predicting the direction of redox reactions

25
Predicting the direction of redox reactions Know that standard electrode potentials can be listed as an electrochemical series. Use E values to predict the direction of simple redox reactions and to calculate the e.m.f. of a cell.

Upload: tamber

Post on 23-Feb-2016

68 views

Category:

Documents


0 download

DESCRIPTION

Predicting the direction of redox reactions. Know that standard electrode potentials can be listed as an electrochemical series. Use E values to predict the direction of simple redox reactions and to calculate the e.m.f . of a cell. GOLDEN RULE. The more +ve electrode gains electrons - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Predicting the direction of  redox  reactions

Predicting the direction of redox reactions

Know that standard electrode potentials can be listed as an electrochemical series.

Use E values to predict the direction of simple redox reactions and to calculate the e.m.f. of a cell.

Page 2: Predicting the direction of  redox  reactions

Standard electrode potentials E/V

F2(g) + 2 e- 2 F-(aq) + 2.87

MnO42-(aq) + 4 H+(aq) + 2 e- MnO2(s) + 2 H2O(l) + 1.55

MnO4-(aq) + 8 H+(aq) + 5 e- Mn2+(aq) + 4 H2O(l) + 1.51

Cl2(g) + 2 e- 2 Cl-(aq) + 1.36

Cr2O72-(aq) + 14 H+(aq) + 6 e- 2 Cr3+(aq) + 7 H2O(l) + 1.33

Br2(g) + 2 e- 2 Br-(aq) + 1.09

Ag+(aq) + e- Ag(s) + 0.80

Fe3+(aq) + e- Fe2+(aq) + 0.77

MnO4-(aq) + e- MnO4

2-(aq) + 0.56

I2(g) + 2 e- 2 I-(aq) + 0.54

Cu2+(aq) + 2 e- Cu(s) + 0.34

Hg2Cl2(aq) + 2 e- 2 Hg(l) + 2 CI-(aq) + 0.27

AgCl(s) + e- Ag(s) + Cl-(aq) + 0.22

2 H+(aq) + 2 e- H2(g) 0.00

Pb2+(aq) + 2 e- Pb(s) - 0.13

Sn2+(aq) + 2 e- Sn(s) - 0.14

V3+(aq) + e- V2+(aq) - 0.26

Ni2+(aq) + 2 e- Ni(s) - 0.25

Fe2+(aq) + 2 e- Fe(s) - 0.44

Zn2+(aq) + 2 e- Zn(s) - 0.76

Al3+(aq) + 3 e- Al(s) - 1.66

Mg2+(aq) + 2 e- Mg(s) - 2.36

Na+(aq) + e- Na(s) - 2.71

Ca2+(aq) + 2 e- Ca(s) - 2.87

K+(aq) + e- K(s) - 2.93

Increasingreducing

power

Increasingoxidising

power

Page 3: Predicting the direction of  redox  reactions

GOLDEN RULE

The more +ve electrode gains electrons

(+ charge attracts electrons)

Page 4: Predicting the direction of  redox  reactions

Electrodes with negative emf are better at releasing electrons (better reducing agents).

Page 5: Predicting the direction of  redox  reactions

– + 0

– 0.76 V

–ve electrode

Zn2+ + 2 e- Zn

+ 0.34 V

+ve electrode

Cu2+ + 2 e- Cu

+ 1.10 V

e–

Cu2+ + Zn → Cu + Zn2+

Page 6: Predicting the direction of  redox  reactions

USE OF Eo VALUES - WILL IT WORK?E° values Can be used to predict the feasibility of redox and cell reactions

In theory ANY REDOX REACTION WITH A POSITIVE E° VALUE WILL WORK

An equation with a more positive E° value reverse a less positive one

Page 7: Predicting the direction of  redox  reactions

USE OF Eo VALUES - WILL IT WORK?

What happens if an Sn(s) / Sn2+(aq) and a Cu(s) / Cu2+(aq) cell are connected?

