powertrain engineering challenges & solutions

53
R D E POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS Peter GOETSCHL AVL List GmbH 4th AVL UK Expo 29 th September 2015 Coventry Transport Museum Coventry, Great Britain

Upload: others

Post on 04-Jul-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

R

D

E

POWERTRAIN ENGINEERING

CHALLENGES & SOLUTIONS

Peter GOETSCHL

AVL List GmbH

4th AVL UK Expo

29th September 2015

Coventry Transport Museum

Coventry, Great Britain

Page 2: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

2Source: quickly-player.com

R

D

E

COMMERCIAL VEHICLES

PASSENGER CARS

Page 3: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

3Source: quickly-player.com

COMMERCIAL VEHICLES

PASSENGER CARS

Max. Power

Mean PowerCertific.

Mean PowerCustomer

280 kW

143 kW ESC

53 kW WHTC

100-120kW

280 kW

6 kW NEDC

9 kW WLTC

10 – 14 kW

SIGNIFICANTLY LARGER DIFFERENCE MEAN CUSTOMER DRIVING MAX. POWER

252,5

Page 4: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

4

ROADMAP

D

E

Page 5: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

5

MAIN ELEMENTS OF RDE DEVELOPMENT

Vehicle 1

Vehicle 2

Vehicle n

vs.

vs.

RDE Legislation

Outlook

Vehicle 1

Vehicle 2

Vehicle n

§ §§Vehicle/Fleet

RDE Benchmark

RDE Benchmark

Concept & Series Validation

& Robustness

WLTP

RDE

EU6c

Vehicle 1

Vehicle 2

Vehicle n

PN

#Vehicle spec.RDE scenarios

EAS Optimisation

§

Engine

EAS

Calibr.

Engine Optimisation

λ=1

Calibration Opt.PN

#Vehicle spec.

RDE Development

AVL M.O.V.EGas PEMS iS PN PEMS iS

Real Driving Emissions Evaluation

Vehicle 1

Vehicle 2

Vehicle n

Real World RDE Evaluation

Page 6: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

6

ROUTES

D

E

Page 7: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

7

Distance/Time 90,2km 6100s

City 32% 34%

Highway 35% 20%

Interstate 34% 46%

Real World Driving Variability• Variable ambient conditions• Traffic situation• Track severity

Track CompositionRoad Gradient

• Driver Influence: Moderate /Aggressive

Graz Gleisdorf IlzGraz

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000Time [s]

0

60

120

warmup

Velo

city,

km

/h

Vehicle Speed

AVL M.O.V.EGas PEMS iS & > PN PEMS iS <

Real Driving Emissions Evaluation

RDE CHALLENGES:

REAL WORLD DRIVING ROUTES

Page 8: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

8

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000Time [s]

0

60

120

Altitude,

m

Real World Driving Variability• Variable ambient conditions• Traffic situation• Track severity

Track CompositionRoad Gradient

• Driver Influence: Moderate /Aggressive

Gleisdorf IlzGraz

Altitude

warmup

Velo

city,

km

/h

Vehicle Speed

AVL M.O.V.EGas PEMS iS & > PN PEMS iS <

Real Driving Emissions Evaluation

RDE CHALLENGES:

REAL WORLD DRIVING ROUTES

Page 9: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

9

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4

RDE Moderate

Tracks - PC

NEDC

WLTC

AVL RDE

Moderate

RDE CHALLENGES:

REAL WORLD DRIVING ROUTES

Track Severity Index (Power Demand)

Tra

ck D

yn

am

ic I

nd

ex (

Sp

eed

Tra

ce)

Mid Size Passenger Car

Artemis

Page 10: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

10

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4

Mountain Track

RTS 95

RDE Moderate

Tracks - PC

NEDC

WLTC

Artemis

AVL RDE

Moderate

RDE CHALLENGES:

REAL WORLD DRIVING ROUTES

Track Severity Index (Power Demand)

