presentacion robert tremblay marzo 2014

104
1 Robert Tremblay École Polytechnique de Montréal Colegio de Ingenieros Santiago, Chile March 18, 2014 Seismic Design of Steel Structures: North American Practice & Challenges for Industrial Buildings R. Tremblay, Polytechnique Montreal, Canada 2

Upload: jowel-diaz

Post on 11-Nov-2015

30 views

Category:

Documents


6 download

DESCRIPTION

Presentacion Estructuras Metalicas

TRANSCRIPT

  • 1Robert Tremblaycole Polytechnique de Montral

    Colegio de IngenierosSantiago, ChileMarch 18, 2014

    Seismic Design of Steel Structures: North American Practice &

    Challenges for Industrial Buildings

    R. Tremblay, Polytechnique Montreal, Canada 2

  • 2R. Tremblay, Polytechnique Montreal, Canada 3

    RASCE/SEI 7-10

    3-1/468

    3-1/24-1/2

    87

    R. Tremblay, Polytechnique Montreal, Canada 4

  • 3R. Tremblay, Polytechnique Montreal, Canada 5

    R. Tremblay, Polytechnique Montreal, Canada 6

  • 4 Ductile seismic design

    Braced frame systems

    Concentrically braced frames

    Eccentrically braced frames 341-10

    Buckling restrained braced frames

    Moment frames and plate wall systems

    Heavy industrial buildings: challenges

    Plan

    R. Tremblay, Polytechnique Montreal, Canada 7

    Ductile Seismic Design

    h

    h

    W

    T = 0.38 s5% damping

    Elastic

    0.0 10.0 20.0 30.0 40.0Time (s)

    -0.5

    0.0

    0.5

    ag (g)

    -1.0

    0.0

    1.0

    / h (%)

    Horizontal 90 deg.

    0.0126 h-1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    V / W

    1.28 W

    -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

    / h (%)

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    V / W

    R. Tremblay, Polytechnique Montreal, Canada 8

  • 5Take advantage of thehigh ductility of steel

    FF

    Fracture,instability,etc.

    Ductileresponse

    y

    u

    R. Tremblay, Polytechnique Montreal, Canada 9

    0.0 10.0 20.0 30.0 40.0Time (s)

    -0.5

    0.0

    0.5

    ag (g)

    -1.0

    0.0

    1.0

    / h (%)

    Horizontal 90 deg.

    0.0126 h-1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    V / W

    1.28 W

    -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

    / h (%)

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    V / W

    -1.0

    0.0

    1.0

    / h (%)

    -0.017 h

    -1.0

    -0.5

    0.0

    0.5

    1.0

    V / W

    0.33 W

    -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

    / h (%)

    -1.0

    -0.5

    0.0

    0.5

    1.0

    V /

    W

    h

    h

    h

    W

    T = 0.38 s5% damping

    Vy = 0.25 W

    Elastic

    R. Tremblay, Polytechnique Montreal, Canada 10

  • 6-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06Plastic Rotation (rad.)

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    M /

    Mpr

    M. Englehardt Ecole Polytechnique of Montreal, 1996

    Ecole Polytechnique of Montreal, 1996

    R. Tremblay, Polytechnique Montreal, Canada 11

    -8 -4 0 4 8

    / y-1.2

    -0.8

    -0.4

    0.0

    0.4

    0.8

    1.2

    P / Py

    HSS 102x76x6.4 - KL/r = 112

    Tensionyielding (typ.)

    Inelastic bucklingwith plastic hinge (typ.)

    PPPlastic

    Hinge

    +

    -

    +

    R. Tremblay, Polytechnique Montreal, Canada 12

  • 7h

    h

    W

    T = 0.38 s5% damping

    Vy = 0.25 W

    0.0 10.0 20.0 30.0 40.0Time (s)

    -0.5

    0.0

    0.5

    ag (g)

    -1.0

    0.0

    1.0

    / h (%)

    Horizontal 90 deg.

    0.018 h-0.4

    -0.2

    0.0

    0.2

    0.4

    V / W

    -0.36 W -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0/ h (%)

    -0.4

    -0.2

    0.0

    0.2

    0.4

    V / W

    -1.0

    0.0

    1.0

    / h (%)

    -0.017 h

    -0.4

    -0.2

    0.0

    0.2

    0.4

    V / W

    0.33 W

    -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

    / h (%)

    -0.4

    -0.2

    0.0

    0.2

    0.4

    V / W

    h

    Vy = 0.25 W

    R. Tremblay, Polytechnique Montreal, Canada 13

    Effects of Magnitude and Distance

    0.0 0.5 1.0 1.5 2.0 2.5 3.0Period, T (s)

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    S a (g

    ) M 7.0-7.510-20 km

    0.0 0.5 1.0 1.5 2.0 2.5 3.0Period, T (s)

    0.0

    0.5

    1.0

    1.5

    Sa

    (g)

    M 7.0-7.530-50 km

    0.0 0.5 1.0 1.5 2.0 2.5 3.0Period, T (s)

    0.0

    0.4

    0.8

    1.2

    1.6

    2.0

    Sa

    (g) M 6.5-7.0

    10-20 km

    0.0 0.5 1.0 1.5 2.0 2.5 3.0Period, T (s)

    0.0

    0.5

    1.0

    S a (g

    )

    M 6.5-7.030-50 km

    0.0 0.5 1.0 1.5 2.0 2.5 3.0Period, T (s)

    0.0

    0.5

    1.0

    S a (g

    )

    M 6.5-7.070-100 km

    0.0 0.5 1.0 1.5 2.0 2.5 3.0Period, T (s)

    0.0

    0.5

    1.0

    S a (g

    ) M 6.0-6.530-50 km

    Earthquakes in California Site Class B 5% damping

    R. Tremblay, Polytechnique Montreal, Canada 14

  • 80.0 0.5 1.0 1.5 2.0 2.5 3.0Period, T (s)

    0.0

    0.4

    0.8

    1.2

    1.6

    2.0

    S a (g

    )

    Los Angeles AreaSite Class B

    M6.0 - M7.5Dist. = 10-100 km

    0.0 0.5 1.0 1.5 2.0 2.5 3.0Period, T (s)

    0.0

    0.4

    0.8

    1.2

    1.6

    S a (g

    ), C

    s

    Los Angeles AreaSite Class B

    Sa (Elastic)Cs (OCBF - R = 6.0)

    x 1/R

    Design Spectra

    & Design for Inelastic Response

    R. Tremblay, Polytechnique Montreal, Canada 15

    R. Tremblay, Polytechnique Montreal, Canada 16

  • 9R. Tremblay, Polytechnique Montreal, Canada 17

    VeR

    V =

    Perimetermembers

    RoofDiaphragm

    Braceconnections

    Bracingmembers

    Anchor rods

    Foundations

    V V

    Capacity Design ProcedurePoutrelle(typ.) Poutre de toit

    (typ.)

    Poteau(typ.)

    Feuille de tablier mtall ique

    typ.)

    Contreventement (typ.)

    R. Tremblay, Polytechnique Montreal, Canada 18

  • 10

    Grav.

    Grav.

    C

    C' T

    u

    u y

    Grav.

    E

    > E

    > E

    Grav.

    Grav.

    Grav.

