predicting outcome from hypoxic-lschemic coma

Upload: elaine-reynolds

Post on 07-Jul-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Predicting Outcome From Hypoxic-lschemic Coma

    1/7

    Predicting  Outcome   From

    Hypoxic-lschemic  ComaDavid   E.  Levy,   MD;   John   J.  Caronna,   MD;   Burton   H.  Singer,   PhD;Robert   H.   Lapinski,   PhD;   Halina  Frydman,  PhD;   Fred  Plum,   MD

    Outcome  from

      coma

      caused  by   cerebral  hypoxia-ischemia   (eg,   cardiacarrest)   was   compared   with   serial   neurological   findings   in   210   patients.Thirteen   percent   of   patients   regained   independent   function   at   some pointduring   the   first   postarrest   year.   Computer  application   of   new   multivariatetechniques   to the   prospectively   observed   findings  generated easily   utilizedrules   that   classified   patients   by   likely   outcome.   At   the   time   of   initialexamination,   52   patients   (one   fourth   of   the   total   population)   had   absentpupillary   light   reflexes,   and   none   of   these   patients   ever   regained   indepen-dent   daily   function.   By   contrast,   the   initial   presence   of   pupillary   lightreflexes,   the  development   of  spontaneous   eye   movements   that   were  rovingconjugate   or   better,   and   the   findings   of   extensor,   flexor,   or   withdrawalresponses   to   pain   identified   a   smaller   group   of   27   patients,   11   (41%)   ofwhom regained   independence   in   their  daily   lives.  By   24  hours  after  onset,   93poor-outcome patients  were   identified  by  motor  responses   that   were absent,

    extensor,   or   flexor   and   by   spontaneous   eye   movements   that   were   neitherorienting   nor roving  conjugate;  only   one regained independent   function.   Thiscontrasts   with   recovery   in   19 (63%)   of   30  patients   who at   that   time   showedimprovement   in   their  eye-opening  responses   and   obeyed   commands   or   hadmotor   responses   that   were   withdrawal   or   localizing. Similarly   simple   rulesdistinguished between  good-  and  poor-prognosis patients   on postarrest  days3,  7,   and   14.

    (JAMA   1985;253:1420-1426)

    MOST   patients sustaining   cardiacarrest   either   undergo   irreversibleasystole   or   reawaken   quickly   andmake   a   good   physical   and   mental

    recovery.   A   few, however,   experiencesufficiently   severe   brain   injury   thatthey   remain   at   least   transiently   inpostarrest  coma.

    Among this   less  for¬

    tunate   group  morbidity   is   high,   butsome   retain  the  neurological capacityto   do   well.   Others, however,   are   leftwith   overwhelmingly   severe   braindamage.   This   study   reports   newlyconstructed,   empirically   derivedguidelines   to   predict   within   the   firstfew days which  of these brain-injuredpatients   will   do   well   and   which   willdo   badly  following   cardiac   arrest   orsimilar   global hypoxic-ischemic   in¬sults.

    METHODSPatient   Evaluation

    The   analysis   was   performed   on   210patients   with   cerebral   hypoxia-ischemia,drawn   from   a  larger   group  of  500  subjectswith   nontraumatic   coma.12   The   opera¬tional definition  of  coma  w as that patientsfailed   to   open   their   eyes   either  spontane¬ously   or   in   response   to   noise,   that   theyexpressed   no   comprehensible   words,   andthat   they   neither   obeyed   commands   normoved   their   extremities   appropriately   tolocalize  or resist painful   stimuli.  At  prede¬termined   intervals   (the   initial   examina¬tion   and   0   to   1,   2   to 3,   4   to  7,   and   8   to   14

    days   after   the  onset

      of   coma),   patientsunderwent   focused  neurological   examina¬tions."  More  than   half  (115,   or 55%)   werefirst  examined  by   the   investigators   withinsix  hours,   176   (84%)   within   12   hours,   and200   (95%)   within   the   first   day.   Wheninformation   was   available   from   several

    examinations,  the  best  response in   a giveninterval   was  used   for analysis.  To   concen¬trate   on  patients   in   whom   prognosis   wasin  doubt,   we  excluded   those   with   an   obvi¬ously   good   (eg,   prolonged   syncope   ordelayed   recovery  from  anesthesia)   or   poorprognosis   (eg,   brain   death)   and   requiredthat  patients   remain in   coma   for   at   least

    six   hours.   Patients,   their   families,  or

    health  professionals   were questioned  regu¬larly   about   a  variety   of  neurological   anddaily   life   functions;   these   included thepatient's   housing,   speech,   return   to   theprior   level   of  function,   and   independencein   ambulation,   bathing,   dressing,   foodpreparation, eating,  and   use  of   toilet   facil¬ities.   Their   functional   state   was   catego¬rized   at  1,  3, 6,   and   12   months   into   one  offive   grades4:   (1)   no   recovery   (continuedcoma  until  death),  (2)   the  vegetative   state(eyes-open  wakefulness   without   evidenceof cognitive  awareness),  (3)   severe  disabil-

    From   the Department  of  Neurology  and  ResearchCenter   in   Cerebrovascular  Disease,   New   York   Hos-

    pital-Cornell   Medical   Center   (Drs   Levy,   Caronna,Lapinski,   and   Plum);   Department   of   Statistics,Columbia   University   (Dr   Singer);   and   the   GraduateSchool   of  Business,   New   York   University   (Dr   Fryd-man),   New York.

    A preliminary   report  o f   this   work   was   read   beforethe American   Academy   of   Neurology,  Boston,   April12,   1984.

