0 initially as the well is shut in=

    qSF fixed=

    qSF 24cs-----

    td

    dPw=

    WBS is over when 24

    cs

    ----- td

    dPw

    0.01q

  • 8/7/2019 Pressure Transient Analysis - Houston University

    21/68

    Pressure Transient Analysis

    Radius of Investigation (ROI) Page 21

    2000-2001 M. Peter Ferrero, IX

    = production rate for a drawdown test

    Radius of Investigation (ROI)This is one of the basic concepts to well test analysis.

    From the error function:

    R feett hou

    k mD

    f frac

    m cp

    c psi-

    q1

    q2

    q3

    t

    PWF

    t

    P

    rw re

    t3

    t2

    t1

    Pi

    r1 r3r2

    Fig. 24. Illustration of ROI

    Ri 4t= 2.637 410 k

    ct---------------------------------=;

    Radius of investigation is INDEPENDENT of q

  • 8/7/2019 Pressure Transient Analysis - Houston University

    22/68

    Pressure Transient Analysis

    Pseudo Steady-State Page 22

    2000-2001 M. Peter Ferrero, IX

    Pseudo Steady-StateDepletion of a closed system

    Pseudo steady-state occurs when the pressure transient has reached all boundaries in aclosed system.

    The solution, based on the Van Everdingen & Hurst terminal exact solution of a bounded,cylindrical reservoir is

    This is very difficult to apply!

    Shape Factorsp. 9-10 of Lee text

    Principle of SuperpositionThe diffusivity equation is a linear homogeneous equation (with homogeneous BCs).

    Therefore, linear combinations of solutions are also solutions. The combined linearsolution eliminates the following restrictions:

    Single well

    Reservoir boundaries

    Constant rate

    PWF Pi141.2q

    kh--------------------------

    2t

    re2

    ---------rerw-----

    ln 0.75+ for= tre2

    4-------

    tPWF 141.2q

    kh--------------------------

    2

    re2

    -------= 2.637410 k

    ct---------------------------------=;

    tPWF 141.2q

    kh--------------------------

    2 2.637410( )k

    re

    2

    c

    t

    -----------------------------------------0.0744q

    c

    thr

    e

    2---------------------------- Note:Vp re

    2h reservoir volume== =

    tPWF 0.234q

    ctVp----------------------

    Pt--------= =

    1

    r---

    r

    rr

    P 1

    ---

    tP

    =

  • 8/7/2019 Pressure Transient Analysis - Houston University

    23/68

    Pressure Transient Analysis

    Principle of Superposition Page 23

    2000-2001 M. Peter Ferrero, IX

    Multi-well solution

    Determine

    Check for if

    B

    A

    C

    rAB

    rAC

    q

    t

    qA

    qB

    qC

    PAPTOTAL

    APA PB PC+ +=

    P r t( , ) Pi 70.6q

    kh----------

    0.445r2

    t--------------------ln 2S +=

    P Pi P r t( , ) 70.6q

    kh----------

    0.445r2

    t--------------------

    ln 2S = =

    PTOTALA

    70.6qA

    kh--------------

    0.445r2

    t--------------------

    ln 2SA 70.6qB

    kh-------------- Ei

    rAB2

    4t------------

    70.6qC

    kh-------------- Ei

    rAC2

    4t------------

    =

    1.781x( )ln r2

    4t--------- 0.02

  • 8/7/2019 Pressure Transient Analysis - Houston University

    24/68

    Pressure Transient Analysis

    Principle of Superposition Page 24

    2000-2001 M. Peter Ferrero, IX

    Boundaries

    Single fault

    For long time,

    For not totally sealing faults use FOG FACTORS (for q of image well):

    1 = sealing

    0 = no fault

    -1 = water drive (constant P)

    Geologic model Mathematical Model

    use image well)

    q

    L

    Fig. 25. Single fault geologic model

    qactual

    qimage

    L L

    no flow boundary

    Fig. 26. Single fault geologic model

    Ptotal Pactual P eimag+=

    Pi PWF 70.6qkh

    ----------0.445rw

    2

    t--------------------

    ln 2S 70.6qkh

    ---------- Ei2L( )24t

    ----------------- ==

    Ei4L

    2

    4t---------

    0.445 2L( )2

    t------------------------------

    ln

  • 8/7/2019 Pressure Transient Analysis - Houston University

    25/68

    Pressure Transient Analysis

    Principle of Superposition Page 25

    2000-2001 M. Peter Ferrero, IX

    Intersecting faults (90 degree)

    Need three image wells

    Geologic model Mathematical Model

    (use e well)

    q

    L

    L

    Fig. 27. 90 degree intersecting fault geologic model

    L 2

    L 2

    qactual

    qimage

    q

    image

    qimage

    L

    L

    L

    L

    no flow boundary

    Fig. 28. 90 degree intersecting fault mathematical model

  • 8/7/2019 Pressure Transient Analysis - Houston University

    26/68

    Pressure Transient Analysis

    Principle of Superposition Page 26

    2000-2001 M. Peter Ferrero, IX

    Intersecting faults (45 degree)

    Need seven image wells

    Geologic model Mathematical Model

    (use image well)

    q

    Fig. 29. 45 degree intersecting fault geologic model

    qactual

    qimage

    qimage

    qimage

    qimage

    qimage

    qimage

    qimage

    Fig. 30. 45 degree intersecting fault mathematical model

  • 8/7/2019 Pressure Transient Analysis - Houston University

    27/68

    Pressure Transient Analysis

    Principle of Superposition Page 27

    2000-2001 M. Peter Ferrero, IX

    Variable rate

    Single well producing at variable rates (ideal, infinite reservoir)

    t1 t2

    q1

    q2

    q3

    t0

    q1

    -q1

    +

    +

    q2

    +

    -q2

    +

    q3

    q1

    +

    q2-q1

    +

    q3-q2

    =

    OR

    P = f(q,t)

  • 8/7/2019 Pressure Transient Analysis - Houston University

    28/68

    Pressure Transient Analysis

    Horners Approximation Page 28

    2000-2001 M. Peter Ferrero, IX

    General Solution

    Horners Approximation

    Avoids the use of superposition to model variable rates

    Can replace the need for multiple function evaluation each representing a rate

    change, with a single function ( ) that contain a single rate and producing time.