    Column designed for gravity plus expected brace tensilestrength

    Gusset plates designed incompression for the expectedbrace compressive strength

    2. Design other elements :

    1. Select Braces:

    Design for gravity + ECheck KL/r, b/t, etc. for ductile response

    Gusset plate designed in tensionfor the expected brace tensilestrength

    Two-Step Capacity Design Procedure:

    R. Tremblay, Polytechnique Montreal, Canada 19

    Plastic Hinge (typ.)

    Shearyielding

    Plastic Hinge (typ.)

    Tensionyielding

    Plastic HingeTension

    yielding

    Tensionyielding

    Compressionyielding e

    Plastic Hinge (typ.)

    Plastic Hinge

    End-plateBending

    Shearyielding

    Ductile Seismic Force Resisting Systems

    R. Tremblay, Polytechnique Montreal, Canada 20

  • 11

    AISC 360-10

    ASCE 7-10AISC 341-10

    R. Tremblay, Polytechnique Montreal, Canada 21

    NBCC 2010

    CSA S16-09

    R. Tremblay, Polytechnique Montreal, Canada 22

  • 12

    Building code main objective is to protect life and prevent structural collapse under ground motions

    In view of high level of ground motion considered (2% in 50 years) and the difficulty in predicting ground motions and their effects on structures

    ductile seismic design represents an effective strategy to achieve code objectives by controlling the system response and force demand.

    R. Tremblay, Polytechnique Montreal, Canada 23

    Control ofLocal Buckling

    R. Tremblay, Polytechnique Montreal, Canada 24

  • 13

    Expected (probable)material strength

    Liu, J. et al. (2007). AISC Eng.

    R. Tremblay, Polytechnique Montreal, Canada 25

    Concentrically Braced Frames (SCBFs)

    Energy dissipated in bracing members through tensile yielding and flexural hinging

    Connections and other members expected to remain essentially elastic

    Tensionyielding (typ.)

    Inelastic bucklingwith plastic hinge (typ.)

    R. Tremblay, Polytechnique Montreal, Canada 26

  • 14

    R. Tremblay, Polytechnique Montreal, Canada 27

    R. Tremblay, Polytechnique Montreal, Canada 28

  • 15

    R. Tremblay, Polytechnique Montreal, Canada 29

    R. Tremblay, Polytechnique Montreal, Canada 30

  • 16

    Rehabilitation

    R. Tremblay, Polytechnique Montreal, Canada 31

    Kobe 1995

    R. Tremblay, Polytechnique Montreal, Canada 32

  • 17

    R. Tremblay, Polytechnique Montreal, Canada 33

    Northridge 1994Photos from Peter Maranian, Brandow and Associates (P. Uriz Thesis, 2005)

    R. Tremblay, Polytechnique Montreal, Canada 34

  • 18

    Uriz and Mahin (2004) Univ. of California, Berkeley

    Fracture in1st cycle at1 2% hs1

    2

    R. Tremblay, Polytechnique Montreal, Canada 35

    -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

    / LH (%)-1.2

    -0.8

    -0.4

    0.0

    0.4

    0.8

    1.2

    P /

    AgF

    y

    -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 / hs (%)

    HSS 254 x 254 x 12b/t = 18, KL/r = 42

    R. Tremblay, Polytechnique Montreal, Canada 36

  • 19

    R. Tremblay, Polytechnique Montreal, Canada 37

    R. Tremblay, Polytechnique Montreal, Canada 38

  • 20

    R. Tremblay, Polytechnique Montreal, Canada 39

    -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

    / LH (%)-1.2

    -0.8

    -0.4

    0.0

    0.4

    0.8

    1.2

    P /

    Py

    -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 / hs (%)

    RHS-4KL/r = 40b0/t = 17

    -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

    / LH (%)-1.2

    -0.8

    -0.4

    0.0

    0.4

    0.8

    1.2

    -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 / hs (%)

    -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

    / LH (%)-1.2

    -0.8

    -0.4

    0.0

    0.4

    0.8

    1.2

    -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 / hs (%)

    RHS-2KL/r = 40b0/t = 13

    RHS-19KL/r = 60b0/t = 13

    -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

    / LH (%)-1.2

    -0.8

    -0.4

    0.0

    0.4

    0.8

    1.2

    P /

    Py

    -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 / hs (%)

    CHS-1KL/r = 42b0/t = 30

    -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

    / LH (%)-1.2

    -0.8

    -0.4

    0.0

    0.4

    0.8

    1.2

    -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 / hs (%)

    -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

    / LH (%)-1.2

    -0.8

    -0.4

    0.0

    0.4

    0.8

    1.2

    -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 / hs (%)

    CHS-2KL/r = 62b0/t = 31

    W-6KL/r = 67b0/t = 5.9

    R. Tremblay, Polytechnique Montreal, Canada 40

  • 21

    0.0 0.5 1.0 1.5 2.0 2.5

    Brace Slenderness, = (Fy / Fe)0.50

    5

    10

    15

    20

    25

    Duc

    tility

    at F

    ract

    ure,

    ff = 2.4 + 8.3

    y

    -6 -4 -2 0 2 4 6

    -10 -8 -6 -4 -2 0 2 4 6 8 10

    .

    KL/r = 93HSS 127x76x4.8

    KL/r = 142HSS 76x76x4.8

    f f

    yy

    -6 -4 -2 0 2 4 6

    -1.2

    -0.8

    -0.4

    0.0

    0.4

    0.8

    1.2

    P /

    A gF y

    KL/r = 42HSS 254x254x12

    f

    R. Tremblay, Polytechnique Montreal, Canada 41

    R. Tremblay, Polytechnique Montreal, Canada 42

  • 22

    R. Tremblay, Polytechnique Montreal, Canada 43

    W4

    W6

    W4 W660004000

    2000

    0

    2000

    4000

    6000

    3 2 1 0 1 2 3

    Interstorey Drift Angle (%)

    P(k

    N)

    R. Tremblay, Polytechnique Montreal, Canada 44

  • 23

    Design Bracing Configuration Along any braced line, between 30% & 70% of lateral

    load is resisted by tension braces Tension-only braced frames not permitted K-bracing not permitted

    R. Tremblay, Polytechnique Montreal, Canada 45

    R. Tremblay, cole Polytechnique of Montreal & D. Mitchell, McGill University 46

  • 24

    Design Bracing Members Braces must resist gravity + lateral loads Pn in tension and compression as per AISC 360-10 KL/r < 200 Section must meet seismic hd limits For built-up sections, individual components must

    meet KL/r limits and stitch subjected to shear under buckling must meet minimum shear strength

    R. Tremblay, Polytechnique Montreal, Canada 47

    L

    L

    H

    N

    KLout 0.9 LHKLin 0.5 LN

    KLout 0.5 LHKLin 0.5 LN

    R. Tremblay, Polytechnique Montreal, Canada 48

  • 25

    R. Tremblay, Polytechnique Montreal, Canada 49

    Bracing ConfigurationTension-only braced frames permitted

    Bracing MembersSection must meets b/t limits that vary with KL/r

    Cexp

    Cexp

    R. Tremblay, Polytechnique Montreal, Canada 50

    Design Expected Brace Strengths

    P/P

    y

    Texp

  • 26

    R. Tremblay, Polytechnique Montreal, Canada 51

    0.0 0.5 1.0 1.5 2.0 2.5

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Cu

    / AgF

    y

    Cu (S16-01, n = 1.34)Cu (AISC 1999)

    0 50 100 150 200KL/r

    0.0 0.5 1.0 1.5 2.0 2.50.0

    0.2

    0.4

    0.6

    0.8

    1.0

    C' u

    / A

    gFy

    (Duc

    tility

    = 1

    .0)

    Cu (S16-01, n = 1.34)

    0 50 100 150 200KL/r

    0.0 0.5 1.0 1.5 2.0 2.50.0

    0.2

    0.4

    0.6

    0.8

    1.0

    C' u

    / A

    gFy

    (Duc

    tily

    = 3.