    Reprint   requests   to   Department   of   Neurology(A-569),   Cornell Medical   Center,   1300   York   Ave,New  York,   NY   10021   (Dr  Levy).

    ownloaded From: http://jama.jamanetwork.com/ by a Vanderbilt University User on 02/20/2016

  • 8/18/2019 Predicting Outcome From Hypoxic-lschemic Coma

    2/7

    Table   1.—Factors   Not

    Associated   With   Outcome*

    No.  (%)   WhoAchieved

    IndependentVariable   No.   Function

    Age,   yr60   121   14   (12)

    SexM   128   12   (9)F   82   14   (17)

    Site   of   onset

    Out-of-hospital   72   11   (15)Intensive   care   53   7   (13)Operating   suite   19   2   (11)General   ward   65   6   (9)

    Cause  o f   comaCardiac   arrest   150   15   (10)Respiratory  failure   22   4   (18)Miscellaneous   38   7   (18)

    Paroxysmal   activityConvulsions   32   4   (13)Isolated  myoclonus   21   2   (10)Neither   157   20   (13)

    'None  of   these variables   was  significantly  associ¬ated   with   outcome   from   coma   by

      x2  testing   with

    appropriate  degrees   of   freedom.

    ity  (conscious  but  dependent   on   others   foraspects   of   daily   function),   (4)   moderatedisability   (independent   but   unable   toresume   the  prior   level   of   activities),   and(5)  good  recovery (able  to   resume the  priorlevel   of   function).   To   avoid   influencingpatient   outcomes,   the   investigators   re¬frained from   any   involvement   in   theircare.

    Analysis

    Data   were   subjected   to   univariate   and

    multivariate  analyses  in   an

      effort  to  relatethe   early   clinical  picture   to   the   ultimatefunctional   state.   Among   the   analyticmethods   applied   was   a   computerizedrecursive partitioning algorithm'  that  con¬structed  classification   trees   to   predict   thebest  functional   state  within   the   first  year.Recursive   partitioning   first   identifies   thevariable  having   greatest   predictive   powerand,   thereby,   divides the  population   intotwo   groups,   each   with   relatively   homoge¬neous   outcomes.   It   then divides   these

    subgroups   on   the  basis  of  the   most predic¬tive variables  for each;   the   process   contin¬ues   until   a   group   either   has   uniform

    outcome  or

      is   too   small   to   split   further.The   program   utilizes   categorical   andordered   data   rather   than   requiring   inter¬val scales (equal  steps   between  the values)and   thus   avoids   the   artificiality   of   inter¬preting   scores   as   strict   numerical   values.Recursive   partitioning   can   be   directed   tomaximize  overall   accuracy   or,   alternative¬

    ly,   to   minimize   particularly  costly   errors.Cost   in   this   sense   incorporates  personal,social, humane,   and   economic   considera¬tions,   and   different   assessments   of   costwill   often   result   in   different   classificationtrees."  For  th e  present study,   we arbitrari¬ly   decided   that   the   error   of   predicting   a

    Table   2.—Clinical  Signs   That   Predict  Future   IndependentFunction: Percent   (No.)   of   Patients"

    NeurologicalResponse

    No.   of  Days   After   Onset  of   Coma

    45   (14/31)50   (5/10)

    20   (5/25)   5   (1/21)1 1   (20/185)   6   (6/104)

    Verbal   responseOriented

    ...

    ...

    Confused...

    71   (5/7)

    Inappropriate...

    50   (1/2)Incomprehensible   60   (3/5)   33   (3/9)None   13   (11/82)   8   (5/59)

    Eye   openingSpontaneousTo   noise

    To  painNone

    Pupillary   light   reflexPresent

    Absent

    Corneal reflex

    Present

    Absent

    Spontaneous   eye   movementsOrienting

    Roving conjugateRoving  dysconjugateOther  movement

    None

    Oculocephalic  responseNormal

    Full

    Minimal

    None

    Oculovestibular  responseNormal

    Full   or   tonic  atypicalMinimal

    None

    Motor  response  (best   limb)Obeying

    ...

    64   (7/11)

    tocalizing...

    38   (3/8)

    Withdrawal   29   (10/35)   38   (13/34)Flexor   14   (5/35)   3   (1/30)Extensor   18   (7/38)   0   (0/22)None   4   (4/102)   3   (2/61)

    16   (25/157)0   (0/52)

    17   (22/130)4   (3/71)

    36   (12/33)17   (2/12)12   (3/25)

    6   (8/140)

    17   (16/96)13   (4/31)

    7   (6/83)

    18   (25/138)0   (0/29)

    21   (25/119)0   (0/37)

    70   (7/10)

    29   (14/48)14   (1/7)

    0   (0/21)5   (4/80)

    62   (10/16)13   (12/92)12   (2/16)

    5   (2/42)

    0   (0/2)   59   (10/17)18   (21/115)   13   (12/89)

    5   (1/21)   0   (0/13)5   (3/56)   6   (2/33)

    100   (8/8)

    80   (8/10)

    25   (1/4)12   (1/8)

    5   (2/37)

    44   (22/50)17   (1/6)

    0   (0/11)

    4   (2/57)

    21   (24/112)0   (0/11)

    24   (24/101)0   (0/  14)

    77   (20/26)

    1   1   (4/37)0   (0/5)

    0   (0/9)

    2   (1/46)

    70   (19/27)6   (4/64)

    12   (1/8)

    4   (1/24)

    65   (13/20)5   (3/58)

    17   (1/6)6   (1/17)

    86   (18/21)12   (1/8)

    24   (6/25)0   (0/18)0   (0/20)