Tra

ck D

yn

am

ic I

nd

ex (

Sp

eed

Tra

ce)

Mid Size Passenger Car

AVL RDE

Dynamic

Page 11: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

11

RDE CHALLENGES:

REAL WORLD DRIVING ROUTES

Track Severity Index (Power Demand)

Tra

ck D

yn

am

ic I

nd

ex (

Sp

eed

Tra

ce)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4

Full Size SUV

RDE Moderate

Tracks - SUV

AVL RDE

DynamicAVL RDE

Moderate

Page 12: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

12

ROUTES

DRIVING STYLE

E

Page 13: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

13

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000

Time - s

To

rqu

e -

Nm

0

200

400

600

En

gin

e S

pe

ed

-rp

m

0

2000

4000

6000

Ve

hic

le S

pe

ed

-k

m/h

0

50

100

150

IMPACT OF DRIVING STYLE ON ENGINE SPEED / LOAD DISTRIBUTION

Graz

Page 14: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

14

RDE Load Spectrum – Moderate Driving Style

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000

Time - s

To

rqu

e -

Nm

0

200

400

600

En

gin

e S

pe

ed

-rp

m

0

2000

4000

6000

Ve

hic

le S

pe

ed

-k

m/h

0

50

100

150

IMPACT OF DRIVING STYLE ON ENGINE SPEED / LOAD DISTRIBUTION

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Engine Speed - rpm

To

rqu

e

-N

m

0

50

100

150

200

250

300

350

400

Page 15: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

15

RDE Load Spectrum – Moderate vs. Dynamic Driving Style

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Engine Speed - rpm

To

rqu

e

-N

m

0

50

100

150

200

250

300

350

400

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000

Time - s

To

rqu

e -

Nm

0

200

400

600

En

gin

e S

pe

ed

-rp

m

0

2000

4000

6000

Ve

hic

le S

pe

ed

-k

m/h

0

50

100

150

IMPACT OF DRIVING STYLE ON ENGINE SPEED / LOAD DISTRIBUTION

Page 16: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

16

0

50

100

150

200

250

300

350

400

Nu

mb

er

of

Even

ts

Type of Drive Event

DISTRIBUTION OF DRIVE ELEMENTSMODERATE/DYNAMIC

Page 17: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

17

ROUTES

DRIVING STYLE

EVALUATION

Page 18: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

18

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

EngineSpeed [rpm]

To

rqu

e [

Nm

]

0

50

100

150

200

250

300

350

400

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000 4250Time [s]

To

rqu

e [

Nm

]

0

200

400

600

En

gin

e S

pe

ed

[rp

m]

0

2500

5000

7500

Ve

hic

leS

pe

ed

[k

m/h

]

0

50

100

150

RDE postprocessing tool example: Sports car

To

rqu

e, N

m

RDE POSTPROCESSING TOOLSWEIGHED EMISSIONS MODERATE/DYNAMIC

Speed, rpm

0

20

40

60

80

100

CLASSIC EMROAD CLEAR

NOx [mg/km]

0

500

1000

1500

2000

2500

3000

CLASSIC EMROAD CLEAR

CO [mg/km]

0.0E+00

1.2E+12

2.4E+12

3.6E+12

4.8E+12

6.0E+12

7.2E+12

CLASSIC EMROAD CLEAR

PN [#/km]

Page 19: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

19

RDE postprocessing tool example: Sports car

RDE POSTPROCESSING TOOLSWEIGHED EMISSIONS MODERATE/DYNAMIC

0

20

40

60

80

100

CLASSIC EMROAD CLEAR

NOx [mg/km]

0

500

1000

1500

2000

2500

3000

CLASSIC EMROAD CLEAR

CO [mg/km]

