power management circuits - soc labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·...

54
http://soc.hanyang.ac.kr Power Management Circuits 20162학기 한양대학교 노정진교수. [email protected] 1 http://soc.hanyang.ac.kr Outline DC-DC Converter Linear Regulator Buck Converter Boost Converter Basic Building Blocks Feedback Loop, Modeling and Stability Circuit Examples Energy Harvesting Battery Charger Multiple Output System Dynamic Voltage Scaling Boost Converter for LEDs Multiphase DC-DC Converter Fully-Integrated DC-DC Converter 2

Upload: doantu

Post on 15-Jul-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

Power Management Circuits

2016년 2학기

한양대학교 노정진교수.

[email protected]

1

http://soc.hanyang.ac.kr

Outline– DC-DC Converter

• Linear Regulator

• Buck Converter

• Boost Converter

• Basic Building Blocks

– Feedback Loop, Modeling and Stability

– Circuit Examples• Energy Harvesting

• Battery Charger

• Multiple Output System

• Dynamic Voltage Scaling

• Boost Converter for LEDs

• Multiphase DC-DC Converter

• Fully-Integrated DC-DC Converter

2

Page 2: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

DC-DC Converter

3

http://soc.hanyang.ac.kr 4

Example of Power Management

Page 3: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

Linear Regulators

(a) Regulator with source follower output stage

_

+VREF

IBIAS ILOADC

M0

VIN

A0

VG

VOUT

VSS

(b) Source follower with gate overdrive

(c) Common-source output stage

5

http://soc.hanyang.ac.kr

Inductor and Capacitor

6

vL

iL

1

CiCv

1

2

2

1vCW

2

2

1LiLW

dt

dt

(J)

(J)

C

iC

v

iL L

v

Current:

Energy:

Current:

Energy:

Page 4: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

Converter

+

v(t)

-

R

Vg(t)

+

vs(t)

-

DTs Ts t

Vs(t)

Vg

On Off

offon

on

TTT

CycleDuty

ggss

T

ss

Tss DVVDTT

dttvT

vs

)(1

)(1

0

Duty Cycle

SPDT switch and a load

7

http://soc.hanyang.ac.kr

Voltage ripple

t

V

Actual waveform v(t)=V+Vripple(t)

DC component V

Actual output voltage

Waveform

In a well-designed converter, the output voltage ripple is small. Hence the waveform can be easily approximated by ignoring ripple

-> Small ripple approximation

VtvVv

tvVtv

ripple

ripple

)(,

)()(

Converter

8

Page 5: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

Buck Converter

+

v(t)

-

C R

L

Vg

12

iL(t)

Switch1 Switch2

+

V(t)

-

C R

L

Vg

iL(t)+

V(t)

-

C R

L

Vg iL(t)

Buck Converter

9

http://soc.hanyang.ac.kr

Buck Converter analysisSwitch1

Inductor voltage and Capacitor current

Small ripple approximation :

)(tvvv gL

VVv gL

Switch2

Inductor voltage and Capacitor current

Small ripple approximation :

)(tvvL

VvL

Rtvii Lc /)(

RVIic /

Rtvii Lc /)(

RVIic /

10

Page 6: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

Inductor volt-second balance: applied to inductor over one switching period

Equation to zero and collect terms

The voltage conversion ratio is therefore

ssg

Ts

L TDVDTVVdttv ')()()(0

0)'( DDVDVg gDVV

DV

VDM

g

)(

Buck Converter analysis

11

http://soc.hanyang.ac.kr

Boost Converter

Boost Converter

Switch1 Switch2

+

V

-

C R

L

Vg

)(tiL+

V(t)

-

C R

L

Vg

)(tiL

12

Page 7: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

Boost Converter analysis

Net volt-seconds applied to inductor over one switching period

Equation to zero and collect terms

The voltage conversion ratio is therefore

t

VL(t)

Vg

DTs D`Ts

Vg-V

sgsg

Ts

L TDVVDTVdttv ')()()(0

0')'( VDDDVg

DDV

VDM

g

1

1

'