    0   (0/31)

    100   (11/11)75   (9/12)

    50   (1/2)0   (0/5)6   (1/17)

    46   (23/50)33   (1/3)

    0   (0/6)

    0   (0/17)

    32   (23/71)

    0   (0/4)

    34   (23/68)0   (0/2)

    74   (20/27)

    10   (3/30)0   (0/4)

    17   (1/6)

    0   (0/9)

    84   (21/25)5   (2/41)

    20   (1/5)

    0   (0/3)

    50   (10/20)8   (2/25)

    50   (1/2)

    0   (0/4)

    78   (18/23)55   (5/9)

    8   (1/13)0   (0/12)0   (0/8)

    0   (0/11)

    'For   each time period,   the   denominator   in  parentheses   is   the number   of  patients   demonstrating   eachneurological  response.   The  numerator   indicates   the number  of  these  patients  subsequently  achieving   a   bestone-year   functional   state   of   moderate   disability   or   good   recovery.   Percentages   represent   the   ratios   inparentheses.   Responses   are   arranged hierarchically,   with   the   best   in   each   group  appearing   first,   and   thepoorest,   last.   With   few   exceptions,   the   relationship   between   different   recovery   patterns   and   the clinicalresponses   was  always significant  by  appropriate   \    tests  with  P

  • 8/18/2019 Predicting Outcome From Hypoxic-lschemic Coma

    3/7

    210 Patients  at   Initial

    Examination

    Pupillary   Reflex:Present?

    ^I   Motor:Extensor   or  Better?

    Motor:Flexor   or   Better?

    Spont  Eye   Movt:Rov Conj   or   Better?

    Total   No.ol

    Patients

    52

    -»   62

    47

    22

    Best   1 -yr  Recovery  (%   of  Total)

    No   Recov Mod   Disab

    Veg   State   Sev  Disab   Good Recov

    94   6   0(84-99)   (1-16)   (0-7)

    89   5   6(78-95)   (1-14)   (2-16)

    77   13   11(62-88)   (5 -26 ) (4-23)

    59   14   27(36-79)   (3-35)   (11-50)

    41   19   41(22-61)   (6-38)   (22-61)

    124  Patients   at  3   Days

    3D   Motor:Withdrawal   or   Better?

    3D  Spont  Eye   Movt:Orienting?

    Total  N o.of

    Patients

    28

    26

    Best   1 -yr   Recovery  (%  of  Total)

    No   Recov   Mod  Disab

    Veg   State   Sev   Disab   Good   Recov

    93   7   0(84-98)   (2-16)   (0-5)

    61   21   18(41-79)   (8-4 1)   (6-37)

    8   15   77

    (1-25)   (4-35)   (56-91)

    Fig   1.—Rules  based   on  neurological   examination   that  classify  patientsin   hypoxic-ischemic   coma   in   accordance   with   their   best   functionalstate   within   first   year.   Figures   in   parentheses   represent   the 95%confidence   intervals for   percentages  given   immediately   above.   Abbre¬viations  used   in  describing   outcomes  follow:   recov   indicates  recovery;veg,   vegetative;  disab,  disability;   sev,   severe;  and   mod,   moderate.   The

    following  abbreviations   are   used   in   describing neurological   signs:

    spont   eye   movt   indicates  spontaneous   eye   movements;   and   rov  conj,roving  conjugate.   Initial   examination  (top   left)   was   obtained  within   sixhours  of   onset of  coma   in   55%   of patients   and   within   12   hours  i n   84%.Modifiers   INIT,   1D,   3D,   1W,   and   2W   refer   to   initial,   0-   to   1-day,   2-   to

    3-day,   4-   to   7-day,   and   8-   to   14-day  examinations,  respectively.   If   nodata   are available,   response   to   relevant  question   is  considered   to   be"no."   Where   changes   in   clinical   signs   are   utilized   (top   right   andbottom),   difference  is   between  best  response of  previous   time  intervaland   best  response   of   current   interval.   Physicians   applying   these   rulesmust   exercise  caution   when   residual  anesthetics   or depressant  drugs(including   anticonvulsants)   are present,   should   wait   until   the   end ofeach   time   interval   to   make   certain  that   the best   clinical   response   has

    been  observed,   and   should   not   use   any   rules   that  require   responsesthat   are   unavailable  for   a  specific  patient.

    i—   168   Patients   at   1 Day

    ID Spont  Eye   Movt:Rov   Conj   or   Better?

    1D  Motor:Withdrawal   or   Better?

    1D  Eye  Opening:Improved   at   Least2 Grades?_ 

    Total   No.of

    Patients

    93

    22

    23

    30

    Best   1 -yr  Recovery  (%  o f Total)

    No   Recov   Mod   Disab

    Veg   State   Sev   Disab   Good   Recov

    95   4(88-98)   (1-11)

    77(55-92)

    7(1-22)

    14

    (3-35)

    70   13(47-87)   (3-34)

    1(0-6)

    9(1-29)

    17

    (5-39)

    3   63(0 -1 7) (4 4-8 0)

    76   Patients   at   1   wk

    3D  Eye  Opening:Spontaneous?

    Init  Spont  Eye   Movt:Rov  Conj   or   Better?

    1W  Motor:

    Obeys   Commands?