0.0E+00

1.2E+12

2.4E+12

3.6E+12

4.8E+12

6.0E+12

7.2E+12

CLASSIC EMROAD CLEAR

PN [#/km]

moderate

v*apos_[95] <limit

Urban 9.32 15.42 validRural 17.13 24.63 validMotorway 20.61 27.68 valid

dynamic

v*apos_[95] <limit

Urban 19.68 15.42 invalidRural 41.11 24.85 invalidMotorway 66.58 27.68 invalid

Verification Dynamic Criterion v*apos_[95]

Page 20: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

20

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

nmot_w [rpm]

To

rqu

e [

Nm

]

0

50

100

150

200

250

300

350

400

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000 4250Time [s]

To

rqu

e [

Nm

]

0

50

100

150

nm

ot_

w [

rpm

]

0

2000

4000

6000

vfz

g_

w [

kp

h]

0

50

100

150

RDE postprocessing tool example: Extremely Downsized SUV

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

nmot_w [rpm]

To

rqu

e [

Nm

]

0

50

100

150

200

250

300

350

400

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000 4250Time [s]

To

rqu

e [

Nm

]

0

50

100

150

nm

ot_

w [

rpm

]

0

2000

4000

6000

vfz

g_

w [

km

/h]

0

50

100

150

To

rqu

e, N

m

Speed, rpm

0

200

400

600

800

1000

CLASSIC EMROAD CLEAR

NOx [mg/km]

0

500

1000

1500

2000

2500

3000

3500

CLASSIC EMROAD CLEAR

CO [mg/km]

0.0E+00

2.0E+12

4.0E+12

6.0E+12

8.0E+12

1.0E+13

CLASSIC EMROAD CLEAR

PN [#/km]

RDE POSTPROCESSING TOOLSWEIGHED EMISSIONS MODERATE/DYNAMIC

Page 21: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

21

RDE postprocessing tool example: Extremely Downsized SUV

0

200

400

600

800

1000

CLASSIC EMROAD CLEAR

NOx [mg/km]

0

500

1000

1500

2000

2500

3000

3500

CLASSIC EMROAD CLEAR

CO [mg/km]

0.0E+00

2.0E+12

4.0E+12

6.0E+12

8.0E+12

1.0E+13

CLASSIC EMROAD CLEAR

PN [#/km]

RDE POSTPROCESSING TOOLSWEIGHED EMISSIONS MODERATE/DYNAMIC

moderate

v*apos_[95] <limit

Urban 9.31 14.94 validRural 13.14 24.02 validMotorway 12.11 28.14 valid

dynamic

v*apos_[95] <limit

Urban 14.74 14.07 invalidRural 25.97 24.40 invalidMotorway 20.30 28.06 valid

Verification Dynamic Criterion v*apos_[95]