Write out the equations Cu2+(aq) + 2e¯ Cu(s) ; E° = +0.34V

Sn2+(aq) + 2e¯ Sn(s) ; E° = -0.14V

the half reaction with the more positive E° value is more likely to workit gets the electrons by reversing the half reaction with the lower E° value

therefore Cu2+(aq) ——> Cu(s) and

Sn(s) ——> Sn2+(aq)

the overall reaction is Cu2+(aq) + Sn(s) ——> Sn2+(aq) + Cu(s)

the cell voltage is the difference in E° values... (+0.34) - (-0.14) = + 0.48V

An equation with a more positive E° value reverse a less positive one

Page 8: Predicting the direction of  redox  reactions

USE OF Eo VALUES - WILL IT WORK?An equation with a more positive E° value reverse a less positive one

Will this reaction be spontaneous? Sn(s) + Cu2+(aq) ——> Sn2+(aq) + Cu(s)

Write out the appropriate equations Cu2+(aq) + 2e¯ Cu(s) ; E° = +0.34V

as reductions with their E° values Sn2+(aq) + 2e¯ Sn(s) ; E° = - 0.14V

The reaction which takes place will involve the more positive one reversing the other

i.e. Cu2+(aq) ——> Cu(s) and Sn(s) ——> Sn2+(aq)

The cell voltage will be the differencein E° values and will be positive... (+0.34) - (- 0.14) = + 0.48V

If this is the equation you want then it will be spontaneousIf it is the opposite equation (going the other way) it will not be spontaneous

Page 9: Predicting the direction of  redox  reactions

USE OF Eo VALUES - WILL IT WORK?An equation with a more positive E° value reverse a less positive one

Will this reaction be spontaneous? Sn(s) + Cu2+(aq) ——> Sn2+(aq) + Cu(s)

Split equation into two half equations Cu2+(aq) + 2e¯ ——> Cu(s)

Sn(s) ——> Sn2+(aq) + 2e¯

Find the electrode potentials Cu2+(aq) + 2e¯ Cu(s) ; E° = +0.34V

and the usual equations Sn2+(aq) + 2e¯ Sn(s) ; E° = - 0.14V

Reverse one equation and its sign Sn(s) ——> Sn2+(aq) + 2e¯ ; E° = +0.14V

Combine the two half equations Sn(s) + Cu2+(aq) ——> Sn2+(aq) + Cu(s)

Add the two numerical values (+0.34V) + (+ 0.14V) = +0.48V

If the value is positive the reaction will be spontaneous

Page 10: Predicting the direction of  redox  reactions

• Predicting redox reactions

• 5.3 exercise 2

Page 11: Predicting the direction of  redox  reactions

– + 0

– 0.76 V

–ve electrode

Zn2+ + 2 e- Zn

– 0.25 V

+ve electrode

Ni2+ + 2 e- Ni

+ 0.51 V

e–

Ni2+ + Zn → Ni + Zn2+

PREDICTING REDOX REACTIONS – Q1

Page 12: Predicting the direction of  redox  reactions

+ 0

+ 0.34 V

–ve electrode

Cu2+ + 2 e- Cu

+ 0.80 V

+ve electrode

Ag+ + e- Ag

+ 0.46 V

e–

2 Ag+ + Cu → 2 Ag + Cu2+

PREDICTING REDOX REACTIONS – Q2

Page 13: Predicting the direction of  redox  reactions

0

– 2.36 V

–ve electrode

Mg2+ + 2 e- Mg

– 0.26 V

+ve electrode

V3+ + e- V2+

+ 2.10 V

e–

Mg(s)|Mg2+(aq)||V3+(aq),V2+(aq)|Pt(s)

PREDICTING REDOX REACTIONS – Q3 a

YES: Mg reduces V3+ to V2+

Page 14: Predicting the direction of  redox  reactions

0

+ 0.77 V

–ve electrode

Fe3+ + e- Fe2+

+ 1.36 V

+ve electrode

Cl2 + 2 e- 2 Cl-

+ 0.59 V

e–

PREDICTING REDOX REACTIONS – Q3 b

+

NO: Cl- won’t reduce Fe3+ to Fe2+

Page 15: Predicting the direction of  redox  reactions

0

+ 1.09 V

–ve electrode

+ 1.36 V

+ve electrode

Cl2 + 2 e- 2 Cl-

+ 0.27 V

e–

PREDICTING REDOX REACTIONS – Q3 c

+

YES: Cl2 oxidises Br- to Br2 Br2 + 2 e- 2 Br-

Pt(s)|Br-(aq),Br2(aq)||Cl2(g)|Cl-(aq)|Pt(s)