    Total   No.of

    Patients

    26

    12

    32

    Best   1 -yr  Recovery  (%   of Total)

    No   Recov   Mod   DisabVeg   State   Sev Disab   Good   Recov

    100   0   0(87-100)   (0-13) (0-1 3)

    58   42   0(27-85)   (15-72)   (0-26)

    67

    (22-96)

    17

    (0-64)

    6   22

    (1-21)   (9-40)

    17

    (0-64)

    72(53-86)

    61   Patients   at   2   wk

    -Any?-3D   Motor:Obeys  Commands?3D  Ey e  Opening:Spontaneous?2W  Eye  Opening:Improved   at   Least2   Grades?

    Yes

    2W   Oculocephalic:Normal?

    Total   No.

    of

    Patients

    17

    18

    26

    8est   1 -yr Recovery  (%   of  Total)

    No   Recov   Mod   DisabVeg  State   Sev   Disab   Good   Recov

    100 0(80-100)   (0-20)

    44   44

    (22-69) (22-69)

    4

    (0-20)15

    (4-35)

    0

    (0-20)

    22

    (6-48)

    81

    (61-93)

    esthetic   accidents   being   the   mostcommon.   Roughly   equal   numbers   ofpatients   sustained   their   hypoxic-ischemic   insults   in   an   intensive   caresetting  (53,   or 26%), general  hospitalward   (66,   or   31%),   or   out  of  hospital(72,   or 34%).   Nineteen  patients   (9%)failed   to   awaken   after  operative   pro¬cedures.   The  population   consisted   of108   men   and   82   women.   The   median

    age   was  61  years,  with  all  but  16  olderthan   30   years  of  age.

    Outcome

    Most patients  who   were  destined   toawaken   and   do   well   did   so   within   ashort   time.   By   three   days   after   theonset   of   coma,   25   patients   regainedconsciousness   (with   cognitive   aware¬ness);   19   of   these   went   on   to  becomeindependent.   After   two   weeks,   thenumber   of   conscious   patients   roseonly   to   28,   of   whom   21   recoveredindependence. Many patients   reached

    a  vegetative   state   rapidly;   among   47such   patients,   within   the   first   day,only   11   became   independent   subse¬quently,   and  among   33 patients  vege¬tative   at   one week,   only   threeregained   independence.   The   numberof   comatose  patients  dropped  rapidlyafter   the   insult,   with   106   still   coma¬tose   after   one   day,   57   at   three  days,and 17  at  one  week,  of  whom only  oneever  regained   consciousness.

    Improvement   after   one   month   was

    ownloaded From: http://jama.jamanetwork.com/ by a Vanderbilt University User on 02/20/2016

  • 8/18/2019 Predicting Outcome From Hypoxic-lschemic Coma

    4/7

    rare.   None   of   the   15   patients  vegeta¬tive   at   one  month   ever regained   inde¬pendent function,  and only three of  16patients   severely   disabled   at   onemonth   did   so.   None   of   these   three

    patients   had  early   clinical   signs   thatwould   have  placed   them   in   the groupwith   the  poorest prognosis.

    The   death  rate   associated

      with

    hypoxic-ischemic  coma  of  six   or   morehours   was high:   42  (20% )  died   withinthe  first 24  hours,  86  (41%) by  the  endof   three   days,   and   134   (64%)   by   theend   of   the   first  week.   Only   19   (10%)survived   one year   after   the   onset   ofcoma.   Of   the   191   patients   who   diedwithin   a year,   most   (105,   or   55%)succumbed   to  nonneurological   prob¬lems;   67   (35%)   died   of  neurologicalcauses,   and   in   18   (10%),   no   exactdetermination of   the   cause   of   deathwas possible.  Because   of   the frequen¬cy  with which nonneurological  factorsinterfered  with   full recovery,   we   ana¬lyzed   our   data   to   predict   the   bestfunctional  neurological   state   attainedwithin   the   first year.

    In   terms   of   best   outcome,   overthree   fourths   of   the   patients   eitherdied   without   opening   their eyes   (121,or 57%)   or,   although   they   openedtheir   eyes,   showed   no   evidence   of

    cognitive   function   and   were   classifiedas vegetative  (43,   or  20%  ).  Among theremaining patients who  regained   con¬

    sciousness, 20 (10%)   remained   severe¬

    ly   disabled   and   dependent   on   othersfor   routine   needs.   Six   patients   (3% )achieved   a  moderate disability,  and  20(10% )  achieved   a good  recovery;   these26   patients   are grouped   together   ashaving   recovered   independent   func¬tion.   This   is   a   useful   distinctionbecause   Maas   et   al"   found   littleinterobserver variability   in   differen¬tiating   dependent   from   independentfunction.

    Factors   Not Related  to   Recovery

    None   of   the   following   factors   sig¬nificantly   (P>.05   by   x;   testing   withappropriate   degrees   of   freedom)   in¬fluenced   the   degree   of   recovery:patient   age   or   sex,   the   site   of   theinitial   insult,   the   cause   of   coma,   orthe presence   of   postanoxic   seizures(Table   1).