    0)

    Cu (S16-01, n = 1.34)C'u (mean)

    0.0 0.5 1.0 1.5 2.0 2.50.0

    0.2

    0.4

    0.6

    0.8

    1.0

    C' u

    / A

    gFy

    (Duc

    tility

    = 5

    .0)

    Cu (S16-01, n = 1.34)C'u (mean)

    R. Tremblay, Polytechnique Montreal, Canada 52

    Texp = A RyFy

    Cexp = A (1.12 Fcr) where Fcre = Fcr with RyFy< A RyFy

    Cexp = 0.3 Cexp

    Cexp

    Cexp

    Texp

  • 27

    Texp = A RyFyCexp = A (1.12 Fcr) ,Fcre = Fcr with RyFy

    < A RyFyCexp = 0.3 Cexp

    R. Tremblay, Polytechnique Montreal, Canada 53

    Schimdt and Bratlett (2002)

    R. Tremblay, Polytechnique Montreal, Canada 54

  • 28

    R. Tremblay, Polytechnique Montreal, Canada 55

    Design Brace ConnectionMust resist brace Texp & 1.1 Cexp

    Must allow for ductile rotational behavior or resist 1.1 x brace expected flexural strength

    R. Tremblay, Polytechnique Montreal, Canada 56

  • 29

    Kobe 1995

    Archambault et al. (1995)Tremblay and Bolduc (2002)

    cole Polytechnique,Montreal

    R. Tremblay, Polytechnique Montreal, Canada 57

    Yang and Mahin (2004) Univ. of California, Berkeley

    R. Tremblay, Polytechnique Montreal, Canada 58

  • 30

    R. Tremblay, Polytechnique Montreal, Canada 59

    R. Tremblay, Polytechnique Montreal, Canada 60

  • 31

    R. Tremblay, Polytechnique Montreal, Canada 61

    Kobe1995

    R. Tremblay, Polytechnique Montreal, Canada 62

  • 32

    Sabelli (2003) Sabelli (2005)

    Sabelli (2003)

    R. Tremblay, Polytechnique Montreal, Canada 63

    Prototype Test Specimen

    Attachment toload frame:

    LW

    LW

    LC-C

    LTS

    2 t 2 t g g

    Gussetplate

    Gussetplate

    35O

    Coverplate

    Coverplate

    5182

    (min

    ) @

    793

    7 (m

    ax)

    102

    290

    35O

    Elevation

    Specimen

    End Restraint

    Side View

    EndHinge

    R. Tremblay, Polytechnique Montreal, Canada 64

  • 33

    R. Tremblay, Polytechnique Montreal, Canada 65

    R. Tremblay, Polytechnique Montreal, Canada 66

    Design Columns and BeamsMust resist gravity loads plus two brace force scenarios:

    Upon first buckling & yielding (Texp & Cexp) In post-buckling range (Texp & Cexp)

    Beams in V and inverted-V bracing must be continuous between columns

    Column sections must meet hdBeam sections must meet md

  • 34

    R. Tremblay, Polytechnique Montreal, Canada 67

    At Buckling Post-Buckling

    T T

    T T

    T T CC

    CC

    CCexp,1 exp,1

    exp,2 exp,2

    exp,3 exp,3 exp,3exp,3

    exp,2exp,2

    exp,1exp,1

    F3 F3F3

    F2 F2F2

    F1 F1F1

    W W WW W WW W W

    Brace force scenarios for columns:

    Northridge 1994Photos from Finley 1999(P. Uriz Thesis, 2005)

    R. Tremblay, Polytechnique Montreal, Canada 68

  • 35

    Taiwan 1999

    R. Tremblay, Polytechnique Montreal, Canada 69

    R. Tremblay, Polytechnique Montreal, Canada 70

  • 36

    R. Tremblay, Polytechnique Montreal, Canada 71

    At Buckling Post-Buckling

    F F

    F F

    F FL,x L,x

    L,x L,x

    R,x R,x

    FR,x FR,x

    C C

    C C

    C C

    C C

    T T

    T T

    T T

    T T

    exp,x+1 exp,x+1

    exp,x+1 exp,x+1

    exp,x exp,x

    exp,x exp,x

    exp,x+1 exp,x+1

    exp,x+1 exp,x+1

    exp,x exp,x

    exp,x exp,x

    1.2 w + 1.0 w 1.2 w + 1.0 w

    1.2 w + 1.0 w 1.2 w + 1.0 w

    D D

    D D

    L L

    L L

    Brace force scenarios for beams:

    Note: Redundancy factor, ,and seismic load effectswith overstrength factor, 0,as specified in ASCE 7-10are not considered.

    R. Tremblay, Polytechnique Montreal, Canada 72

    SCBF

    5500

    EBF BRBF

    2 @ 4000= 8000

    [mm]ELEVATIONSM

    RF (t

    yp.)

    BF (typ.)

    5 @ 9000 = 45 000

    [mm]PLAN

    300(slab edge)

    5 @

    900

    0 =

    45 0

    00

    Gravity loads: Roof: Dead = 3.2 kPa Live = 1.0 kPa Floor: Dead = 3.5 kPa Partitions = 1.0 kPa Live = 3.8 kPa Exterior walls = 1.5 kPa

    Seismic Load Data (NCh433): Zone 2 Soil Type C A= 0.30 g In-plane torsion omitted

    Load Combinations: 1.2D + 1.6L 1.2D + 1.0L + 1.4E 0.9D + 1.4E

    Seismic weight: P = 7720 kN (Level 9) 12635 kN (Levels 2-8) 12840 kN (Level 1)