    Procedure

    Single rate used is most recent non-zero rate, qlast

    Producing time is cumulative production (Np) divided by qlast

    Buildup Test Solutions(Chapter 2 - Lee)

    Ideal pressure buildup test

    Infinite acting reservoir (no boundaries have been felt by transient)

    Formation and fluid properties are uniform (Ei and ln function apply)

    P Pi

    PWF

    70.6

    kh------- q

    i

    qi 1

    ( )

    i 1=

    m

    0.445rw2

    t ti 1( )--------------------------

    ln 2S= =

    Can incorporate dozens of rates

    Ei xln( )

    Ei

    tP 24Production from wellMost recent rate

    -------------------------------------------------------------NPqlast----------= =

    P Pi

    PWF

    70.6qlast

    kh------------------

    0.445rw2

    tP--------------------

    ln 2S= =

    Note: tlast 2 tnext to last>

    qlast

    qnext PBU

    q=0

  • 8/7/2019 Pressure Transient Analysis - Houston University

    29/68

    Pressure Transient Analysis

    Buildup Test Solutions Page 29

    2000-2001 M. Peter Ferrero, IX

    Use superposition to model variable rates

    q is the rate prior to PBU. Use Horners approximation with multiple rates

    P* is always taken as the extrapolation from the MTR irregardless of whether boundariesor late time effects are seen. If late time effects are observed, P* may not correspond to Pi

    or

    tP

    q

    t

    -q

    P Pqtp t+

    Pqt DD PBU Pi PWF( ) PWS PWF( ) Pi PWS= = = =

    P Pi PWS 70.6qkh

    ----------0.445rw

    2

    tp t+( )-------------------------

    ln 2S 70.6q( )kh

    ------------------0.445rw

    2

    t( )--------------------

    ln 2S= =

    Pi PWS 70.6qkh

    ----------0.445rw2

    tp t+( )-------------------------

    ln 2S

    0.445rw2

    t( )--------------------

    ln 2S+=

    PWS Pi 70.6qkh

    ----------0.445rw

    2

    tp t+( )-------------------------

    ln0.445rw

    2

    t( )--------------------

    ln+=

    Pi 70.6qkh

    ----------t

    tp t+( )---------------------

    ln+=

    Note: xln 2.302 xlog=

    P WS Pi 162.6qkh

    ----------tp t+( )

    t---------------------

    log=

    myx-------

    P2 P1

    tP t2+t2

    -------------------- log

    tP t1+t1

    -------------------- log

    --------------------------------------------------------------------------= =

    PWS

    1000 100 10 1

    tP

    t+

    t------------------

    Pi = P* (infinite shut-in)

    m162.6q

    kh--------------------------=

    P2 P1

    10( )log 100( )log-------------------------------------------------

    P2 P1

    1 2------------------- P1 P2= ==

    tP t+

    t-----------------

    t lim 1=Note:

    P

  • 8/7/2019 Pressure Transient Analysis - Houston University

    30/68

    Pressure Transient Analysis

    Derivative Analysis (Drawdown case) Page 30

    2000-2001 M. Peter Ferrero, IX

    Derivative Analysis (Drawdown case)Bourdet derivative

    Drawdown solution

    tlnd

    d 1

    2.302---------------

    tlogd

    d=

    By chain ruled( )dt

    ----------td

    d tlnd( )d tln---------- 1

    t---

    d( )d tln----------= =

    d( )d tln---------- t

    d( )dt

    ----------=

    PWF Pi70.6q

    kh----------------------

    0.445rw2

    t--------------------

    ln 2S+=

    Pi PWF70.6q

    kh----------------------

    0.445rw2

    t--------------------

    ln 2S70.6q

    kh---------------------- tln

    0.445rw2

    --------------------

    ln 2S+= =

    Take Bourdet Derivative

    tlnd

    dPi PWF( ) t

    70.6qkh

    ---------------------- 1

    t---

    70.6qkh

    ----------------------= =td

    dtln

    1

    t---=;

    tlnd

    dPi PWF( ) tlnd

    d P( ) m 70.6qkh

    ----------------------= = =

    PWF

    10001

    m

    162.6qkh

    --------------------------=

    tPlog

    10001

    m70.6q

    kh------------------------=

    kh 70.6qd P( )d tln

    ----------------@ stabilization

    -----------------------------------------------------------=

    tlog

    d P( )

    d tln

    ----------------log

    MTR

  • 8/7/2019 Pressure Transient Analysis - Houston University

    31/68

    Pressure Transient Analysis

    Derivative Analysis (Drawdown case) Page 31

    2000-2001 M. Peter Ferrero, IX

    Skin

    a. DD

    Pi PWF70.6q

    kh----------------------

    0.445rw2

    t--------------------

    ln 2S162.6q

    kh--------------------------

    0.445rw2

    t--------------------

    log 0.87S= =

    Pi PWF mt

    0.445rw2

    --------------------

    log 0.87S+ m tlog

    0.445rw2

    --------------------

    log 0.87S+ += =

    Pi PWF

    m----------------------- tlog

    0.445rw2

    --------------------

    log 0.87S+ +=

    S 1.151Pi PWF

    m-----------------------

    2.25

    rw2

    ---------------log tlog=

    Take t = 1 hour

    SDD 1.151Pi PWF1hr

    m----------------------------

    2.25

    rw

    2---------------log=

    m162.6q

    kh--------------------------=

    tPlogtp=1

    PWF1hr

    Semi-log MTR!

    tP

    tps

    P Pi PWF=

    P kh 70.6qd P( )d tln

    ----------------

    -------------------------=

  • 8/7/2019 Pressure Transient Analysis - Houston University

    32/68

    Pressure Transient Analysis

    Derivative Analysis (Drawdown case) Page 32

    2000-2001 M. Peter Ferrero, IX

    b. PBUThe instant a well is shut-in, PWF :