    Individual  NeurologicalSigns   Related   to   Recovery

    The   absence   of   certain brainstemreflexes   at   the   initial   examination

    Table   3.—Rules  That  Identify  PatientsWith   Poor   or   Good  Prognosis*

    Time   After

    CardiacArrest   Clinical Sign

    Patients   With   Virtually   No Chanceof   Regaining  Independence

    Initial   No  pupillary   light   reflexexamination

    1   day   1-Day   motor  response   nobetter   than   flexor  an d   1-day  spontaneous   eyemovements  neither

    orienting   nor   roving   con¬ jugate

    3  days   3-Day  motor  response   nobetter   than   flexor

    1   wk   1 -wk   motor  response   not

    obeying   commands   andinitial  spontaneous  eyemovements   neither

    orienting   nor  roving   con¬ jugate   and  3-day   eyeopening   not sponta¬neous

    2   wk   2-wk oculocephalic   re¬sponse   not   normal   and

    3-day   motor  responsenot   obeying  commandsand  3-day   eye openingnot spontaneous   and   2-wk  eye  opening   not  im¬proved   at   least   twogrades

    Patients   With   Best Chanceof  Regaining Independence

    Initial   Pupillary   light   reflexesexamination   present   and   motor   re¬

    sponse   flexor   or  exten¬sor  an d  spontaneouseye   movements   rovingconjugate   or  orienting

    1   day   1-Day   motor  responsewithdrawal   or   better  a nd

    1-day   eye opening   im¬proved   at   least   2grades

    3 days   3-Day   motor  responsewithdrawal   or   better  a nd

    3-day spontaneous   eyemovements   normal

    1   wk   1-wk   motor  responseobeying   commands

    2   wk   2-wk oculocephalic   re¬sponse   normal

    "This   table   summarizes  the   rules   on   the  t op   andbottom   lines   of Fig   1.

    identified   patients   with   little   or   nolikelihood   of   meaningful   recovery(Table  2).   None  of  52  patients   lackingpupillary   reflexes   at   the   initial   exam¬

    ination   ever  became  independent,  andonly   three   regained   consciousness.Three   (4%)   of   71   patients   lackingcorneal reflexes   when   first   examinedattained   a good   recovery   within   ayear,   but   no patient   who lacked   cor¬neal reflexes   on   or   after   the   first  dayregained   consciousness.

    Although   the   pattern   of   motorresponses   eventually   correlated   withrecovery,  neither  their   initial   absencenor   the   presence  of   extensor   or   flexor

    posturing   ruled   out recovery.   After

    three   days,   however,   absent   or pos¬turing   motor responses   were   incom¬patible   with   future   independence.Five   patients   who   had   motor   re¬sponses   poorer   than   withdrawal   atthree  days  and   four patients  at   sevendays   regained   consciousness,   but   allremained  severely  disabled.

    Certain early signs

      were   associatedwith  relatively good   chances  of   recov¬ery.   At   the   initial   examination,   themost   favorable   sign   was incompre¬hensible   speech   (moaning),   but   thiswas   rare.   At   one day,   each   of   thefollowing  signs   was associated  with  atleast   a   50%   chance  of regaining   inde¬pendence:   confused   or inappropriatespeech,   orienting   spontaneous   eyemovements,   normal   oculocephalic   oroculovestibular responses,   and   obe¬dience   to   commands.   Information   onskeletal   muscle   tone   and deep-tendonreflexes   has   been   omitted   becauseof   concern   about  interobserver  varia¬

    bility.

    Multivariate  Analysisof  Prognostic   Variables

    Reliance   on   individual  clinical signscan   be   potentially   misleading.   Forexample,   the   likely   outcome   of   apatient   with   intact   pupillary   lightreflexes   but   absent   corneal   reflexescannot  be  deduced   from inspection  ofTable  2.   We applied  several   multivar¬iate

      techniques  to   the  data   and   found

    that   recursive  partitioning'   was   mostuseful   in   segregating   patients   intodifferent groups   on   the  basis   of prog¬nosis.

    Figure   1   illustrates   the   classifica¬tion  rules generated  by  recursive   par¬titioning   for   the   210   patients   at   dif¬ferent   times   after   the   onset   of   coma.

    Figure   1  (top left)  shows,  for example,that   52   patients   at   initial   examina¬tion  could   be   identified   on   the  basis  ofabsent   pupillary   light   reflexes   asbeing   in   the  poorest  prognosis   group

    and   that   none   of   these   ever   achievedindependent  function;   the   95%   confi¬dence   interval   for   this   result   is  0%   to7%.   By   contrast,   27   patients   hadpreserved   pupillary   light   reflexes,motor   responses   that   were   extensoror better,   and   roving   conjugate   ororienting   spontaneous   eye   move¬ments.   Eleven   (41%)   regained   inde¬pendent   function;   the   confidence   in¬terval   for this   figure   is   22%   to   61%.Figure   1   (top  right,   center  left,   centerright,   and bottom)   shows  correspond-

    ownloaded From: http://jama.jamanetwork.com/ by a Vanderbilt University User on 02/20/2016

  • 8/18/2019 Predicting Outcome From Hypoxic-lschemic Coma

    5/7

    106   ComatosePatients  at   1   Day

    1D   Oculovestibular:Any  Response?

    Init  Motor:Withdrawal   or   Better?

    ID  Spont   Eye   Movt:Rov Conj   or   Better?

    Total   No.of

    Patients

    45

    19

    Best   1 -yr  Recovery  (%   of  Total)

    No   RecovVeg  State

    Mod   DisabSev Disab   Good Recov

    98   0   2(88-100)   (0-8)   (0-15)

    91   9   0(77-98)   (2-23)   (0-10)

    86   0   14( 42-100) ( 0- 41)   (0-56)

    63   16   21(38-84)   (3-40)   (6-46)

    Fig   2. —

    Rules   based  on   neurological   examination   that classify patientssurviving   one   day   after   hypoxic-ischemic   coma   with   different   levels ofconsciousness   in   accordance   with   their   best   functional   state   withinfirst   year.   Abbreviations   are   as   described   for   Fig   1.   Operationaldefinitions of   levels   of   consciousness   follow:   coma   (top   left)—no   eyeopening   regardless   of   stimulus,   no comprehensible   words,   andcommands   not   obeyed;   vegetative   state   (top   right)—eye   openingspontaneously,   to noise,   or  to  pain,   but no comprehensible words,   andcommands   not   obeyed;   and   consciousness  (bottom)—comprehensi¬ble   words   or   commands   obeyed.   These   definitions,   which   wereadopted   on   detailed   examination   of   vegetative   patients,"   wereconsidered   an   improvement   over  those   used   at   time  study   was  begunand   in   previous   publications'2   because   they   distinguish   coma   fromvegetative   state.