    Steel: BRB cores: Fyc = 260-290 MPa Other members: Fy = 345 MPa

  • 37

    R. Tremblay, Polytechnique Montreal, Canada 73

    R. Tremblay, Polytechnique Montreal, Canada 74

    Static method of analysis

  • 38

    R. Tremblay, Polytechnique Montreal, Canada 75

    Brace Design

    R. Tremblay, Polytechnique Montreal, Canada 76

    At Buckling

    Column Design

    1103

    4890

    4092 47492492

    7916 791625914437

    + 1.2 x 644 (D)+ 1.0 x 372 (L)= 5893

    -0.9 x 644 (D)= 1913

    1103

    4092

    2001 4890

    29072907

    70077007

    599

    169 169169

    599599 599

    1692001

  • 39

    R. Tremblay, Polytechnique Montreal, Canada 77

    Post-Buckling

    Column Design

    1103

    4890

    1227 5136662

    6085 60867774437

    + 1.2 x 644 (D)+ 1.0 x 372 (L)= 6280

    -0.9 x 644 (D)= 82

    331

    1227

    600 4890

    29072907

    70077007

    856

    812 812812

    856856 856

    812600

    R. Tremblay, Polytechnique Montreal, Canada 78

    At Buckling Post-Buckling

    Beam Design

    1103 331

    4092 1227

    2001 600

    2001 600

    1103 331

    1498 1210

    939 556

    1498 1210

    939 556

    1077 842

    2907 2907

    7007 7007

    4890 4890

    4890 4890

    2907 2907

    -1498 -1210

    -939 -556

    -2800 -2565

    M = 243 M = 243

    M = 759 M = 3896

    M = 2785 M = 3939

    1498 1210

    939 556

    1077 842

    1.2 w + 1.0 w = 8.71

    1.2 w + 1.0 w = 24.0

    1.2 w + 1.0 w = 24.0

    1.2 w + 1.0 w = 8.71

    1.2 w + 1.0 w = 24.0

    1.2 w + 1.0 w = 24.0

    D

    D

    D

    u u

    u u

    u u

    D

    D

    D

    L

    L

    L

    L

    L

    L

    [kN,m]

  • 40

    Consider more realistic brace KL

    9000

    O41.6 W610 Beam

    Bolted EndPlate Connection

    750 +

    /-

    4500 +

    /-602

    1

    Hinge

    4000

    R. Tremblay, Polytechnique Montreal, Canada 79

    Brace sizes are reduced, increasing T*, reducing seismic loads

    T* = 0.55 s -> 0.65 sC = 0.119 -> 0.093 (22% decrease in seismic loads)

    R. Tremblay, Polytechnique Montreal, Canada 80

  • 41

    R. Tremblay, Polytechnique Montreal, Canada 81

    SCBF

    5500

    2 @ 4000= 8000

    Eccentrically Braced Frames

    R. Tremblay, Polytechnique Montreal, Canada 82

    Energy is dissipated through shear or flexurein link beams

    Connections and other members (including beams outside links) expected to remain essentially elastic

    Plastic Hinge (typ.)

    Shearyielding

    e

  • 42

    R. Tremblay, Polytechnique Montreal, Canada 83

    Filiatrault et al.

    Residential buildingsMontrealMartoni Cyr

    R. Tremblay, Polytechnique Montreal, Canada 84

  • 43

    Hockey Canadian, MontrealR. Tremblay, Polytechnique Montreal, Canada 85

    Wellington, New-Zealand 2013

    R. Tremblay, Polytechnique Montreal, Canada 86

  • 44

    Built-up rectangular tubular link beams

    Contreventement non requispour le segment ductile !

    Berman, J.W, and Bruneau, M. 2008. Tubular Links for Eccentrically Braced Frames I: Finite Element Parametric Study. ASCE J. Struct. Eng., Vol. 134, No. 5, pp. 692-701.

    R. Tremblay, Polytechnique Montreal, Canada 87

    Takanashi &Roeder1976 Roeder

    1977

    Kasai1986

    Malley1983

    Engelhardt1989

    Ricles1987

    System originally developed by Prof. Povov with

    + othersR. Tremblay, Polytechnique Montreal, Canada 88

  • 45

    Design Bracing Configuration

    R. Tremblay, Polytechnique Montreal, Canada 89

    Symmetrical Pf 0 in ductile links Pinned beam-to-column joints

    Shorter beam spans Good clearance

    Rigidconnection(typ.)

    Pinned connection(typ.)

    e

    e

    = L/ep

    = L/ep

    p

    p

    L

    L

    L

    e

    L

    M

    MVV

    V

    V = 2 M / e

    M

    R. Tremblay, Polytechnique Montreal, Canada 90

    Design Link BeamsResistance can be governed by shear (short links) or flexure (long links). Resistances affected by axial load:

    Section must meet hd (md for flanges if e < 1.6 Mp/Vp )e > d; upper limit on e applies in presence of axial load

    Must meet limits on plastic rotation (p): from 0.02 rad for e < 1.6 Mp/Vp to 0.08 rad for e > 2.6 Mp/Vp

    Need for end and intermediate stiffeners; depend on yielding mechanism & p

  • 46

    R. Tremblay, Polytechnique Montreal, Canada 91

    For center links (M = 0 at e/2):

    e/2 e/2

    M

    M

    V

    V

    M

    L

    L

    L

    L

    L

    For shear yielding: Vn = VpFor flexural yielding: Vn = 2 Mp/e

    e

    Shorter links generally preferred: Higher lateral frame stiffness Higher energy dissipation capacity Less stringent (md for flanges) Easier to design beams outside links

    hp

    s

    = L/ep p php

    s

    = L/ep

    p p

    R. Tremblay, Polytechnique Montreal, Canada 92

  • 47

    R. Tremblay, Polytechnique Montreal, Canada 93

    Design Adjusted link shear strength

    Vadj = 1.25 RyVn (I-shaped links)= 1.40 RyVn (built-up tubular links)

    May be multiplied by 0.88 for beams outside links and for columns in structures more than 3 storeys

    R. Tremblay, Polytechnique Montreal, Canada 94

    Design Columns and Beams

    Must resist gravity loads plus Vadj

    Column sections must meet hd. Beam outside links and braces must meet md section requirements

    e/2e/2 L/2- /2e

    adj

    adj

    adj

    adj

    adj

    beam

    beam

    beam

    brace

    col

    L/2

    V

    V

    V

    V

    V

    P

    V

    M

    P

    P

  • 48

    R. Tremblay, Polytechnique Montreal, Canada 95

    Design Columns and Beams

    Must resist gravity loads plus Vadj

    Column sections must meet hd. Beam outside links and braces must meet md section requirements

    e/2e/2 L/2- /2e

    adj

    adj

    adj

    adj

    adj

    beam

    beam

    beam

    brace

    col

    L/2

    V

    V

    V

    V

    V

    P

    V

    M

    P

    P

    SCBF

    5500

    EBF BRBF

    8 @

    400

    0 =

    32 0

    00

    [mm]ELEVATIONS

    MRF

    (typ

    .)

    BF (typ.)

    5 @ 9000 = 45 000

    [mm]PLAN

    300(slab edge)

    5 @

    900

    0 =

    45 0

    00

    Gravity loads: Roof: Dead = 3.2 kPa Live = 1.0 kPa Floor: Dead = 3.5 kPa Partitions = 1.0 kPa Live = 3.8 kPa Exterior walls = 1.5 kPa

    Seismic Load Data (NCh433): Zone 2 Soil Type C A= 0.30 g In-plane torsion omitted

    Load Combinations: 1.2D + 1.6L 1.2D + 1.0L + 1.4E 0.9D + 1.4E

    Seismic weight: P = 7720 kN (Level 9) 12635 kN (Levels 2-8) 12840 kN (Level 1)

    Steel: BRB cores: Fyc = 260-290 MPa Other members: Fy = 345 MPa

    R. Tremblay, Polytechnique Montreal, Canada 96

  • 49

    EBFs Modular Linkswith N. Mansour & C. Christopoulos, Univ. of Toronto

    R. Tremblay, Polytechnique Montreal, Canada 97

    R. Tremblay, Polytechnique Montreal, Canada 98

  • 50

    R. Tremblay, Polytechnique Montreal, Canada 99

    R. Tremblay, Polytechnique Montreal, Canada 100

  • 51

    R. Tremblay, Polytechnique Montreal, Canada 101

    102

  • 52

    Repair using Self-compacting concrete(Sikacrete-08 SCC)Repair of main transverse surface

    cracks using Low-viscosity injection resin (Sikadur 52)