    PWF Pi162.6q

    kh--------------------------

    0.445rw2

    tP--------------------

    log 0.87S+=

    PWF Pi mtP

    0.445rw2

    --------------------

    log 0.87S+=

    PWF Pi m tPlog2.25

    rw2

    ---------------log 0.87S+ + 1, from Drawdown=

    Shut-in pressure (during PBU),

    PWS Pi mtP t+

    t----------------- 2log=

    Subtract 1 from 2

    PWS PWF mtP t+

    t-----------------

    log m tPlog m2.25

    rw

    2---------------

    log 0.87S+ + +=

    PWS PWF

    m-----------------------------

    tP t+tPt

    ----------------- log k

    ctrw2

    -----------------

    log 3.23 0.87S+ +=

    SPBU 1.151PWS PWFt 0=

    mHorner semi-log MTR-------------------------------------------------

    k

    ctrw2

    -----------------

    log 3.23tP t+tPt

    ----------------- log tlog+ +=

    P PWS PWF t 0==

    tlogt s

    m 70.6q

    kh

    ------------------------=

    P

    PWSskin

    d P( )d

    tP t+t

    ----------------- ln

    --------------------------------

    m162.6q

    kh--------------------------=

    tP t+t

    -----------------log

    PWS

  • 8/7/2019 Pressure Transient Analysis - Houston University

    33/68

    Pressure Transient Analysis

    Ideal vs. Actual PBU/DD Tests Page 33

    2000-2001 M. Peter Ferrero, IX

    Ideal vs. Actual PBU/DD Tests

    a. Drawdown case

    b. Drawdown: log-log plot

    m162.6q

    kh--------------------------=

    tPlog

    PWF

    tPlog

    ETRWBS

    MTRkh, S

    Infinite acting

    Radial flow

    LTRTransient reaches boundariesReservoir heterogeneity

    PWF

    Ideal (no WBS or LTR)

    Actual

    tPlog

    P

    P

    P

    P

    tPlog

    ETR MTR LTR

    P

    P

    P

    P

    Ideal

    Actual

  • 8/7/2019 Pressure Transient Analysis - Houston University

    34/68

    Pressure Transient Analysis

    Flow Regimes & Model Recognition Page 34

    2000-2001 M. Peter Ferrero, IX

    Flow Regimes & Model Recognition

    Radial flow

    homogeneous, infinite acting system

    single fault

    ETR

    MTR

    P

    P

    t

    WBS dominates

    Pi PWF 162.6qkh

    ---------- tlog constant+=

    d P( )d tln

    ---------------- 70.6qkh

    ----------=

    kh70.6q

    Pstabilized-----------------------------=

    Using superposition and image wells

    Ptotal Pwell P eimag+=

    Pi PWF 70.6qkh

    ----------0.445rw

    2

    t--------------------

    ln 2S 70.6qkh

    ----------0.445 2L( )2

    t------------------------------ln

    ==

    70.6qkh

    ---------- 20.445

    t---------------

    ln rw2

    ln 2L( )2ln 2S+ +=

    PWF Pi 162.6qkh---------- 2

    0.445

    t--------------- log rw2

    log 2L( )2

    log 2S+ ++=

    Note:td

    dtln( ) 1

    t---=

    d P( )d tln

    ---------------- td( )dt

    ----------=d P( )d tln

    ---------------- t 70.6qkh

    ---------- 21

    t---=

    slope doubles2 faults, slope x4

    3 faults, slope x8, etc.

    tPlog

    ETR MTR LTRP

    P P

    Pm

    2m

    PWS

    10001

    m

    2m

    ETRMTRLTR

    tP t+t

    -----------------log

  • 8/7/2019 Pressure Transient Analysis - Houston University

    35/68

    Pressure Transient Analysis

    Flow Regimes & Model Recognition Page 35

    2000-2001 M. Peter Ferrero, IX

    increase/decrease in kh or decrease in kh

    contacts

    constant pressure boundary

    aquifer (strong)

    gas cap (high compressibility)

    water/gas support (pressure support)

    tPlog

    ETR MTR LTRP

    P

    P

    P

    (kh)inner

    (kh)outer

    Concentric model:

    inner

    outer

    Radius for kinner:

    t is where slope becomes negative

    [For ROIs in outer zone, use k of outer zone! No matter if the k ishigher or lower]

    increase

    decrease

    ROI 4t ; 2.637

    410 kict

    ----------------------------------==

    tPlog

    ETR MTR LTRP

    P

    Po

    P

    w < ow > o

    Same kh!

    kh

    ------

    okh

    ------

    w

    ----------------

    70.6qP

    o

    ( )----------------------

    70.6qPw( )

    ---------------------------------------------= same kh!

    Pw( )wo------- Po( )=

    Pw

    variablekh!

    Pw( )

    kh

    ------

    o

    kh

    ------

    w

    ---------------- Po( )=

  • 8/7/2019 Pressure Transient Analysis - Houston University

    36/68

    Pressure Transient Analysis

    Flow Regimes & Model Recognition Page 36

    2000-2001 M. Peter Ferrero, IX

    Spherical (Partial Penetration Completions)

    P 70.6 kh------- q

    0.445rw2

    t--------------------

    ln q0.445 2L( )2

    t------------------------------

    ln==

    70.6 kh------- q 0.445

    t--------------- ln q

    0.445t

    --------------- ln qrw2

    2L( )2--------------ln+=

    P 70.6 qkh

    ----------rw2L-------

    2

    ln=

    PWS

    10001

    m=0

    tP t+t

    -----------------log t

    reality

    goes to zero (in theory)

    t

    m=0.5

    early radial: khp, mechanical skin

    (usually masked by WBS)

    late radial: khT, Sglobal=Smech+Spartial penetration

    Sglobal can be very large (maybe 400-500)

    spherical - t-0.5

    transition region between early radial and late radial

    - can estimate kv/kh ratio

    early radial late radial

    hTh p

  • 8/7/2019 Pressure Transient Analysis - Houston University

    37/68

    Pressure Transient Analysis

    Flow Regimes & Model Recognition Page 37

    2000-2001 M. Peter Ferrero, IX

    Linear flow (Infinite conductivity fractures)

    linear flow region (0.5 slope) represents stimulated well

    fracture conductivity > 10,000 mD-ft

    time transition between linear and radial flow corresponds to the frac. length (half length

    kh and skin are calculated from the radial flow region (need kh to estimate frac length).Therefore, to estimate the frac. length, for a large frac. into a low permeability zone,you may need a pre-frac. test.