    47  VegetativePatients   at   1   Day

    1D  Spont  Eye   Movt:Any   Rov   or  Better?

    1D  Motor:Withdrawal   or   Better?

    Total   No.of

    Patients

    10

    11

    26

    Best   1 -yr  Recovery  (%   of  Total)

    Mod DisabVeg   State   Sev Disab   Good  Recov

    100   0   0(69-100)   (0-31)   (0-31)

    82(48-98)

    38

    (20-59)

    18

    (2-52)

    19(7-39)

    0(0-28)

    42(23-63)

    15   ConsciousPatients   at   1 Day

    Init  Pupillary   Reflex:Present?

    1D  Spont  Eye   Movt:

    Rov   Conj   or   Better?1D   Oculovestibular:Normal?

    Total  No.of

    Patients

    Best   1 -yr  Recovery  (%   of Total)

    Sev   Disab Mod   Disab Good  Recov

    86

    (42-99)

    0

    (0-37)

    0(0-41)

    0

    (0-37)

    14(0-58)

    100(63-100)

    ing  rules   for patients   who  survived  1,3,   7,   and   14  days.  Validity  testing   onsplit   samples   showed   the rules   to   bestable.   For   example,   at   the   initialexamination,   only   one patient   whodid   well   was   mistakenly   classified   inthe   group   with  poorest  prognosis,   anerror   rate   well   within   the   confidenceinterval   of 0%   to  7%.

    The   algorithms   of   Fig   1   permitseveral conclusions.   Inspection   of   theclinical   signs   actually   utilized   in   theclassification rules   shows   that   themost predictive  variable at   the   initialexamination   was   the   pupillary   lightreflex,   the   sign   shown   by   both   Teas-dale   et  al8  and   van  den  Berge   et  al9 tohave  the  least  interobserver variabili¬

    ty.   Thereafter,   the   motor   responsebecame the  variable having the great¬est  predictive   power.   Other  powerful

    clinical  observations   that  contributedempirically to  useful  rules   were pupil¬lary   light  reactions,   spontaneous   eyemovements,   eye  opening,   and   oculo¬cephalic   response.   The   verbal   re¬sponse,   a key component   in   the  Glas¬gow   Coma  Scale,10   never   appeared   asan important predictor  of   outcome.

    Recursive   partitioning   identified   ateach   time   a portion   of   survivingpatients   as  having   very   little   chanceof   recovering   independent   function,and  only   one patient   was  incorrectly

    assigned   to   these groups   with   thepoorest prognosis.   That   misclassifica-tion   occurred   at day   1   and  concerneda young   woman  with underlying renalfailure   who   suffered   a   cardiac   arrest.Her   early   misclassification   reflectedpoor   clinical   responses   probablycaused

     by renal   failure.

     Although  the

    clinician  might   weigh   the   mitigatinginfluence   of  this  metabolic  insult,   thecomputer   program   did   not.   Other¬wise,   the   rules  identified at  each   timea  substantial  proportion   of survivors,none   of whom   ever  recovered  (25%   atadmission,   55%   at   one day,   56%   atthree   days,   34%   at   seven days,   and28%   at   14   days).   These   rules   aresummarized   in  Table  3.

    The   rules   also   identified   early   asizable  subpopulation  of  patients  whodid   well   after  hypoxic-ischemic   coma

    (Table 3).  For  example,  the  classifica¬tion   rules   for  all   168  survivors   at   oneday placed   123  into   either  the  poorestprognosis   group   (only   one   of   93patients   regaining   independence)   orthe   best  prognosis   group   (with   21   of30   patients   regaining   independentfunction).   The   overall   proportion   ofsurvivors  assigned   the   best prognosisrose gradually   from   13%   at   admis¬sion,   to  18%   at   one day,  21%   at   threedays,   42%   at   seven days,   and  43%   at14  days.

    Likely   Outcome AmongSurviving   Patients   With   Different

    Levels  of  Consciousness

    The   ease  of applying  recursive   par¬titioning   permitted   us   to   examinespecific  subpopulations.   For  example,

    patients  who   survived   various   inter¬

    vals   after   the   onset   of   coma   were

    subcategorized   as   comatose,   vegeta¬tive,   or   conscious. Figure   2   illustratesthe   classification rules   for   patientswho   survived   one day;   other   figures(not   shown   but   available   on   requestfrom   the  authors)   were generated   forpatients   with   different   levels   of   sen-sorium   at   later   intervals   after   the

    onset   of   coma.   Over   one   third   of

    patients   vegetative   at   one   day   couldbe   classified   as   likely   to   remain  vege¬tative   on   the   basis   of   absent   or pos¬

    turing   motor   responses   (Fig   2,   topright).   Among   patients   conscious   atone day,  recursive partitioning  differ¬entiated   surprisingly   well   betweenthose   who   were   left with   severe   dis¬

    ability   and   those   who   regained   inde¬pendent  function (Fig 2,  bottom).  Thepersistence   of   coma   at   seven daysprecluded   recovery   of   independence.This   was   not   true,   however,   for   thevegetative state, where   even  after  twoweeks,   two of  21  patients subsequent¬ly   did   well;   these   two   patients   were

    ownloaded From: http://jama.jamanetwork.com/ by a Vanderbilt University User on 02/20/2016

  • 8/18/2019 Predicting Outcome From Hypoxic-lschemic Coma

    6/7

  • 8/18/2019 Predicting Outcome From Hypoxic-lschemic Coma

    7/7

    normalities   or   drugs   (eg,   anticho-linergics   on pupillary   reactions,   de¬pressants   on   corneal   reflexes,   orparalytic   agents   on   motor   re¬sponses).