Page 22: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

22

Sportive

Cars

Mid-Size

Cars

Downsized /

Compact Cars

Gasoline

CNG

Diesel

Dis

pla

cem

en

t -

cc

Weight / Power Ratio – kg/kW

RDE – VEHICLE BENCHMARK

0

1000

2000

3000

4000

5000

6000

3 5 7 9 11 13 15 17 19 21

Page 23: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

23

0

1000

2000

3000

4000

5000

6000

3 5 7 9 11 13 15 17 19 21

Moderate Driving Style

Dis

pla

cem

en

t -

cc

Weight / Power Ratio – kg/kW

RDE – VEHICLE BENCHMARKPN EMISSION – SI ENGINES

EU6c /EU6bNEDC Limit

Gasoline

6E+12#/km(temporary)6E+11#/km

PN

Page 24: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

24

0

1000

2000

3000

4000

5000

6000

3 5 7 9 11 13 15 17 19 21

Moderate Driving Style

CNG

Dis

pla

cem

en

t -

cc

Weight / Power Ratio – kg/kW

RDE – VEHICLE BENCHMARKPN EMISSION – SI ENGINES

EU6c /EU6bNEDC Limit

Gasoline

6E+12#/km(temporary)6E+11#/km

PN

Page 25: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

25

0

1000

2000

3000

4000

5000

6000

3 5 7 9 11 13 15 17 19 21

Moderate Driving Style

Dynamic Driving Style

CNG

Dis

pla

cem

en

t -

cc

Weight / Power Ratio – kg/kW

RDE – VEHICLE BENCHMARKPN EMISSION – SI ENGINES

EU6c /EU6bNEDC Limit

Gasoline

6E+12#/km(temporary)6E+11#/km

PN

Page 26: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

26

0

1000

2000

3000

4000

5000

6000

3 5 7 9 11 13 15 17 19 21

Moderate Driving Style

Dis

pla

cem

en

t -

cc

Weight / Power Ratio – kg/kW

RDE – VEHICLE BENCHMARKNOX EMISSION –DIESEL ENGINES

NOXEU6c

NEDC/WLTP Limit Diesel

80 mg/km

Page 27: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

27

Dis

pla

cem

en

t -

cc

Weight / Power Ratio – kg/kW

RDE – VEHICLE BENCHMARKNOX EMISSION –DIESEL ENGINES

NOX

80 mg/km

0

1000

2000

3000

4000

5000

6000

3 5 7 9 11 13 15 17 19 21

EU6c NEDC/WLTP Limit Diesel

Moderate Driving Style

Dynamic Driving Style

Page 28: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

28

0

1000

2000

3000

4000

5000

6000

3 5 7 9 11 13 15 17 19 21

Moderate Driving Style

CNG

Dis

pla

cem

en

t -

cc

Weight / Power Ratio – kg/kW

RDE – VEHICLE BENCHMARKNOX EMISSION – SI ENGINES

NOXEU6c

Legal Limit Gasoline

60 mg/km

Page 29: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

29

CNG

Dis

pla

cem

en

t -

cc

Weight / Power Ratio – kg/kW

RDE – VEHICLE BENCHMARKNOX EMISSION – SI ENGINES

NOX

0

1000

2000

3000

4000

5000

6000

3 5 7 9 11 13 15 17 19 21

EU6c Legal Limit Gasoline

Moderate Driving Style

Dynamic Driving Style

60 mg/km

Page 30: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

30

RELIABLE

DEVELOPMENT

EFFICIENT

Page 31: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

31

RDE DEVELOPMENT

THE KEY CHALLENGE

NEDC

0

20

40

60

80

100

120

140

Veh

icle

Sp

eed

–km

/h

Time- s

0 200 400 600 800 1000

From exactly reproducible TESTCYCLE

Page 32: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

32

From exactly reproducible TESTCYCLE towards STATISTICAL PROPABILITY

NEDC

0

20

40

60

80

100

120

140

Veh

icle

Sp

eed

–km

/h

Time- s

0 200 400 600 800 1000 0 1000

Re

lati

ve

E

ng

ine

Lo

ad

-%

Engine Speed - rpm

2000 3000 4000 5000 60000

20

40

60

80

100

120

140

160

180

200

Large

Engine

AT

DownsizedEngine

MT

RDEDynamic Driver

RDE DEVELOPMENT

THE KEY CHALLENGE

Page 33: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

33

“STANDARD” RDE DEVELOPMENT APPROACHES

1. “Reproduction”Reproduction of Real World Situations in testing environments and

analysis followed by iterative optimisation

2. “Reduction”Emission development, calibration, verification of development targets,

based on vehicle specific RDE “reference” cycles with statistical

relevance

3. “Virtual Integration”• Virtual development and RDE frontloading in the concept definition

phase

• Realistic simulation of necessary RDE- conditions in the respective

testing environment

• Partially virtual concept robustness validation to cover the variety

of conditions

Page 34: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

34

SEGMENTATION OF DRIVING PROFILES

Driving Profile

Single Driving Elements

km

/h

Prof. H. O. List,

35th Vienna Motor

Symposium 2014:

“EVENT-FINDER”