    Bi-linear flow (finite conductivity fractures)

    fracture conductivity < 10,000 mDft

    pressure drop in fracture is not negligible

    almost never happens

    tPlog

    Linear

    P

    m=0.5

    flow

    Radial

    flow

    tPlog

    Linear

    P

    m=0.5

    flowRadialflow

    m=0.25

    Bi-linearflow

    The bi-linear flow is very fast, need a very longfracture to distinguish!

  • 8/7/2019 Pressure Transient Analysis - Houston University

    38/68

    Pressure Transient Analysis

    Gas Well Testing Page 38

    2000-2001 M. Peter Ferrero, IX

    - if you can see the bi-linear region, it can be used to estimate frac-conductivity (if thematrix permeability is known)

    - linear region is used to estimate frac. half length

    - radial flow region is used to estimate kh, S

    Gas Well TestingSame analysis procedure as for oil well testing with the following exceptions:

    Gas properties (transport), , z, cg vary as a function of pressure. Gas is considered ahighlycompressible fluid whereas oil is considered a slightlycompressible fluid.

    Non-darcy flow, or turbulence, can exist in gas wells which shows up as a skin due toextra pressure drop. Therefore, differentiation between true mechanical skin and skindue to non-darcy flow is important

    - non-darcy flow signifies that Darcys law does not properly predict the P due to flowof gas in porous media

    - in porous media, non-darcy flow develops when Re > 50 ( )

    - low and high velocities (close to the wellbore) are the contributing factors to non-darcy flow

    Gas tests - Diffusivity Equation Development

    a. EOS for gas:

    For gases: and z may vary considerably as a function of pressure. Therefore, to accountfor this, the pseudo-pressure function was developed.

    Gas Tests - Pseudo ((P)) Equation Development

    a. Continuity equation

    b. Darcys law

    c. EOS

    Red

    ----------=

    MW

    RT-----------

    Pz----

    = P z RMW-----------T=

    P( ) 2 Pz------ Pd

    PB

    P

    =

    x ux( ) y

    uy( ) z uz( )+ + t

    ( )=

    uk

    --- P= ux

    kx-----

    xP

    =; uyky-----

    yP

    =; uzkz-----

    zP

    =;

  • 8/7/2019 Pressure Transient Analysis - Houston University

    39/68

    Pressure Transient Analysis

    Gas Tests - Pseudo ((P)) Equation Development Page 39 2000-2001 M. Peter Ferrero, IX

    - oil and water: slightly compressible fluids

    - For gases

    (b) + (c) into (a)

    Differentiating (P) wrt x, y, z, and t

    Input Darcys law into Continuity equation:

    Input EOS:

    assume isotropic conditions

    oec o( )

    =

    MWRT-----------

    P

    z----

    =

    isotropic kx ky kz= =

    cx

    P

    2

    yP

    2

    zP

    2

    + +x

    2

    2

    P

    y2

    2

    P

    z2

    2

    P+ + +

    ct

    2.637410 k

    ---------------------------------t

    P=

    P( ) 2 Pz------ Pd

    PB

    P

    =

    x 2P

    z-------

    xP

    =x

    P z2P-------

    x

    =;

    y 2P

    z-------

    yP

    =y

    P z2P-------

    y

    =;

    z 2P

    z-------

    zP

    =z

    P z2P-------

    z

    =;

    t 2P

    z-------

    tP

    =t

    P z2P-------

    t

    =;

    x

    kx-----

    xP

    y

    ky-----

    yP

    z

    kz-----

    zP

    + +

    t ( )=

    MWRT-----------

    P

    z----

    =

    MW

    RT-----------

    x kx

    -----

    P

    z----

    xP

    MW

    RT-----------

    y ky

    -----

    P

    z----

    yP

    MW

    RT-----------

    z kz

    -----

    P

    z----

    zP

    + + MW

    RT-----------

    t P

    z----

    =

    k kx ky kz= = =

  • 8/7/2019 Pressure Transient Analysis - Houston University

    40/68

  • 8/7/2019 Pressure Transient Analysis - Houston University

    41/68

    Pressure Transient Analysis

    Pseudopressure or Real Gas Potential ((P)) Page 41 2000-2001 M. Peter Ferrero, IX

    Pseudopressure or Real Gas Potential ((P))

    a. (P) (good for all pressures)

    Transient development

    Drawdown equation

    where Psc = atmospheric pressure (usually 14.7 psia)

    Tsc = 520 R

    T = R, reservoir temperature

    S = mechanical skin

    D = turbulence factor (non-Darcy flow)

    OR,

    Buildup equation

    Linear

    Constant

    z

    P

    P2

    P(P)30002000

    Gas

    z

    P

    Liquid

    o

    ec P P

    o( )

    =

    Liquid: slightly compressible system

    0 P 2000

    2000 P 3000

    3000 P3000 psi,

    1. Transient flow equation (DD)

    Multi-rate test (say 4 points) - flow times must be equal

    Pi( ) Pwf( ) aq bq 2

    +=

    Pi2

    Pwf2

    aq bq 2

    +=

    Pi Pwf aq bq 2

    +=

    P( ) P

    Pi PWF 162.6qkh

    ----------gtP

    0.445rw2

    --------------------

    log 0.87 Sm D q+( )+=

    Pi

    PWF 162.6

    qkh----------

    gtP

    0.445rw2

    --------------------

    log 0.87S

    m+ 141.2

    kh-------

    Dq2

    +=

    Pi PWF

    q----------------------- 162.6

    kh-------

    gtP

    0.445rw2

    --------------------

    log 0.87Sm+ 141.2kh-------Dq+=

    Pi PWF

    q----------------------- a t( ) bq+=

  • 8/7/2019 Pressure Transient Analysis - Houston University

    47/68

    Pressure Transient Analysis

    Multiple Rate Testing Page 47

    2000-2001 M. Peter Ferrero, IX

    l

    From intercept, mechanical skin, Sm:

    From slope, turbulence coefficient, D:

    2. Pseudo-steady state flow attained ( for well centered in circular drainage area)

    q

    Pi Pwf

    q--------------------

    b (turbulence)

    a(t)

    a t( ) 162.6kh-------

    gtP

    0.445rw2

    --------------------

    log 0.87Sm+=

    Sm

    a t( ) 162.6kh-------

    gtP

    0.445rw2

    --------------------

    log

    141.2kh-------

    --------------------------------------------------------------------------------------=

    Sma t( )kh

    141.2---------------------- 1.151

    gtP

    0.445rw2

    --------------------

    log=

    b 141.2kh-------D=

    D bkh141.2----------------------= MSCFD------------------ 1

    tPre2

    4------->

    Pi PWF 141.2qkh

    ----------rerw-----

    ln 0.75 Sm D q+( )+=

    Pi PWF

    q----------------------- 141.2

    kh-------

    rerw-----

    ln 0.75 Sm+ 141.2kh-------Dq+=

    a 141.2kh-------

    rerw-----

    ln 0.75 Sm+=

    b 141.2

    kh-------D=

  • 8/7/2019 Pressure Transient Analysis - Houston University

    48/68

    Pressure Transient Analysis

    Multiple Rate Testing Page 48

    2000-2001 M. Peter Ferrero, IX

    from intercept, a, calculate Sm

    from slope b, calculate turbulence coefficient D

    This yields the stabilized flow equation: . Use this to estimate flow rates

    as a function of . Therefore, given a and b, you can estimate a drawdown for a

    specified rate, or a rate for a specified drawdown.

    NOTE: This development is possible only if PSS is reached during all rates in the multi-rate test.

    Same methodology is used for P2 and (P) analysis:

    P2:

    Transient flow

    q

    Pi Pwf

    q--------------------

    b

    a

    Pi PWF aq bq 2+=

    P

    Pi2

    PWF2

    1637zT

    kh------------------------q

    tP

    0.445rw2

    --------------------

    log 0.87Sm+1422zT

    kh------------------------Dq

    2+=

    Pi2

    PWF2

    q------------------------ a t( ) bq+=

    a t( ) 1637zTkh

    ------------------------qtP

    0.445rw2

    --------------------

    log 0.87Sm+=

    b1422zT

    kh------------------------D=

  • 8/7/2019 Pressure Transient Analysis - Houston University

    49/68

    Pressure Transient Analysis

    Multiple Rate Testing Page 49

    2000-2001 M. Peter Ferrero, IX

    PSS (all rates need to reach PSS)

    Deliverability equations:

    Now, say we want a deliverability equation of the form , but cannot flow

    each rate to PSS. Alternative - flow 3 rates at transient conditions and final rate to PSS.

    q

    Pi2 Pwf2

    q---------------------

    b

    a(t)

    Sm 1.151a t( )kh

    1637zT------------------------

    tP

    0.445rw2--------------------

    log=

    Dbk h

    1422zT------------------------=

    (Flow times must be equal)

    Pi2

    PWF2

    1422zT

    kh------------------------q

    rerw-----

    ln 0.75 Sm+1422zT

    kh------------------------Dq

    2+=

    Pi2

    PWF2

    q

    ------------------------ a t( ) bq+=

    a t( ) 1422zTkh

    ------------------------qrerw-----

    ln 0.75 Sm+=

    b1422zT

    kh------------------------D=

    Pi PWF aq bq 2

    +=

    q

    Pi Pwf

    q--------------------

    b

    ab

    a(t)

    PSS

    Transient

  • 8/7/2019 Pressure Transient Analysis - Houston University

    50/68

    Pressure Transient Analysis

    Multiple Rate Testing Page 50

    2000-2001 M. Peter Ferrero, IX

    Note that the slope, , is the same irregardless of whether flow is transient or

    pseudo steady state. However, the intercept, a, is different as shown on precedinggraph. The intercept from the stabilized or PSS flow is required for the deliverability

    equation (a in this equation IS NOT a function of time).

    c. Empirical method

    AOF - absolute open (hole) flow - ( )

    based on historical observation that a log-log plot of vs. q is approximately a

    straight line.

    Empirical equation:

    Once slope is determined, , estimate c from measured data: . Then the

    deliverability equation becomes:

    Flow after flow

    Isochronal

    Modified isochronal

    bDkh

    -----------

    Pi PWF aq bq

    2

    +=

    PWS 14.7psia

    Pi2

    PWF2

    q c Pi2

    PWF2

    ( )n

    =

    Pi2

    PWF2

    ( )n qc---=

    Pi2

    PWF2

    ( ) q1

    n---

    1

    c---

    1

    n---

    =

    Pi2

    PWF2

    ( )log 1n--- qlog

    1

    n---

    1

    c---log+= where

    1

    n---

    1

    c---log is constant

    log (q)

    Pi2

    Pwf2

    ( )logslope = 1/n

    AOF

    Pi2

    14.7( )2( ) n = 1: Darcy flow

    n = 0.5: non-Darcy flow

    Therefore,

    slope = 1: Darcy flow

    slope = 2: non-Darcy flow

    1

    n--- c

    q

    Pi2

    PWF2

    ( )n

    --------------------------------=

    q c Pi2

    PWF2

    ( )n

    =

  • 8/7/2019 Pressure Transient Analysis - Houston University

    51/68

    Pressure Transient Analysis

    Multiple Rate Testing Page 51

    2000-2001 M. Peter Ferrero, IX

    Multi-flows followed by one PBU

    a. Flow after flow (discussed)

    Theoretical (equal flow times)

    Lees book refers to stabilization or PSS for each rate, i.e. each rate must reach PSS.Generally this is never feasible and not necessary. Usually never possible to have evenone rate reach stabilization.

    b. Isochronal testing

    Applicable for any permeability - required for lower permeabilities

    Well is produced at four rates of equal time length

    Well is shut-in for PBU between each flow period until pressure builds back up to initialor static pressure before proceeding to next rate

    Flow time of last rate may be extended until stabilization (PSS). This is done only if fea-sible (need high permeability, small reservoir)

    Isochronal tests performed on wells where time to reach PSS too long

    Data recorded in isochronal tests is transient (except for last rate possibly)

    kh is estimated from PBUs

    Pi Pwf a t( )q bq2

    += - all rates in transient flow

    Pi Pwf a t( )q bq2

    += - stabilized deliverability equation (1 rate in PSS)

  • 8/7/2019 Pressure Transient Analysis - Houston University

    52/68

    Pressure Transient Analysis

    Multiple Rate Testing Page 52

    2000-2001 M. Peter Ferrero, IX

    Flow equation (transient period)

    STANDARD: all 4 rates in transient flow

    RARE: 3 rates transient flow, last rate in PSS

    Comments:

    Estimation of D is independent of flow regime (transient/PSS)

    Calculation of intercept, a, is dependent upon flow regime which will impact deliver-ability equation.