    R. Tremblay, Polytechnique Montreal, Canada 103

    R. Tremblay, Polytechnique Montreal, Canada 104

  • 53

    Comparisons for cycles at 0.08 rad.:

    ( reinforcement plates)(3/16 reinforcement plates)

    R. Tremblay, Polytechnique Montreal, Canada 105

    R. Tremblay, Polytechnique Montreal, Canada 106

  • 54

    Buckling Restrained Braced Frames

    Energy dissipated in bracing members through tensile and compression axial yielding

    Connections and other members expected to remain essentially elastic

    P

    P

    PP

    P

    Cross-Section

    SteelCore

    MortarFill

    SteelTube

    UnbondingMaterial

    R. Tremblay, Polytechnique Montreal, Canada 107

    Wakabayashi et al. (1973)

    Watanabe et al. (1988)

    R. Tremblay, Polytechnique Montreal, Canada 108

  • 55

    cole Polytechnique 1998 Qubec City (1999)

    Buckling Restrained Braced Frames

    -4.0 -2.0 0.0 2.0 4.0-1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    V / V

    /

    y

    y

    R. Tremblay, Polytechnique Montreal, Canada 109

    R. Tremblay, Polytechnique Montreal, Canada 110

  • 56

    Qubec City (1999)

    Vancouver (RJC)

    Montreal (Canam)

    R. Tremblay, Polytechnique Montreal, Canada 111

    0 5 10 15 20 25Time (s)

    -0.20.00.2

    Acc

    el. (

    g)

    -0.8-0.40.00.40.8

    Roo

    f / h

    n

    -0.8-0.40.00.40.8

    Roo

    f / h

    n

    -0.8-0.40.00.40.8

    Roo

    f / h

    n

    -20000

    -10000

    0

    10000

    20000

    V B

    ase

    (kN

    )

    -20000

    -10000

    0

    10000

    20000

    V B

    ase

    (kN

    )

    -1.0 0.0 1.01/ hs (%)

    -20000

    -10000

    0

    10000

    20000

    V B

    ase

    (kN

    )

    BRB-L

    CBF

    BRB-L

    CBF

    .

    BRB-S

    BRB-S

    R. Tremblay, Polytechnique Montreal, Canada 112

  • 57

    PP

    L

    EI , d

    a Core

    Concrete Fill r r

    0

    PP Gap

    PP

    Global buckling:

    Local (core) buckling:

    R. Tremblay, Polytechnique Montreal, Canada 113

    -10 -8 -6 -4 -2 0 2 4 6 8 10y

    -2.0

    -1.0

    0.0

    1.0

    2.0

    V/V y

    All-steel BRBs

    R. Tremblay, Polytechnique Montreal, Canada 114

  • 58

    R. Tremblay, Polytechnique Montreal, Canada 115

    Eryasar & Topkaya 2010Usami et al. 2008

    R. Tremblay, Polytechnique Montreal, Canada 116

  • 59

    R. Tremblay, Polytechnique Montreal, Canada 117

    R. Tremblay, Polytechnique Montreal, Canada 118

  • 60

    R. Tremblay, Polytechnique Montreal, Canada 119

    R. Tremblay, Polytechnique Montreal, Canada 120

  • 61

    http://www.corebrace.com/

    http://www.starseismic.net/

    http://www.unbondedbrace.com/

    Specialized suppliers (U.S.)

    R. Tremblay, Polytechnique Montreal, Canada 121

    No special requirements (BRB have nearly symmetrical response)May be controlled by drift limit or available BRB capacities

    Design Bracing Configuration

    R. Tremblay, Polytechnique Montreal, Canada 122

  • 62

    Select Ac:BRB assumed not resist gravity loads

    => required axial strength from lateral loads only Pn = AcFyc (compression & tension) with = 0.9 Notes: use lower bound for Fyc

    round-off AcVerify availability of BRB and test data Determine stiffness factor KF for analysis

    = KBrace / (EAc/Lc/c)

    Design BRB members

    R. Tremblay, Polytechnique Montreal, Canada 123

    9000

    O41.64500

    +/-60

    21

    L

    L

    c/c

    c

    4000

    R. Tremblay, Polytechnique Montreal, Canada 124

  • 63

    Two cyclic tests: individual BRB + sub-assemblageSpecimen Pysc within 50-120% of prototypeSpecimen design, fabrication and quality control as for prototypeTest displacements based on design storey drift bm

    Tests used to demonstrate performance of the member and connections and to provide design data

    Qualification tests of BRBs:

    R. Tremblay, Polytechnique Montreal, Canada 125

    Adjusted (max) brace strengths from tests:Tadj = AcFycCadj = AcFyc

    with and from C and T at the maximum testdeformations

    Note: use upper bound for Fyc

    Design BRB adjusted axial strength

    -8.0 -4.0 0.0 4.0 8.0 y

    -2.0

    -1.0

    0.0

    1.0

    2.0

    P/P

    y

    Tmax

    Cmax

    R. Tremblay, Polytechnique Montreal, Canada 126

  • 64

    Must resist gravity loads plus forces induced when the braces reach their adjusted strengths

    Section must meet hd (md for flanges if e < 1.6 Mp/Vp )

    Design Columns and Beams

    R. Tremblay, Polytechnique Montreal, Canada 127

    C

    C

    C

    C

    T C

    adj

    adj

    adj

    adj

    adj adj

    Beam Design

    Column Design

    ChevronBRB

    F

    FC

    C

    T

    T

    F

    F

    L,x

    L,x

    R,x

    R,x

    C

    C

    C

    C

    T

    T

    T

    T

    and

    adjx+1

    adjx+1

    adj,x

    adj,x

    adj,x

    adj,x

    u

    u

    u

    u

    adj,x

    adj,x

    0.9 w

    1.2 w + 1.6 w

    D

    D L

    R. Tremblay, Polytechnique Montreal, Canada 128

  • 65

    At design stage, verify: Range of Fyc Strength factors & Stiffness factors KF Py range for which test data is available

    On drawings, specify: Minimum Py (or Ac & Fyc), with tolerances Factors , and KF Reqd test brace axial deformations

    Communication with BRB suppliers

    R. Tremblay, Polytechnique Montreal, Canada 129

    Fyc = 260-290 MPaKF = 1.5

    R = 6.0 (as EBF)T = 0.99 sQ0 = 871 kN / Frame

    BRBF

    R. Tremblay, Polytechnique Montreal, Canada 130

  • 66

    BRBFSCBF

    R. Tremblay, Polytechnique Montreal, Canada 131

    Moment Resisting FramesEnergy dissipated by plastic hinging in beams and limited shear yielding in column panel zones. Plastic hinging in columns permitted at the base and in single-storey structures.