1)(

'D

VV g

13

http://soc.hanyang.ac.kr

Switch1

Inductor voltage and Capacitor current

Small ripple approximation :

Switch2

Inductor voltage and Capacitor current

Small ripple approximation :

Rvivv cgL /

RViVv cgL /

Rviivvv LcgL /

RvIivVv cgL /

Boost Converter analysis

14

Page 8: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

Capacitor charge balance

Collect terms and equate to zero

Eliminate V to express in terms of Vg

ss

Ts

c TDR

VIDT

R

Vdtti ')()()(

0

0')'( IDDDRV

RD

VI

'

RD

VI g

'2

t

iC(t)

-V/R

DTs D`Ts

I - V/R

Boost Converter analysis

15

http://soc.hanyang.ac.kr

Basic Buck Converter

• Basic DC-DC converter without protection circuits

VoutL

CR1

R2

Rload

Vg

compensator

bufferand

deadtimecontroller

S-Rlatchsawtooth

wavegenerator

comparator

clock

error ampVFB

Vref

reset

S

R

Qclock

generator

Vc

16

Page 9: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

Sawtooth Waveform

• Sawtooth waveform and clock generator

Vb

VCC

Ib

M1

clock

Comparator

Vsawtooth

C

17

http://soc.hanyang.ac.kr

Buffer and Non-Overlapping Circuit

• Large power transistor requires buffer block

• Non-overlapping to reduce shoot-through current in power transistor

Pdr_b

Ndr

VCC

VSS

VCC

VSS

18

Page 10: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

PI Compensator

• OTA and external R-C components

1C

1R2C

OTAVc

19

http://soc.hanyang.ac.kr

OTA Error Amplifier

• Conventional Mirror OTA– Load cap=10pF– Tail current=200uA, quiescent output current=400uA

• Cascoded output may be used for higher gain– Drawback: limited output swing

VpVn

Vo

M1 M2

M3 M4

It

M0

M6

M8M7

M5

Vss414 1

Vb

20

Page 11: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

High-Performance Error Amp.

• Gain Boosting Technique– Load cap=10pF

– Tail current=200uA, quiescent output current=40uA

VpVnVo

M1 M2

M3 M4

It

M0

M6

M8M7

M5

Vcc

Vss

M9 M10

M12M11

M13 M14

41814 1 8 1

Vb

21

http://soc.hanyang.ac.kr

Current Sense Schemes

• Current sense resistor in series with power transistor– Most accurate technique

– Additional resistance causes higher power loss

• Use turn-on resistance of power transistor for current sense

– Turn-on resistance varies too much for process, temperature, etc.

• Current sense circuits– accurate

– Circuit design is complicated

– Extra quiescent current loss

22

Page 12: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

Current Sense Circuit

• Current sense circuit for Buck converter

MP2

R

CO

L1

_ +

MS2

MR

M2 M1

MP1

MS1

MN1

VC

IO

VO

I1I1

VB

VQ

IP1IP2

Isen

Vadd

VIN

VA

VIN

VQ

23

http://soc.hanyang.ac.kr

Current Programmed Control

+

v(t)

-

R

+

-

+

vg(t)Switching converter

vref

Compensatoric

d(t)

CurrentProgrammed

controller

Convertervoltage and

current

statetindependenanlongerno

titi cTSL

)()(

24

Page 13: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

C

+

v(t)

-

R

L

Clock

Analog Comparator

Rf

S Q

R

Latch

is(t)Rf

MeasureSwitchCurrent

is(t)

vg(t)

is(t) iL(t)

D1

Q1

0 Ts

ic(t)Rf

< Buck Converter >

< Current Programmed Controller >ControlInput

+

-

Compensator+-

vref

v(t)

< Conventional output voltage controller >

Current Programmed Control

25

http://soc.hanyang.ac.kr

Small-Signal Modeling and Stability

26

Page 14: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

DC Transformer Model

Basic Equation of an ideal dc-dc converter

Switchingdc-dc

converter

+

Vg

-

Control input D

Ig

+

V

-

I

Powerinput

Poweroutput

outin PP VIIV gg

gVDMV )( )(DM

II g

27

http://soc.hanyang.ac.kr

DC Transformer Model

+

Vg

-

Ig

M(D)I

Dependent Source

+-

M(D)Vg

+

V

-

I

Powerinput

Poweroutput

. .