    - If final rate reaches stabilization, deliverability equation will be more accurate

    - If all rates are in transient regime, extrapolated rates based on deliverability equationwill be high (optimistic)

    c. Modified isochronal

    Applicable to any permeability system

    q1

    q2

    q3

    t

    q

    q4

    t

    P

    Pi PWF

    q----------------------- 162.6

    gkh---------

    tP

    0.445rw2

    --------------------

    log 0.87Sm+ 141.2gkh---------D q+=

    a t( ) 162.6gkh---------

    tP

    0.445rw

    2--------------------

    log 0.87Sm+=

    b 141.2gkh---------D=

  • 8/7/2019 Pressure Transient Analysis - Houston University

    53/68

    Pressure Transient Analysis

    Multiple Rate Testing Page 53

    2000-2001 M. Peter Ferrero, IX

    Reduced time required to conduct

    Well produced at 4 rates, PBU following each rate. Flowing periods/PBUs all sametime duration.

    Last pressure in each PBU is Pi for analysis of following flowing period (derivative,

    Odeh-Jones) As with isochronal testing, last rate can be extended to stabilization (if practical) to pro-

    vide more accurate deliverability equation.

    Same analysis procedure as for isochronal testing

    kh is estimated from PBUs

    Analysis procedure:

    1. Analyze each PBU for

    kh, S

    kh should be roughly the same from each PBU. If not, most likely error is in rate mea-surement

    2. Estimate Sm and D

    Plot Sg vs. q ( )

    - if Sg is constant then there is no turbulence

    - if Sg is linear with q then there no turbulence

    q1

    q2

    q3

    t

    q

    q4

    t

    P

    Pi1 Pi2 Pi3 Pi4

    Sg Sm Dq+=

  • 8/7/2019 Pressure Transient Analysis - Houston University

    54/68

    Pressure Transient Analysis

    Multiple Rate Testing Page 54

    2000-2001 M. Peter Ferrero, IX

    3. Develop deliverability equation:

    transient

    - kh is calculated from PBUs

    - Sm and D are calculated intercept and slope, respectively, from a plot of Sg vs. q

    - and Bg are from static (phase behavior - PVT) data

    - t is from test data

    PSS

    - can be developed if accurate estimates for kh, Sm and D are made from multi-rate/

    PBU testing.

    - need estimate of reservoir size, re. However, this is normally not very sensitive to the

    answer ( )

    d. Multi-flows followed by one PBU

    q

    D

    Sm

    SG SG = Sm + Dq

    Pi PWF aq bq 2

    +=

    Pi PWF 162.6kh-------

    tP

    0.445rw2

    --------------------

    log 0.87Sm+ 141.2gkh---------Dq+=

    Pi PWF 141.2qg

    kh

    -------------re

    rw

    -----

    ln 0.75 Sm+ 141.2

    kh

    -------Dq2

    +=

    rerw-----

    ln 7.5

  • 8/7/2019 Pressure Transient Analysis - Houston University

    55/68

    Pressure Transient Analysis

    Multiple Rate Testing Page 55

    2000-2001 M. Peter Ferrero, IX

    Measure BHP vs. time

    Analyze PBU based on multiple rates - superposition

    - Guess values for kh, Sg, Pi, Sm, and D until match all flowing pressures.

    - Perform non-linear regression on flowing data to estimate Sm and D.

    - Use Odeh-Jones analysis to estimate turbulence (pertains only to flowing pressures)

    The advantage of flow after flow followed by a PBU is that it saves time. It does not requiremultiple PBUs. The disadvantage is that if a reliable kh value cannot be estimated fromthe final PBU, then the entire analysis can be in error.

    t

    P

    q

    D

    Sm

    SG SG = Sm + Dq

    NOTE: SG = Sm + Dq IS NOT VALID

    FOR FLOW AFTER FLOW! SG = Sm + Dq only works

    for flow-PBU-flow-PBU...

  • 8/7/2019 Pressure Transient Analysis - Houston University

    56/68

    Pressure Transient Analysis

    Odeh-Jones Analysis Page 56

    2000-2001 M. Peter Ferrero, IX

    Odeh-Jones AnalysisSkin analysis (Sm) for gas wells based on flowing pressures. Extension of theoretical

    development presented earlier.

    Multi-rate Drawdown Test Analysis

    Assume 2 rate test (both rates are non-zero) and apply superposition.

    let

    divide through by

    where is the superposition time function, STF

    Plot

    PWF Pi 162.6kh-------

    0.445rw2

    t--------------------

    log 0.87SG++=

    t

    q1

    q2

    t0 t1

    Pi PWF( ) P=

    162.6kh------- q1

    0.445rw2

    t--------------------

    0.87Sq1 q10.445rw

    2

    t t1( )--------------------

    log 0.87Sq1 q20.445rw

    2

    t t1( )--------------------

    log 0.87Sq2+ +log=

    m 162.6kh-------=

    Pi PWF( )

    m q1 t q1 t t1( ) q2 t t1( )log q10.445rw

    2

    t--------------------

    log q10.445rw

    2

    t--------------------

    log+log+log mq20.445rw

    2

    t--------------------

    log 0.87S=

    q2

    Pi PWF( )q2

    ---------------------------mq2------ q1 tlog q2 q1( ) t t1( )log+[ ] m

    0.445rw2

    --------------------

    log 0.87S++=

    q1 tlog q2 q1( ) t t1( )log+

    Pi PWF( )

    q2--------------------------- vs.

    STF

    q2------------

  • 8/7/2019 Pressure Transient Analysis - Houston University

    57/68

    Pressure Transient Analysis

    Odeh-Jones Analysis Page 57

    2000-2001 M. Peter Ferrero, IX

    Now, if non-Darcy flow effects are present, skin increases with increasing rate. Therefore,

    intercept values, , increases as skin increases.