    The   ability   to   predict   with   assur¬ance   that   even   half of   a population ofpatients   in   coma   would   have   good   orpoor   outcome   and   to   act   on   these

    predictions   can   offer   a   major   benefitto   personal physicians,  patients,   pa¬tients'   families,   and   health  planners.One   might   ask   why,   if   134   of   210patients   died   within   a week,   predic¬tion   even   matters.   Perhaps   the   bestanswer   is   that   if   one   waits   until

    patients   either   awaken   or die,   theirmedical condition will have  stabilized.The   result   can   be   prolonged   survivalfor   vegetative   patients   who   mightotherwise   have   died.   For   most   of   us,this   is   an undesirable state. Many lay

    persons   fear   permanently   incapaci¬tating neurological disability:   "What¬ever you  do,  doctor,  don't   leave   me   avegetable   or   a permanent   burden   onmy   family."   Even   for   those   whoregain   mental   competence,   being   re¬suscitated   seems   to   be   a   harrowingexperience:   42%   in   one   study24   statedthat   they   wished   not   to   be  similarlyresuscitated   in  the  future.  The  abilityto   predict   outcome   could   also   sparefamilies   the   emotional   and   financialburden   of   prolonged   care   of  patientswith

      hopeless  prognoses.   The

      impacton   allocation   of   scarce   health   re¬sources can   be  appreciated   from   con¬sideration   of   the  potential   effect   ofconfidently   identifying   poor-progno¬sis  patients.  At   one  day,   we  identifiedas having  a poor prognosis 93  patients(Fig 1, top right),  all b ut  one   of whomfailed   to   regain   independence   and   88of   whom   failed   even   to   recover   con¬sciousness.   Continued   support   ofthese   88   patients   involved   a   total   ofover   500  hospital  days,   frequently   inintensive  care units. Not only   was this

    useless   terminal   care costly   (over$250,000)   but   the   intensive   care   bedscould have been used  to  treat patientswith   greater   chances   of   recovery.These   results   contrast,   incidentally,with   those   of   Liberthson   et   al21   adecade   ago,   who   concluded   that   41%of patients  who died  did   so  within   thefirst   day,   and   75%   within   the   firstweek.   Among   our  patients   who  died,only   23%   did   so   within   the   first  day,and   half   within   the   first  week.   Earlyidentification   of   patients   likely   to

    remain  vegetative after cardiac arrestcould   reduce   the  suffering  of   familiesand  limit   encroachment   on   the  medi¬cal   commons.

    Even   for  patients   who   want   everypossible   effort   made,   accurate   prog¬nosis   can   be   valuable   in   choosingmanagement.  Recent  evidence2526   sug¬gests   that   neuropathological   abnor¬malities   can   continue   to   evolve   forhours   or   days   after   global   brainischemia.   In   such   desperate   cases,delayed   treatment   might   still   limitthe   eventual   extent  of ischémie   braindamage.   Identification   of   poor-   andgood-prognosis   patients   in   the   earlyhours   or   days   after   an   arrest   willfacilitate   the   design   and   interpreta¬tion   of  appropriately  stratified   treat¬ment  trials.

    The   care   of   patients   after   cardio-pulmonary  arrest   poses  serious  ques¬

    tions   in   terms   of   allocation ofresources   and   humane   care   for   both

    patients   and   their   families.   Implicitestimations  of prognosis   are   involvedin the  management  of  all  seriously  i llpatients,   but   in   the   absence   of well-established   facts,   such   predictionsusually   amount   to   little   more   thaninformed   guess  work. Judicious appli¬cation   of   the  present   data   may   pro¬vide   a   more   rational   approach   formanaging   patients   who   sustain   hy-poxic-ischemic coma.

    This   study   was   supported   by   contract   NS-42328   and   grant   NS-03346   from   the   NationalInstitute   of   Neurological   and   CommunicativeDisorders   and  Stroke,  Bethesda,  Md,   as   well   asgrant   1356   from   the   Josiah   Macy,   Jr,   Founda¬tion,   New York,  and   grant  6024   from   the   RobertWood   Johnson   Foundation, Princeton,   NJ.   DrLevy  was supported by   an Established Investiga-torship   from   the   American   Heart   Association,Dallas,   with   funds   contributed   in   part   by   theNew  York  Heart  Association,   New York.

    The   authors   thank   the   following   for theirclinical   participation:   David   Shaw,   MB;   NiallE.   F.   Cartlidge,   MB;   and   David   Bates,   MB;   ofRoyal   Victoria Infirmary,  Newcastle-upon-Tyne,England; Seth  Finklestein, MD,  of  San  FranciscoGeneral   Hospital;   and   Barrie  Hurwitz,   MD;   R.John Leigh, MD;  John  H.  Dougherty, Jr,  MD;  andRobert   L.   Van

     Uitert,   MD; o f   New   York

     Hospi¬tal-Cornell   Medical   Center,   New   York.   Specialthanks   are   due   Jerome   H.   Friedman,   PhD,   ofStanford University,  Palo Alto, Calif, for provid¬ing   the   recursive   partitioning   program   andRobin   P.   Knill-Jones,   MB,   of   Ruchill   Hospital,Glasgow, Scotland,   for helpful   advice.