    Connections and other members expected to remain essentially elastic

    R. Tremblay, Polytechnique Montreal, Canada 132

  • 67

    Section must meet hdMust resist expected shear demand upon hingingMust be laterally braced

    Design Beams

    L'

    L

    L' = L - 2 x - d c

    wpb

    1.1 R My pb

    1.1 R My pb

    V = wL' / 2 + 2.2 R M / L'h y pb

    Vh Vh

    R. Tremblay, Polytechnique Montreal, Canada 133

    Section must meet hdMust satisfy weak beam-strong column criteriaexcept for:

    Columns with Puc < 0.3 AcFy in single-storey buildings or at the top storey of multi-storey buildings;Columns with Puc < 0.3 AcFy when their total shear contribution < 20% of total storey shear resistance and 33% of storey shear resistance along their MF line; orColumns that have shear capacity to demand ratio 50% gretaer than in the storey above.

    Design Columns

    R. Tremblay, Polytechnique Montreal, Canada 134

  • 68

    L'

    L

    L' = L - 2 x - d c x + d /2c x + d /2c

    ww w

    1.1 R My pb

    1.1 R My pb

    1.1 R My pb

    1.1 R My pb

    V = wL' / 2 + 2.2 R M / L'h y pb

    Vh Vh

    Vh

    Vh

    M'rc, i+1

    M'rc, iCf, i

    Cf, i+1

    Weak beam-strong column criteria:

    M*: projected at membercenter lines

    R. Tremblay, Polytechnique Montreal, Canada 135

    x + d /2c x + d /2c

    1.1 R My pb

    1.1 R My pb Vh

    Vh

    V

    V

    Must meet: t > (dz + wz)/90Shear strength, Rn:

    Design Column panel zone

    R. Tremblay, Polytechnique Montreal, Canada 136

  • 69

    L/2

    V

    L/2

    h /2s

    h /2s

    Design Beam-to-column connections

    Must accommodate 4% storey drift angleMeasured flexural resistance at column face at 4% storey drift angle > 80% MpbPerformance considered as demonstrated if pre-qualified connections are used; otherwise must be demonstrated through physical cyclic testing

    R. Tremblay, Polytechnique Montreal, Canada 137

    http://www.aisc.org

    Design requirements

    Welding requirements

    Bolting requirements

    Requirements for 6pre-qualified connections

    R. Tremblay, Polytechnique Montreal, Canada 138

  • 70

    Welded Unreinforced FlangeWelded Web

    Bolted End Plate

    Kaiser Bolted Bracket

    Bolted Flange PlateReduced Beam Section

    Conxtech Conxl

    R. Tremblay, Polytechnique Montreal, Canada 139

    R. Tremblay, Polytechnique Montreal, Canada 140

  • 71

    MRF

    Example

    R. Tremblay, Polytechnique Montreal, Canada 141

    R. Tremblay, Polytechnique Montreal, Canada 142

  • 72

    At Level 1:

    M*pb = 656 + 738 = 1394 kN-m

    R. Tremblay, Polytechnique Montreal, Canada 143

    R. Tremblay, Polytechnique Montreal, Canada 144

  • 73

    R. Tremblay, Polytechnique Montreal, Canada 145

    Steel Plate Shear Walls

    Energy dissipated through web plate (infill panel) yielding and plastic hinging in beams and at the base of columns

    Connections and other members expected to remain essentially elastic

    R. Tremblay, Polytechnique Montreal, Canada 146

  • 74

    ING St-HyacintheQuirion Metal

    R. Tremblay, Polytechnique Montreal, Canada 147

    Louis Crpeault Groupe Technika R. Tremblay, Polytechnique Montreal, Canada 148

  • 75

    University of Alberta (1997)

    R. Tremblay, Polytechnique Montreal, Canada 149

    Work by Bruneau, Tsai et al.

    -5000

    -4000

    -3000

    -2000

    -1000

    0

    1000

    2000

    3000

    4000

    5000

    -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

    Interstory Drift (%)

    Bas

    e Sh

    ear F

    orce

    (kN

    )

    -5000

    -4000

    -3000

    -2000

    -1000

    0

    1000

    2000

    3000

    4000

    5000

    -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

    Interstory Drift (%)

    2F S

    hear

    For

    ce (k

    N)

    R. Tremblay, Polytechnique Montreal, Canada 150

  • 76

    MF + web plate

    V

    + ==

    mf

    wV

    V

    Distribution of Vx from analysis

    Infill panel designed for 100% VxBeams Mpb such that VMF = 2 Mpb/hs > 0.25 Vx

    R. Tremblay, Polytechnique Montreal, Canada 151

    Design of web plate

    R. Tremblay, Polytechnique Montreal, Canada 152

  • 77

    M' M'

    M'

    V

    VV

    C CF

    C

    q

    h

    h

    i

    i+1 i

    w,i yi2 2

    i+1

    i

    i+1

    ipb,i pb,i

    pb,ib,i b,i

    r,i

    br,i

    br,i

    c

    c

    b,i

    bl,i

    b,i

    L - 2 x - d

    x + d /2

    C (T h sin ) (T h sin ) ] = [ + / 2 T = t F

    (T sin )(T cos )

    (T cos ) (T sin )

    i+1i+1

    i i

    L

    Design of beams (HBE)and columns (VBE)

    R. Tremblay, Polytechnique Montreal, Canada 153

    Beam-to-Column Connections

    M'

    M'

    Beam

    V

    V

    PP

    q

    i

    i+1

    i

    pbr,i

    pbl,ibr,i

    br,i

    c

    bl,i

    bl,i

    L - 2 x - d

    i+1

    i

    Columns:Class 1, W Shapes

    Beams:Class 1 or 2

    CP groove weldsBacking bar removedRun-off tabs removedReinforcing fillet weldsTr = 60% Tr in Cl. 21.3

    Type LD MRF

    R. Tremblay, Polytechnique Montreal, Canada 154

  • 78

    Corner cut-outs

    Vian, D. and Bruneau, M. 2004. Testing of Special LYS Steel Plate Shear walls. Proc. 13th WCEE,

    Vancouver, BC. Paper No. 978.

    Purba, R. and Bruneau, M. 2007. Design Recommendations for Perforated Steel Plate Shear Walls. Report MCEER-07-0011, SUNY Buffalo, NY.

    R. Tremblay, Polytechnique Montreal, Canada 155

    Berman, J.W. and Bruneau, M. 2005. Experimental Investigation of Light-Gauge Steel Plate ShearWalls. ASCE J. of Struct. Eng., 131, 2, 259-267.

    Optimization of infill plates

    Use of thin infill plates

    0.9 mm thick ASTM A1008 (cold-rolled, carbon, commercial steel sheet)

    R. Tremblay, Polytechnique Montreal, Canada 156

  • 79

    Perforated infill plates

    Vian, D. and Bruneau, M. 2004. Testing of Special LYS Steel Plate Shear walls. Proc. 13th WCEE,

    Vancouver, BC. Paper No. 978.

    Purba, R. and Bruneau, M. 2007. Design Recommendations for Perforated Steel Plate Shear Walls. Report MCEER-07-0011, SUNY Buffalo, NY.

    R. Tremblay, Polytechnique Montreal, Canada 157

    Perforation(typ.)