Prof. H.O. List35th Vienna Motor Symposium 2014

EVENT-FINDER

EFFICIENT RDE DEVELOPMENT

THE BASE CONCEPT 2014

Page 35: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

35

EFFICIENT RDE DEVELOPMENT

ACTUAL STATUS 2015

Time

IDENTIFICATION

of pot. Risk Areas

“EVENTFINDER”

EVENT-FINDER

“EVENT-FINDER” integrated in a much more comprehensive

development tool

Page 36: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

36

Time

IDENTIFICATION

of pot. Risk Areas

“EVENTFINDER”

EVENT-FINDER

IDENTIFICATIONOF POTENTIAL RISK AREAS

0

20

40

60

80

100

120

140

160

180

Acc

ele

rati

on

Par

t lo

ad c

on

stan

t p

edal

Acc

ele

rati

on

Par

t lo

ad r

isin

g p

edal

Co

nst

ant

spee

dO

pen

ped

al

Cu

sto

m E

ven

t1 (

Mag

erb

etri

eb

)

Cu

sto

m E

ven

t2 (

Fett

bet

rieb

)

Dec

ele

rati

on

Tran

siti

on

to

co

nst

ant

spe

ed

Dec

ele

rati

on

Wit

ho

ut

bra

ke

Dri

ve a

way

Cre

ep

Dri

ve a

way

Hill

sta

rt

Dri

ve a

way

Stan

din

g st

art

Dri

ve a

way

Veh

icle

sto

p

Engi

ne

shu

t o

ffM

anu

al s

top

Engi

ne

star

tAu

to s

tart

Engi

ne

star

tMan

ual

sta

rt

Ge

ar s

hif

tDo

wn

shif

t

Ge

ar s

hif

tNo

sh

ift

Ge

ar s

hif

tUp

shif

t

Idle

Elec

tric

load

off

Idle

Elec

tric

load

on

Idle

Exit

fu

el c

ut

off

Idle

No

rmal

Idle

Thro

ttle

re

spo

nse

do

wn

Tip

inA

fte

r cl

ose

d p

edal

Tip

inA

fte

r co

nst

ant

spee

d

Tip

inSh

ort

tip

in a

fter

clo

sed

ped

al

Tip

inSh

ort

tip

in a

fter

co

nst

ant

spe

ed

Tip

ou

tAft

er a

cce

lera

tio

n

Tip

ou

tAft

er c

on

stan

t sp

eed

Tip

ou

tDu

rin

g d

ece

lera

tio

n

Nu

mb

er

of

Eve

nts

Type of Drive Event

Particulate Number

Page 37: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

37

GASOLINE DIESEL

IDENTIFICATION

of pot. Risk Areas

“EVENTFINDER”

EVALUATION

of potential

Risk Events

IDENTIFICATION AND EVALUATION OF POTENTIAL RISK AREAS

Engine

map(stationary)

Transient

effects

Event

history

• Enrichment

• Scavenging

• Cat space velocity

• EGR

• Injection Timing

• UREA Dosing

• Transient fuelling (metering / mixture

formation)

• Catalyst

temperature

• Engine temperature

• Conditioning EAS (Loading, temperature)

• Engine temperature

• EGR transient

control

• Air path

PN

CO

NOx

Time

Relevance: Map Transients Event History

EVENT-FINDER

Page 38: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

38

ENGINETEST BED

POWERTRAINTEST BED

CHASSISDYNO

ROADTEST

OFFICE SIMULATION

XILTEST

TEST DEFINITION & ALLOCATION TO TEST ENVIRONMENT

IDENTIFICATION

of pot. Risk Areas

“EVENTFINDER”

