preliminary results of a beam expander for biomedical imaging

21
Preliminary Results of a Beam Expander for Biomedical Imaging 1 Presented by: Mercedes Martinson Mercedes Martinson, George Belev, Nazanin Samadi, Bassey Bassey, Gurpreet Aulakh, Rob Lewis, Dean Chapman

Upload: josiah

Post on 24-Feb-2016

35 views

Category:

Documents


0 download

DESCRIPTION

Mercedes Martinson, George Belev , Nazanin Samadi , Bassey Bassey , Gurpreet Aulakh , Rob Lewis, Dean Chapman. Preliminary Results of a Beam Expander for Biomedical Imaging. Presented by: Mercedes Martinson . Outline. Background Motivation Implementation Results Applications - PowerPoint PPT Presentation

TRANSCRIPT

Were gonna need a bigger beam.

Preliminary Results of a Beam Expander for Biomedical Imaging1Presented by: Mercedes Martinson Mercedes Martinson, George Belev, Nazanin Samadi, Bassey Bassey, Gurpreet Aulakh, Rob Lewis, Dean ChapmanOutlineBackgroundMotivationImplementationResultsApplicationsFuture work2

The Canadian Light Source (CLS)3Electron beam inside a storage ringBent using dipole bend magnetsAcceleration of charged particles creates electromagnetic radiationDopper headlight effect shifts frequency higherPushes radiation into X-ray regimeSmall vertical divergenceHorizontal smearing

Synchrotron beam is wide and shortVertical scanningCT imaging: slowImaging: slicesReconstruction: stitchingIncreases doseDynamic imaging:Basically impossible4Double bent Laue crystal expander5

Geometric Focus (monochromatic)6Curvature of crystal and lattice planes causes a virtual focus. Single ray Focus (polychromatic)7Reflection from multiple layers and angle between lattice planes causes a virtual focus of the beamSingle ray + geometric focus matched8The beam appears to come from a point (virtual focus) and the beam diverges on the downstream side.Four bar bender

9

Rigid Frame Bender

10Rigid Frame BenderAdvantages:Bending radius is reproducibleUniform bendAnticlastic bending is reducedInexpensiveHeat sink

Disadvantages:Bending radius is fixedCrystal distortionWindow height limits expansionMachining irregularities

11How much bigger did we make it?7.7x (Summer 2013)Beam quality was poor:PhaseUniformityVertical blurring12x (Winter 2014)Improved beam quality: phase and edge preservationFlux reduction: low intensity reflection12What did we do with the bigger beam?Measured beam quality Preliminary imaging testsHigh resolution micro-CT in a single spinFull FOV on 8.75 m Hamamatsu detectorDynamic imagingLive mouse, 30 fps (200 m)Measured fluxComparable to beamline monoPhase imaging13Preliminary imaging tests14

Various phase, absorption, and edge test objects.This was before we figured out the trick to getting a uniform beam.High resolution micro-CT: pinecone15

21.15mmHigh resolution micro-CT: seed pod16

High-speed (30 fps) dynamic imaging17

In-line phase image using expander at CLS18

50 mmApproximate height using beamline mono

CLS BMIT-BM: Energy = 33 keV, Propagation distance = 2.05 mNext: Installation to ID beamline19

20

Mercedes Martinson, Nazanin Samadi, and Bassey Bassey are Fellows , and Dean Chapman and Rob Lewis are Mentors, in the Canadian Institutes of Health Research Training grant in Health Research Using Synchrotron Techniques (CIHR-THRUST)

ReferencesAstolfo, A., Schltke, E., Menk, R. H., Kirch, R. D., Juurlink, B. H. J., Hall, C., Harsan, L.-A., Stebel, M., Barbetta, D., Tromba, G. & Arfelli, F. (2013). Nanomedicine : nanotechnology, biology, and medicine 9, 284-292.Bravin, A., Coan, P. & Suortti, P. (2013). Physics in Medicine and Biology 58, R1.Coan, P., Bravin, A. & Tromba, G. (2013). Journal of Physics D: Applied Physics 46, 494007.Erola, E., Etelniemi, V., Suortti, P., Pattison, P. & Thomlinson, W. (1990). Journal of Applied Crystallography 23, 35-42.Hooper, S. B., Kitchen, M. J., Siew, M. L. L., Lewis, R. A., Fouras, A., B te Pas, A., Siu, K. K. W., Yagi, N., Uesugi, K. & Wallace, M. J. (2009). Clinical and Experimental Pharmacology and Physiology 36, 117-125.Hubbell, J. H. a. S., S.M. (2004). Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients, http://physics.nist.gov/xaamdi.Hyodo, K., Ando, M., Oku, Y., Yamamoto, S., Takeda, T., Itai, Y., Ohtsuka, S., Sugishita, Y. & Tada, J. (1998). Journal of Synchrotron Radiation 5, 1123-1126.Lewis, R. A. (2004). Physics in Medicine and Biology 49, 3573-3583.Lewis, R. A., Yagi, N., Kitchen, M. J., Morgan, M. J., Paganin, D., Siu, K. K. W., Pavlov, K., Williams, I., Uesugi, K., Wallace, M. J., Hall, C. J., Whitley, J. & Hooper, S. B. (2005). Physics in Medicine and Biology 50, 5031-5040.Liu, Y., Nelson, J., Holzner, C., Andrews, J. C. & Pianetta, P. (2013). Journal of Physics D: Applied Physics 46, 494001.Porra, L., Suhonen, H., Suortti, P., Sovijrvi, A. R. A. & Bayat, S. (2011). Critical Care Medicine 39, 1731-1738 1710.1097/CCM.1730b1013e318218a318375.Schltke, E., Kelly, M. E., Nemoz, C., Fiedler, S., Ogieglo, L., Crawford, P., Paterson, J., Beavis, C., Esteve, F., Brochard, T., Renier, M., Requardt, H., Dallery, D., Le Duc, G. & Meguro, K. (2011). European journal of radiology 79, 323-327.Suortti, P., Keyrilinen, J. & Thomlinson, W. (2013). Journal of Physics D: Applied Physics 46, 494002.Suortti, P. & Schulze, C. (1995). Journal of Synchrotron Radiation 2, 6-12.Suortti, P. & Thomlinson, W. (2003). Physics in Medicine and Biology 48, R1.Thomlinson, W., Suortti, P. & Chapman, D. (2005). Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 543, 288-296.

21