    V

    D

    * D * D + 0.7 S< 0.6

    diag

    diag

    *

    V> 4 rows

    iL

    > 4 rows

    4545oo

    diag

    diag

    S

    S

    R. Tremblay, Polytechnique Montreal, Canada 158

  • 80

    R. Tremblay, Polytechnique Montreal, Canada 159

    R. Tremblay, Polytechnique Montreal, Canada 160

  • 81

    R. Tremblay, Polytechnique Montreal, Canada 161

    Warning!

    Only basic design requirements have been discussed; several other requirements must be applied including those related to loads and load combinations, demand critical welds, protected zones, bracing, quality control, etc.

    Only the systems designed and detailed for high ductility have been introduced; provisions also exist for other systems exhibiting moderate and limited ductility that may be more appropriate for some applications.

    R. Tremblay, Polytechnique Montreal 162

  • 82

    Bruneau, M., Sabelli, R., and Uang C.-M. (2003) Ductile Design of Steel Structures, 2nded., Wiley

    AISC. (2013) Seismic Design Manual, 2nd ed., AISC

    Filiatrault, A., Tremblay, R., Christopoulos, C., Foltz, B., and Pettinga, D. (2013)Elements of Earthquake Engineering and Structural Dynamics, 3rd ed.,Presses Internationales Polytechnique (PIP)

    R. Tremblay, Polytechnique Montreal 163

    R. Tremblay, Polytechnique Montreal, Canada 164

  • 83

    R. Tremblay, Polytechnique Montreal, Canada 165

    Seismic Design of Heavy Industrial Buildings : Challenges

    R. Tremblay, Polytechnique Montreal, Canada 166

  • 84

    Structures are not buildings: Irregular structures with heavy point masses and loads

    and low damping Design is process driven and structure will likely be

    modified to accommodate changes to the process Equipment may interact with the structure

    Structures may have limited redundancy Damage under severe earthquakes must be limited:

    Structures may contain hazardous material No or short downtimes

    Application of ductile seismic systems not practical, often impossible

    Current building code provisions not suitable

    Observations / Issues:

    R. Tremblay, Polytechnique Montreal, Canada 167

    1. Simple code provisions to control inelastic demand: low R factors , use of dynamic analysis, etc.

    2. Use of ductile anchorage systems with minimum stretch lengths in combination with shear keys

    3. Use ductile fuses in key structural elements to control the force demand

    4. Where applicable, use sliding or rocking systems to control input

    Possible avenues:

    Above avenues are listed in order of ease of implementation implementation and flexibility for future process changes;

    however, the latest ones could be more effective

    Ductility (or alternative similar approach) needed to accommodate uncertainty in ground motions and seismic response

    R. Tremblay, Polytechnique Montreal, Canada 168

  • 85

    In Canada, industrial structures are buildings and National Building Code (NBCC) applies.

    New Annex proposed for inclusion in CSA S16-14 and which would be referenced in NBCC 2015:

    R. Tremblay, Polytechnique Montreal, Canada 169

    1. Demand prediction from RS analysis2. Use/design of ductile anchorage3. Ductile structural fuses4. Multi-tiered braced frames

    Recent related research work:

    R. Tremblay, Polytechnique Montreal, Canada 170

  • 86

    Demand Prediction from RS Analysis

    R. Tremblay, Polytechnique Montreal, Canada 171

    Plan dimensions: 36 m x 60 m x 40 m Heavy equipment, including 1200t & 750t tanks Irregularities in mass and stiffness Montreal Site Class C Static, Response Spectrum & Linear response history

    analyses

    R. Tremblay, Polytechnique Montreal, Canada 172

  • 87

    Structure has a large number of contributing modes

    R. Tremblay, Polytechnique Montreal, Canada 173

    0

    20

    40

    60

    80

    100

    120

    140

    Dis

    plac

    emen

    t (m

    m)

    Level

    STAT-CNBCSTAT-ASCESPECTRALETH-MDIANETH-84e CEN

    R. Tremblay, Polytechnique Montreal, Canada 174

  • 88

    Use & Design of Ductile Anchors

    22 4

    00

    16 8

    00

    5600

    25 000 1675 1675

    2 x 40t cranes

    3 sites: Montreal, Vancouver & SeattleSeismic force demand from linear response history analysisDuctile anchors at column bases

    R. Tremblay, Polytechnique Montreal, Canada 175

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

    Strength ( = 1)Strength ( = -1)

    Stability ( = 1)Stability ( = -1)

    P/RyPy

    M/RyMp

    R. Tremblay, Polytechnique Montreal, Canada 176

  • 89

    Elastic time history analysis

    0.71

    %

    0.70

    %

    0.67

    %

    0.87

    %

    0.67

    %

    0.66

    %

    0.63

    %

    0.81

    %

    0.0%

    0.2%

    0.4%

    0.6%

    0.8%

    1.0%

    STAT SPEC TH-MedTH-84th

    c/h

    , r/h

    (%)

    Analysis method

    Crane levelRoof level

    0.44

    0.37

    0.51

    0.42

    0.42

    0.52

    0.0

    0.2

    0.4

    0.6

    STAT SPEC TH-Med TH-84th

    Acc

    eler

    atio

    n (g)

    Analysis method

    Crane levelRoof level

    n.a. 120%

    121%

    115%

    149%

    107%

    106%

    102%

    120%

    0%

    50%

    100%

    150%

    STAT SPEC TH-Med TH-84th

    Stre

    ss R

    atio

    (%)

    Analysis method

    Ext. base col.Top column

    Seattle (Site Class D)

    0.46

    0.44

    0.57

    0.53

    0.52

    0.72

    0.0

    0.2

    0.4

    0.6

    0.8

    STAT SPEC TH-Med TH-84th

    Acc

    eler

    atio

    n (g)

    Analysis method

    )Crane levelRoof level

    n.a.1.0

    0%

    0.88

    %

    0.78

    %

    1.01

    %

    0.91

    %

    0.79

    %

    0.70

    %

    0.93

    %

    0.0%

    0.2%

    0.4%

    0.6%

    0.8%

    1.0%

    1.2%

    STAT SPEC TH-MedTH-84th

    c/h

    , r/h

    (%)

    Analysis method

    )Crane levelRoof level

    Vancouver (Site Class C)

    160%

    142%

    115%

    156%

    94%

    86%

    76%

    93%

    0%

    50%

    100%

    150%

    200%

    STAT SPEC TH-Med TH-84th

    Stre

    ss R

    atio

    (%)

    Analysis method

    )Ext. base col.Top column

    R. Tremblay, Polytechnique Montreal, Canada 177

    Ductile anchorage at column bases

    total =e +ie =total/Ri =total/(1 R)

    e i

    total =e +ie =total/Ri =total/(1 R)i = xH/h =i xh/HL=/ =/0.03

    H

    h

    e i

    ,

    verticalfuse

    sh y fuse

    FAR F

    R. Tremblay, Polytechnique Montreal, Canada 178

  • 90

    Anchor rodSpring for stability of analysis

    1

    2 3

    4

    5

    6

    7 8

    Inelastic time history analysis

    R. Tremblay, Polytechnique Montreal, Canada 179

    R. Tremblay, Polytechnique Montreal, Canada 180

  • 91

    1.40

    %

    1.56

    %

    1.14

    %

    1.77

    %

    1.24

    %

    1.38

    %

    1.14

    %

    1.77

    %

    0.0%

    0.5%

    1.0%

    1.5%

    2.0%

    TH-MD TH-84e CEN TH-MD TH-84e CEN

    c/h

    , r/h

    (%)

    Crane levelRoof level

    With anchor yielding

    Without anchor yielding

    R. Tremblay, Polytechnique Montreal, Canada 181

    NCh2369 (2003)

    Is 8db or 250 mm suitable for all applications?