EVALUATION

of potential

Risk Events

TEST DEFINITION

& Allocation to

Test Environment

VALIDATION

& Robustness

Assessment

COx critical

elements

NOxx critical

elements

PNx

critical

elements

PN

CO

NOx

Time

Relevance: Map Transients Event History

EVENT-FINDER

Page 39: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

39

REAL

DRIVING

EXAMPLES

Page 40: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

40

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000

Time – s

NO

x -

g/s

0

NOx

Veh. Speed

CO

-g

/s

0

CO

PN

-#

0

PN

V. S

peed

0

RDE CONCERN AREAS GASOLINE ENGINES

DOWNSIZED TURBOCHARGED GDI

Page 41: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

41

Real Driving

Emissions

RDE CONCERN AREAS GASOLINE ENGINES

PARTICULATE EMISSIONS OF GTDI

AVL M.O.V.E

Gas PEMS iS &

> PN PEMS iS <

0.00E+00

6.00E+11

1.20E+12

1.80E+12

2.40E+12

3.00E+12

SUV

NED

C

SUV

WLT

P

SUV

RD

E H

ot

Inje

cto

rC

oki

ng

Fue

lQ

ual

ity

Dri

vin

g St

yle

PN

, #/k

m,

un

weig

hed

Mid

siz

es

ed

an

NE

DC

Page 42: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

42

Real Driving

Emissions

0.00E+00

6.00E+11

1.20E+12

1.80E+12

2.40E+12

3.00E+12

SUV

NED

C

SUV

WLT

P

SUV

RD

E H

ot

Inje

cto

rC

oki

ng

Fue

lQ

ual

ity

Dri

vin

g St

yle

AVL M.O.V.E

Gas PEMS iS &

> PN PEMS iS <

Mid

siz

es

ed

an

NE

DC

PN

, #/k

m,

un

weig

hed

RDE CONCERN AREAS GASOLINE ENGINES

PARTICULATE EMISSIONS OF GTDI

Page 43: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

43

Combustion System• Spray homogenization

• Spray interaction with combustion chamber surroundings

• Charge motion

Calibration

• Number of injections per cycle

• Start of injection / end of injection

• Rail pressure

• Enrichment / Enrichment Sensitivity

• Camshaft positions

• Start / STST

• Catalyst heating

Injector tip coking

• Injector type

• Injector design

• Rail pressure

• Injector tip temperature

Lifetime Robustness/

Oil consumption

• Positive crankcase ventilation

• Turbocharger lubrication

• Valve stem seals

• Piston cooling jets / piston rings

Operating Conditions /

Variability

• Vehicle weight / Powertrain / Load spectrum

• Driver Influence

• Fuel

• Coolant warm-up

Beijing 6

RDE

RDE CONCERN AREAS GASOLINE ENGINES

INFLUENCES ON ENGINE-OUT PN

Page 44: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

44

PN Optimization

• Evaluation of mixture formation deficiencies and main sources of diffusion combustion / PN/PM generation

• Software functions & calibration data development

Piston design

Charge motion

Spray

targeting

Improved

injector

Combustion system:

Injector

Piston

combustion

chamber design

Charge motion…

Calibration:

Base settings

Injection strategies

Catalyst heating

strategy

Dynamic strategy

PN REDUCTION GASOLINE ENGINE

OPTIMIZATION OF HARD- AND SOFTWARE

PN optimized

calibration

ECU Functionality

AVL RPEMS

Future

Rapid

Prototyping

Engine

Management

System

0 180 360Kurbelwinkel [Grad]

IGN

1 [V

]

0,0

0,1

INJ [

V]

0,0

0,1

0 100 200 300 400 500 600 700 800 900 1000 1100 1200recorder_time [s]

SP

EE

D [

km/h

]

0

40

80

120

0 200 400 600 800 1000 1200Time [sec]

Page 45: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

45

AVL Visio

AVL Particlecounter

Correlation of PN in and out of the combustion chamber

PN REDUCTION GASOLINE ENGINE

OPTICAL TOOLS AS PREREQUISITE

Page 46: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

46

Exhaust

Cyl. 1

SidePiston

Intake, left

Intake, right

Exhaust, left

Diffu

sio

n C

om

bustion Inte

gra

l

0

100

200

300

400

500D

iffu

sio

n C

om

bustion [V

]