Page 16: Predicting the direction of  redox  reactions

0

– 0.14 V

–ve electrode

Sn2+ + 2 e- Sn

+ 0.77 V

+ve electrode

Fe3+ + e- Fe2+

+ 0.91 V

e–

PREDICTING REDOX REACTIONS – Q3 d

YES: Sn reduces Fe3+ to Fe2+

+ Sn(s)|Sn2+(aq)||Fe3+(aq),Fe2+(aq)|Pt(s)

Page 17: Predicting the direction of  redox  reactions

0

+ 1.33 V

–ve electrode

Cr2O72- + 14 H+ + 6 e- 2 Cr3+ + 7 H2O

+ 1.36 V

+ve electrode

Cl2 + 2 e- 2 Cl-

+ 0.03 V

e–

PREDICTING REDOX REACTIONS – Q3 e

+

NO: H+/Cr2O72- won’t oxidise Cl- to

Cl2

Page 18: Predicting the direction of  redox  reactions

0

+ 1.36 V

–ve electrode

MnO4- + 8 H+ + 5 e- Mn2+ + 4 H2O

+ 1.51 V

+ve electrode

Cl2 + 2 e- 2 Cl-

+ 0.03 V

e–

PREDICTING REDOX REACTIONS – Q3 f

+

YES: H+/MnO4- oxidises Cl- to Cl2

Pt(s)|Cl-(aq)|Cl2(g)||MnO4- (aq),H+(aq),Mn2+(aq)|

Pt(s)

Page 19: Predicting the direction of  redox  reactions

0

– 0.44 V

–ve electrode

Fe2+ + 2 e- Fe

0.00 V

+ve electrode

2 H+ + 2 e- H2

+ 0.44 V

e–

PREDICTING REDOX REACTIONS – Q3 g

YES: H+ oxidises Fe to Fe2+

Fe(s)|Fe2+(aq)||H+(aq)|H2(g)|Pt(s)

Page 20: Predicting the direction of  redox  reactions

0

0.00 V

–ve electrode

Cu2+ + 2 e- Cu+ 0.34 V

+ve electrode

2 H+ + 2 e- H2

+ 0.34 V

e–

PREDICTING REDOX REACTIONS – Q3 h

+

NO: H+ won’t oxidise Cu to Cu2+

Page 21: Predicting the direction of  redox  reactions

0

+ 1.36 V

MnO4- + 8 H+ + 5 e- Mn2+ + 4 H2O

+ 1.51 V

Cl2 + 2 e- 2 Cl-

PREDICTING REDOX REACTIONS – Q4

+

+ 1.33 V Cr2O7

2- + 14 H+ + 6 e- 2 Cr3+ + 7 H2O

+ 0.77 V Fe3+ + e- Fe2+

YES

NO

NO

Page 22: Predicting the direction of  redox  reactions

+ 0

? V

–ve electrode

Be2+ + 2 e- Be

+ 0.34 V

+ve electrode

Cu2+ + 2 e- Cu

+ 2.19 V

e–

Be2+ + Cu → Be + Cu2+

PREDICTING REDOX REACTIONS – Q5a

2.19 = 0.34 - Eleft

Eleft = 0.34 – 2.19 = – 1.85 V

Page 23: Predicting the direction of  redox  reactions

– 0

? V

–ve electrode

Th4+ + 4 e- Th

+ 0.00 V

+ve electrode

1.90 V

e–

4 H+ + Th → 2 H2 + Th4+

PREDICTING REDOX REACTIONS – Q5b

When using SHEE = cell emf = – 1.90 V

2 H+ + 2 e- H2

Page 24: Predicting the direction of  redox  reactions

0

0.00 V

–ve electrode

+ 1.09 V

+ve electrode

+ 1.09 V

e–

PREDICTING REDOX REACTIONS – Q6a

+

Br2 + 2 e- 2 Br-

Pt(s)|H2(g)|H+(aq)||Br2(aq),Br-(aq)|Pt(s)

2 H+ + 2 e- H2 H2 + Br2 → 2 H+ + 2 Br-

Page 25: Predicting the direction of  redox  reactions

0

+ 0.34 V

–ve electrode

+ 0.77 V

+ve electrode

+ 0.43 V

e–

PREDICTING REDOX REACTIONS – Q6b

+

Fe3+ + e- Fe2+

Cu(s)|Cu2+(aq)||Fe3+(aq),Fe2+(aq)|Pt(s)

Cu2+ + 2 e- Cu 2 Fe3+ + Cu → 2 Fe2+ + Cu2+