    R. Tremblay, Polytechnique Montreal, Canada 182

  • 92

    R. Tremblay, Polytechnique Montreal, Canada 183

    Other buildings to be examined

    HeadFrame (Mining)

    Chemical Industry

    R. Tremblay, Polytechnique Montreal, Canada 184

  • 93

    Conveyor Towers

    Pipe Racks

    R. Tremblay, Polytechnique Montreal, Canada 185

    Tank Supporting Structures

    R. Tremblay, Polytechnique Montreal, Canada 186

  • 94

    DuctileStructuralFuses

    R. Tremblay, Polytechnique Montreal, Canada 187

    -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 / h (%)

    -0.5

    0.0

    0.5

    1.0

    1.5

    V /

    Vy

    Brace Fuse Test 3CTWithout FuseWith Fuse

    -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 / h (%)

    -0.5

    0.0

    0.5

    1.0

    1.5

    V /

    Vy

    Brace Fuse Test 4CTWithout FuseWith Fuse

    HS 102x102x4.8

    280

    200

    200

    40(typ.)

    25.4 bolts@ 80x80 (typ.)

    133

    133271

    64 hole(4 sides)

    64 x 335 slotted hole(4 sides)

    PL 6x63x250(2 sides)1

    4

    3

    R. Tremblay, Polytechnique Montreal, Canada 188

  • 95

    Fuses forHSS braces

    P

    P

    P

    P

    C

    C

    C

    C

    T

    T

    T

    T

    C

    C

    C

    C

    T

    T

    T

    T

    T

    L

    L

    L

    T

    C

    F

    F

    c

    C

    u

    uF

    u

    u

    u

    uF

    uF

    u

    f

    f

    f

    f

    f

    f

    f

    f

    Section A

    A

    Steel Core

    Mortar Fill

    Steel Tube

    T

    C

    C/TC/T

    R. Tremblay, Polytechnique Montreal, Canada 189

    0 5 10 15 20Time (s)

    -1.0

    0.0

    1.0

    / h

    n (%

    )

    Without Brace FusesWith Brace Fuses

    -0.2

    0

    0.2

    a g (g

    )

    M7.0 1989 Loma PrietaStandford Univ. 360o

    -2.0 -1.0 0.0 1.0 2.0

    / y-1.0

    -0.5

    0.0

    0.5

    1.0

    P /

    T u

    -1.0 -0.5 0.0 0.5 1.0

    B / hn (%)-0.5

    0.0

    0.5

    V /

    W

    Without Brace FusesWith Brace Fuses

    V NBCC

    V NBCC

    R. Tremblay, Polytechnique Montreal, Canada 190

  • 96

    L

    bAngle with

    reduced section

    Cut inHSS

    HSS brace

    Bucklingrestraining box L Lf

    f

    t w

    Typ.A

    R. Tremblay, Polytechnique Montreal, Canada 191

    1000 kNDynamicactuator

    3.75

    m

    Loadingarm

    W36

    0x34

    7 (ty

    p.)

    W310x179 (typ.)

    Horizontalreaction block

    6.0 m

    Bracestudied

    Bracefuse

    Frame support(typ.)

    Pin(typ.)

    Pin(typ.)

    R. Tremblay, Polytechnique Montreal, Canada 192

  • 97

    -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 / h (%)

    -0.5

    0.0

    0.5

    1.0

    1.5

    V /

    Vy

    Brace Fuse Test 5CCWithout FuseWith Fuse

    -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 / h (%)

    -0.5

    0.0

    0.5

    1.0

    1.5

    V /

    Vy

    Brace Fuse Test 6CTWithout FuseWith Fuse

    280

    280

    40(typ.)

    25.4 bolts@ 80x80 (typ.)

    1034

    Cut

    BraceFuse

    PL 6x63x250(2 sides)1

    5-6

    R. Tremblay, Polytechnique Montreal, Canada 193

    R. Tremblay, Polytechnique Montreal, Canada 194

  • 98

    R. Tremblay, Polytechnique Montreal, Canada 195

    Fuses in W-Shapes (Canam Group, Montreal)

    R. Tremblay, Polytechnique Montreal, Canada 196

  • 99

    R. Tremblay, Polytechnique Montreal, Canada 197

    R. Tremblay, Polytechnique Montreal, Canada 198

  • 100

    R. Tremblay, Polytechnique Montreal, Canada 199

    -5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 / hs

    -1.2

    -0.8

    -0.4

    0.0

    0.4

    0.8

    1.2

    P / A

    Fy

    Design

    Design

    Cu

    Tu

    Test 1 - LF/LH = 0.11

    -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 / hs

    -1.2

    -0.8

    -0.4

    0.0

    0.4

    0.8

    1.2

    P /

    AFy

    Design

    Design

    Cu

    Tu

    Test 3 - LF/LH = 0.07

    R. Tremblay, Polytechnique Montreal, Canada 200

  • 101

    Multi-Tiered Braced Frames

    R. Tremblay, Polytechnique Montreal, Canada 201

    = 6.8

    = 1.6

    = 4.2

    0.0 5.0 10.0 15.0 20.0Time (s)

    -1.50-1.00-0.50

    0.000.501.001.50

    Drif

    t (%

    hn)

    -1.50-1.00-0.50

    0.000.501.001.50

    Drif

    t (%

    hn)

    Drift at h = 10.0 mDrift at h = 6.8 m

    -1.0-0.50.00.51.0

    Acc

    el. (

    g)

    X-braced CBF vs Multi-tiered CBFs

    R. Tremblay, Polytechnique Montreal, Canada 202

  • 102

    2-tiered CBFsDesigned in accordance with AISC 341-10SCBF R = 6.0Los Angeles, CA - Site class D

    Design Storey Drift (Cd/H) = 0.86% < 2%

    Braces: HSS 102x102x6.4Columns: W310x174

    Strut: W250x58

    R. Tremblay, Polytechnique Montreal, Canada 203

    R. Tremblay, Polytechnique Montreal, Canada 204

  • 103

    Design Storey (Cd)

    1

    2

    Frame LateralDeformation

    Column Shear &Bending Moment

    Member Forces(axial loads in columns not shown)

    u1

    u2 u2

    u1

    1

    c1c1

    c2 c2

    c1c1

    c1 c1

    T

    T C

    CV V

    V V

    MM

    M M

    H

    2

    c1

    c2

    c1

    H

    M

    M

    V

    VVc c

    1

    2

    R. Tremblay, Polytechnique Montreal, Canada 205

    R. Tremblay, Polytechnique Montreal, Canada 206

  • 104

    Conclusions

    Design provisions to achieve ductile seismic performance for building steel structures are now available for application in practice

    Design objective is to prevent structural collapse and structural damage & residual deformations are expected

    Some issues still need to be addressed Application of this design approach not

    suitable for heavy industrial applications; specific design provisions needed for these structures

    R. Tremblay, Polytechnique Montreal, Canada 207