0.0

0.3

0.6

0.9

1.2

0 100 200 300 400 500 600 700 800 900 1000 1100 1200recorder_time [s]

SP

EE

D [km

/h

]

0

40

80

120 NEDC

Vehic

le S

peed

Main part of particulate emission from right

intake valve

Main part of particulate emission from piston surface

Exhaust

Intake Intake

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Time [s]

PN REDUCTION GASOLINE ENGINE DETECT DIFFUSION FLAME ON CHASSIS DYNO

Page 47: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

47

NEDC

WLTC

FTP75

Warm Up / High load

TDC TDCBDC

Intake Compression

Catalyst Heating

TDC TDCBDC

Intake Compression

Start

TDC TDCBDC

Intake Compression

EU5

EU6

BJ6Load

Temp

Load, Temp

Sp

ee

d, k

m/h

Single Inj.

SOI too early

Triple Inj.

same SOI

Multiple injection

for penetration

minimization

Use of Charge

motion window

PN REDUCTION GASOLINE ENGINE

INJECTION STRATEGY FOR EU6C/RDE/BJ6

Page 48: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

48

500 1000 1500 2000 2500 3000 3500 4000

time [s ]

vF

zg [km

/h]

0

20

40

60

80

100

120

140

160

Warm Up / High load

TDC TDCBDC

Intake Compression

Catalyst Heating

TDC TDCBDC

Intake Compression

Start

TDC TDCBDC

Intake Compression

EU5

EU6

BJ6Load

Temp

Load, Temp

Sp

ee

d, k

m/h

RDE

PN REDUCTION GASOLINE ENGINE

INJECTION STRATEGY FOR EU6C/RDE/BJ6

Page 49: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

49

1,6e+10

2,0e+10

2,4e+10

2,8e+10

0

25%

50%

75%

100%

0,0

0,4e+10

0,8e+10

1,2e+10

1,6e+10

2,0e+10

2,4e+10

2,8e+10

0

25%

50%

75%

100%

0,0

0,4e+10

0,8e+10

1,2e+10

Injector cleaned

NEDC

Pa

rtic

le N

um

be

r -

%P

art

icle

Nu

mb

er

-p

/s

Injector with

stabilized deposits

PN REDUCTION GASOLINE ENGINE

INFLUENCE OF INJECTOR COKING ON PN

Page 50: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

50

NEDC- PN - Injectors cleaned

System (injectors) with

rapid coking

critical PN level

0,0e+00

B

BB

B

B

B

B

A

A

A

A

System (injectors)

with moderate coking

stable PN level

NE

DC

-PN

-In

jecto

rs-s

tabili

zed

Deposits

(sta

tistica

lre

leva

nt m

ea

nva

lue

)

PN REDUCTION GASOLINE ENGINE

PN ROBUSTNESS IN NEDC TEST -GTDI

Page 51: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

51

R

D

E

SUMMARY 1/2

• Wide range between the statisticallyrelevant and possible driving styles determination of representative RDE

boundaries is a complex task

• Driving style has the most significantimpact on RDE results

• Most measures for Real Riving Emissionreduction show trade-off’s regardingcost, fuel and/or Urea consumption

Page 52: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

52

R

D

E

SUMMARY 2/2

• Key development challenge: transitionfrom the exact reproducibility of dynocycles towards the statistical probabilityof real traffic situations

• For development of RDE solutions withbest fuel/urea consumption, emissionsand cost, a generic “RDE substitution”cycle is not sufficient as a vehiclespecific approach is required

• Identification of critical single elementsand maneuver based allocation ofdevelopment tasks to the mostappropriate development environmentsenables the most balanced overall result

Page 53: POWERTRAIN ENGINEERING CHALLENGES & SOLUTIONS

53

R

D

E

Thank you for your Attention