    References

    1.   Bates  D,  Caronna JJ,  Cartlidge NEF,   et  al:A   prospective   study   of   nontraumatic   coma:Methods  and   results  in  3 10  patients.  Ann Neurol1977;2:211-220.

    2.   Levy   DE,   Bates   D,   Caronna   JJ,   et   al:Prognosis   in nontraumatic   coma.   Ann   InternMed  1981;94:293-301.

    3.   Plum  F,  Posner  JB :   The  Diagnosis of Stupor

    and   Coma,   ed   3.   Philadelphia,   FA   Davis   Co,1980.

    4.   Jennett  B,   Bond  M:   Assessment   of outcomeafter   severe   brain   damage:   A   practical   scale.Lancet  1975;1:480-484.

    5.   Breiman   L,   Friedman   J,   Olshen   R,   et   al:Classification   and   Regression   Trees.   Belmont,Calif,  Wadsworth  International Group,   1984.

    6.   Levy  DE:  Ethical   considerations   in the   careof unconscious  patients,   in   Pfaff   DW   (ed):  Ethi-cal   Questions   Related   to   Brain   Behavior.   NewYork,   Raven  Press,  1983,   pp 57-72.

    7.   Maas AIR,  Braakman  R,  Schouten  HJA,   etal:   Agreement   between   physicians   on   assess-ment   of   outcome   following   severe   head   injury.J Neurosurg 1983;58:321-325.

    8.   Teasdale G,  Knill-Jones R,   van  der  Sande J:Observer  variability   in   assessing   impaired   con-sciousness   and   coma.   J  Neurol  Neurosurg Psy-chiatry  1978;41:603-610.

    9.   Van   den   Berge   JH,   Schouten   HJA,   Boom-stra  S,  et  al:   Interobserver agreement   in   assess-ment   of  ocular   signs   in   coma.  J  Neurol  Neuro-surg Psychiatry  1979;42:1163-1168.

    10.   Teasdale   G,   Jennett   B:   Assessment   ofcoma   and   impaired   consciousness:   A   practicalscale.  Lancet  1974;2:81-84.

    11.  Dougherty   JH   Jr,   Rawlinson   DG,   LevyDE,  et  al:   Hypoxic-ischemic  brain  injury  and  thevegetative   state:   Clinical   and  neuropathologicalcorrelation.

     Neurology  1981;31:991-997.12.   Bell JA, Hodgson  HJF:  Coma  after cardiacarrest.  Brain  1974;97:361-372.

    13.  Willoughby   JO,   Leach   BG:   Relation   ofneurological   findings   after   cardiac   arrest   tooutcome. Br Med  J  1974;3:437-439.

    14.   Snyder  BD,   Ramirez-Lassepas   M, LippertDM:   Neurologic   status   and prognosis   after   car-diopulmonary   arrest:   I.   A   retrospective   study.Neurology 1977;27:807-811.

    15.   Snyder  BD,  Loewenson  RB, Gumnit  RJ,   etal:   Neurologic  prognosis   after   cardiopulmonaryarrest:   II.   Level   of   consciousness.   Neurology1980;30:52-58.

    16.   Snyder BD,   Hauser WA,  Loewenson RB,  etal:   Neurologic  prognosis   after   cardiopulmonaryarrest:   III.   Seizure   activity.   Neurology   1980;30:1292-1297.

    17.   Snyder   BD,   Gumnit   RJ, Leppik   IE,   et   al:

    Neurologic prognosis   after  cardiopulmonary   ar-rest:   IV. Brainstem   reflexes.   Neurology   1981;31:1092-1097.

    18.   Earnest  MP,  Breckinridge JC,   Yarnell  PR,et   al:   Quality   of survival   after   out-of-hospitalcardiac   arrest:   Predictive   value   of  early   neuro-logic   evaluation. Neurology  1979;29:56-60.

    19.   Earnest  MP,   Yarnell  PR,   Merrill  SL,  et  al:Long-term   survival   and   neurologic   status   afterresuscitation   from   out-of-hospital   cardiac   ar-rest. Neurology  1980;30:1298-1302.

    20.  Longstreth   WT   Jr,   Diehr   P,   Inui   TS:Prediction   of   awakening   after   out-of-hospitalcardiac   arrest.   N   Engl   J   Med   1983;308:1378\x=req-\1382.

    21.   Liberthson   RR, Nagel   EL,  Hirschman   JC,et   al:   Prehospital   ventricular   defibrillation:Prognosis   and   follow-up   course.   N  Engl  J  Med

    1974;291:317-321.22.   Rosenberg   GA,   Johnson   SF,   Brenner   RP:Recovery of  cognition   after prolonged vegetativestate. Ann   Neurol  1977;2:167-168.

    23.   Shuttleworth   E:   Recovery   to   social   andeconomic   independence   from   prolonged   post\x=req-\anoxic   vegetative   state.  Neurology   1983;33:372\x=req-\374.

    24.   Bedell   SE,   Delbanco   TL,   Cook   EF,   et   al:Survival   after cardiopulmonary   resuscitation   inthe hospital.  N Engl  J  Med  1983;309:569-576.

    25.   Pulsinelli  WA,  Brierley  JB,   Plum   F:   Tem-poral  profile   of neuronal   damage   in   a   model   oftransient   forebrain   ischemia.   Ann Neurol  1982;11:491-498.

    26.   Kirino   T:   Delayed   neuronal   death   in   thegerbil   hippocampus   following   ischemia.   BrainRes  1982;239:57-69.