    STF/q2

    Pi Pwf

    q2--------------------

    slope = m' = ;

    intercept = b'

    162.6kh------- kh 162.6m'-------=

    b m

    0.445rw2

    --------------------

    log 0.87S+=

    SG 1.151bm------

    0.445rw2--------------------

    log=

    b

    STF/q2

    Pi Pwf

    q2-------------------- b2'

    b1'

    q2

    q1

    S2 1.151b2m--------

    0.445rw2

    --------------------

    log=

    S1 1.151 b1m--------

    0.445rw2

    -------------------- log=

    S2 > S1

  • 8/7/2019 Pressure Transient Analysis - Houston University

    58/68

    Pressure Transient Analysis

    Flow Regimes Page 58

    2000-2001 M. Peter Ferrero, IX

    Based on relation SG = Sm + Dq (if flow tests are performed followed by PBUs)

    Flow Regimes

    1. Radial flow - increase in separation of P and P' indicates increasing skin

    2. Spherical flow (partial penetration completions)Flow regime sequence:

    - early radial (khp, Sm) - hp is the thickness of the perforated zone

    - spherical (kv/kh)

    - late radial (kht, SG, Pi) - ht is the total zone thickness

    3. Linear flow (hydraulically fractured wells)- Infinite conductivity (no P in the fracture)

    q

    D

    Sm

    SG

    P

    Pcskh, S, Pi

    hp hT

    m=0.5

    early radial: khp, Sm(usually masked by WBS)

    kv/kh khT, Sg, Pi

  • 8/7/2019 Pressure Transient Analysis - Houston University

    59/68

    Pressure Transient Analysis

    Flow Regimes Page 59

    2000-2001 M. Peter Ferrero, IX

    Flow regime sequence:

    - linear (fracture half-length)

    - late radial (kh, S)

    4. Bi-linear flow- Finite conductivity fracture (P in fracture accounted for)Flow regime sequence:

    - bilinear - flow through fractures (usually masked- rarelyseen)

    - linear - flow from matrix to fractures

    - late radial - radial flow in matrix (basically pure radial)

    P

    P'

    m = 0.5 (linear region)

    - characteristic of st imulated wells

    kh, S

    log

    P,P'

    t

    Same rate q

    fractured

    unfractured

    t

    Pi

    m = 0.25 (fracture conductivity, RARELY seen)

    P

    P'

    m = 0 .5 (l inear, fracture length)

    late radial: kh, S

    logP,P'

    t

  • 8/7/2019 Pressure Transient Analysis - Houston University

    60/68

  • 8/7/2019 Pressure Transient Analysis - Houston University

    61/68

    Pressure Transient Analysis

    Pressure level in surrounding reservoir Page 61

    2000-2001 M. Peter Ferrero, IX

    Late radial - khh, SGNeed late radial to estimate the wells productivity index (PI), Sm and drainhole length.

    For long drainholes with low , it can take long times to reach late radial.

    When do horizontal wells outperform vertical wells:

    Physically this means thin reservoir sections with long drainholes with decent (0.05-0.1)

    Note: If the deviation

  • 8/7/2019 Pressure Transient Analysis - Houston University

    62/68

    Pressure Transient Analysis

    Pressure level in surrounding reservoir Page 62

    2000-2001 M. Peter Ferrero, IX

    2. Depleted reservoir - average static drainage area pressure ( )

    = stabilized pressure if well was SI in depleted field.

    P* method: Mathews-Brohs-Hazeroch (MBH)

    (pp. 35-38 of Lee)

    1. From Horner plot, extrapolate the MTR to P*,

    2. Estimate drainage area shape and size (A) in ft2

    3. Calculate - use same tp used to construct Horner plot

    4. Choose appropriate curve from figure 2.17 A-G (Lee)

    5. Enter plot on abscissa at , go up to appropriate curve, read value of

    P P

    P

    P

    L or distance

    A B C

    PP

    t tp t+

    t---------------- 1=,

    PWS

    10001 tP t+t

    -----------------log

    MTR

    ETR

    P*=PiLTR

    P

    tpA

    --------

    tpA

    --------

  • 8/7/2019 Pressure Transient Analysis - Houston University

    63/68

    Pressure Transient Analysis

    Pressure level in surrounding reservoir Page 63

    2000-2001 M. Peter Ferrero, IX

    , calculate .

    Note: where m = horner MTR slope ( ). Also, =

    the derivative m.

    Advantages

    does not require data beyond MTR. However, MTR MUST be present

    applicable to wide variety of drainage shapes (well need not be centered)

    Disadvantages

    requires knowledge of drainage area size and shape

    not good for layered reservoirs

    requires knowledge of fluid properties and porosity and ct

    Example 2.6 P* method

    Use data from examples 2.2-2.4

    Well centered in square drainage area

    tp = 13630 hours

    P* = 4577 psia

    m = 70

    k = 7.65 mD

    A = (2640)2 = 6.97x106 ft2 (160 acres)

    From figure 2.17A, p. 36

    Modified Muskat Method

    (pp. 40-41, Lee)

    2.302 P P( )m

    ------------------------------------- PDMB H= P

    P P

    70.6qkh

    ----------

    -----------------------2.302 P P( )

    m-------------------------------------= 162.6

    qkh

    ---------- 70.6qkh

    ----------

    2.637410( ) 7.65( )

    0.039( ) 0.8( ) 1.7 510( )------------------------------------------------------------- 3800

    ft2

    hr------= =

    tPA

    --------3800( ) 13630( )

    6.97610

    ---------------------------------------- 7.45= =

    PDMB H5.45

    2.302 P P( )m

    -------------------------------------= =

    P 4577 5.45( ) 70( )2.302

    ---------------------------- 4411psia= =

  • 8/7/2019 Pressure Transient Analysis - Houston University

    64/68

    Pressure Transient Analysis

    Pressure level in surrounding reservoir Page 64

    2000-2001 M. Peter Ferrero, IX

    Using superposition and PSS solution, the late time PBU can be approximated by:

    Therefore, plot vs.t. If correct, will plot as a straight line. Data must be infollowing time range:

    Modified Muskat Method Procedure

    1. Assume a value of

    2. Plot vs.t

    3. If line is straight - correct

    If line curves upward - too large

    If line curves downward - too small

    4. Try another using above guidelines until line is straight

    Restrictions

    method fails if well not centered in drainage area

    requires long shut-in (needs to reach PSS)

    difficult to pick correct straight line

    P PWS 118.6qkh

    ----------0.00388kt

    ctre2

    ----------------------------------

    exp=

    P PWS( )log 118.6qkh----------

    log 0.00168

    kt

    ctre2-----------------

    =

    P PWS( )log A Bt+=

    P PWS( )log P

    250ctre2

    k--------------------------- t

    750ctre2

    k---------------------------

    or

    0.51re( )2

    4------------------------ t

    0.89re( )2

    4------------------------

    P

    P PWS( )log

    P

    P

    P

    t

    P PWS( )logToo large

    Too small

    P

  • 8/7/2019 Pressure Transient Analysis - Houston University

    65/68

    Pressure Transient Analysis

    Drill Stem Tests (DST) Page 65

    2000-2001 M. Peter Ferrero, IX

    Advantages

    requires no knowledge of reservoir properties (A, , ct, etc.) works for hydraulically fractured wells (assuming radial flow is established)

    Drill Stem Tests (DST)

    performed through dedicated test string (3.5-4.5)

    valves are annulus or tubing operated (perform poorly in mud due to solids)

    downhole shut-in a plus to minimize wellbore storage

    must kill well to recover string and gauges

    normally only done on exploration or appraisal wells

    requires rig to trip test string

    can perforate tubing conveyed perforators or wire line

    need cushion to bring well on (seawater, diesel, nitrogen)

    Flow/PBU periods

    oil: 24 hour stable flow after cleanup (defined as basic sediment and water < 5%)36 hour PBU

    gas: 3-4 rate test after cleanup, 8 hours per test (single rate, same as oil test, if D notrequired)

    36 hour PBU

    Pressure measurement

    memory gauges

    surface readout

    Conducting Well TestsCompleted Wells (development scenario)

    wells completed with final tubing string

    1. Run memory gauges (2) on SL or use surface readout gauges (PLT) on EL

    quartz gauges with lithium battery (temperatures to 350F)

    Run gauges with well flowing or prior to opening up well. Must record flowing pressuresprior to PBU for skin calculation

    Obtain accurate rate measurement (history) Do not move gauge or wireline, or perform any well operation during PBU!

    Place gauge as close to perforations as possible to minimize phase segregation effects

    Make static gradient mm while pulling out of hole at conclusion of PBU to verify wellborefluid composition

    Memory gauges must be programmed on surface prior to running in hole on SL

  • 8/7/2019 Pressure Transient Analysis - Houston University

    66/68

    Pressure Transient Analysis

    Wellbore Effects Page 66

    2000-2001 M. Peter Ferrero, IX

    Rate of pressure measurement can be modified with surface readout gauges (EL)

    2. Softset gauges - not good with sand production!

    Run tandem gauges on SL and set on bottom

    Retrieve days, weeks, months later and download/analyze data

    Need accurate rate measurement to take full advantage of pressure measurement

    Many short PBUs will occur over weeks, months

    Use gap capacitance/quartz gauges

    3. Permanent gauge installation

    Install 2 gauges (quartz) in mandrels

    Need electrical cable run to surface (similar to ESP), as well as, data transmissioncable (pressure, time temperature)

    Excellent for remote locations where wire line intervention is difficult. Negates the needto run wire line gauges

    Payout over life of well (cost U$150,000)

    4. Gauge/flowmeter installation

    Exal/Expro permanent gauge/flowmeter

    Quartz gauge

    Flowmeter, venturi effect, estimate flow rate based on P (Bernoullis principle) Remote locations, subsea applications where a dedicated flowline per well is not feasi-

    ble

    Only good for single phase flow An example of such an installation is the BP-Amoco/Shell/Marathon Troika project

    Wellbore EffectsPhase segregation

    Need two or more phases

    If gradient changes between gauge and perforations during PBU due to phase segrega-tion (water falling/oil rising, water falling/gas rising), the pressure data will be corrupteduntil phase segregation is complete

    If gauge is above the interval and phase segregation occurs during PBU, the pressure

    is greater than pure reservoir response Gas humping: Water falling back/imbibing into formation during PBU. Can be especially

    severe in low permeability gas reservoirs. Remedy: Place gauges as close as possibleto top of perforations or within perforated interval or below interval (within 50 feet shouldbe OK)

  • 8/7/2019 Pressure Transient Analysis - Houston University

    67/68

    Pressure Transient Analysis

    Index Page 67

    2000-2001 M. Peter Ferrero, IX

    Index

    Buildup Test Solutions 28

    Continuity equation (cylindrical coordinates) 7

    Darcys Law 8Derivative Analysis (Drawdown case) 30Drawdown test 4Drill Stem Tests 65Drillstem test (DST) 5

    Falloff test 5Flow efficiency 13Flow Regimes & Model Recognition 34

    Horizontal wells 60Horners Approximation 28

    Injection test 4Interference/pulse test 5Isotropic 8

    Mathews-Brohs-Hazeroch 62Modified Muskat Method 63Multiple Rate Testing 45Multi-rate Drawdown Test Analysis 56

    !

    Odeh-Jones Analysis 56

    #Pressure buildup test 4

    Pseudo (Y(P)) Equation Development 38'

    Radius of Investigation 21

    )

    Skin (drawdown) 31

  • 8/7/2019 Pressure Transient Analysis - Houston University

    68/68

    Pressure Transient Analysis

    Skin and D for Gas Wells 45Skin Development 12Solutions to the Diffusivity Equation 11

    Exact solution 11

    Infinite reservoir, line source 11Line source solution 11Van Everdingen & Hurst terminal rate solution 11

    Superposition 22

    1

    Wellbore Effects 66Wellbore Solutions 16

    Ideal reservoir (no skin) 16Solution at sandface (including skin) 16

    Wellbore Storage 16Competely liquid filled wellbore 19Determining the end of WBS 20Gas-liquid interface 17