1 : M(D)Ig I

+

V

-

Poweroutput

Powerinput

+

Vg

-

Control input DDC Transformer

28

Page 15: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

DC Transformer Model

4. Solve circuit3. Push source through transformer

2. Insert dc transformer model1. Original system

Switchingdc-dc

converter

D

+

V

-

I

R

+

Vg

-

R1

+

V1

-

+

V

-

R

M(D)R1

M(D)V1

2

121 )(

)(RDMR

RVDMV

. .

1 : M(D)

+

V

-

+

Vg

-

R1

R

+

V1

-

29

http://soc.hanyang.ac.kr

AC Modeling

Buck-Boost Converter

+

v(t)

-

C R

1 2

L

i(t)vg(t)

+

v(t)

-

C RL

i(t)vg(t)

Switch1 Switch2

+

v(t)

-

C RL

i(t)vg(t)

30

Page 16: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

AnalysisSwitch 1

Inductor voltage and capacitor current

Small ripple approximation:

Low frequency averaged value:

)()(

)( tvdt

tdiLtv gL

R

tv

dt

tdvCtic

)()()(

gL Vv R

Vic

TsgL tvdt

tdiLtv )(

)()(

R

tv

dt

tdvCti Ts

c

)()()(

Inductor voltage and capacitor current

Small ripple approximation:

Low frequency averaged value:

Switch 2

)()(

)( tvdt

tdiLtvL

Rtv

tidt

tdvCtic

)()(

)()(

TsL tvdt

tdiLtv )(

)()(

Rtv

tidt

tdvCti Ts

Tsc

)()(

)()(

VvL RV

Iic

31

http://soc.hanyang.ac.kr

Linearization Process

Rtv

titddttvd

C TsTs

Ts

)()()('

)(

TsTsgTs tvtdtvtd

dt

tidL

)()(')()(

)(

TsTsg titdti )()()(

Nonlinear because of multiplication of the time-varying quantity

with other time-varying quantities such as i(t) and v(t).

If the converter operates in steady-state condition

DIIRD

VIVD

DV gg ,

','

32

Page 17: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

DC quiescent values plus small ac variation

)()(

)()(

tdDtd

tvVtv ggTsg

)()(

)()(

)()(

tiIti

tvVtv

tiIti

ggTsg

Ts

Ts

For inductor voltage, insert the perturbation expression

))())(('())())((())((

tvVtdDtvVtdDdt

tiIdL gg

)('))((1))(1()(' tdDtdDtdtd

Remove DC term and second-order terms

)()()(')()(

tdVVtvDtvDdt

tidL gg

Linearization Process

33

http://soc.hanyang.ac.kr

For capacitor current, insert the perturbation expression

R

tvVtiItdD

dt

tvVdC

)())()()('(

))((

dIR

tvtiD

dt

tvdC

)()('

)(

Remove DC term and second-order terms

))())((()( tiItdDtiI gg

)()()( tdItiDti g

Remove DC term and the second-order terms

For input current, insert the perturbation expression

Linearization Process

34

Page 18: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

)()()(')()(

tdVVtvDtvDdt

tidL gg

+-

- +

Dvg(t)

L

^

^

^

^

(Vg-V)d(t)

+ L di(t)/dt -D`v(t)

^

^RCId(t)

C dv(t)/dt +

v(t)

-

^

v(t)/R^D`i(t)^

dIR

tvtiD

dt

tvdC

)()('

)(

^

^ ^I d(t) ^D i(t)vg(t)

ig(t)

)()()( tdItiDti g

Linearization Process

35

http://soc.hanyang.ac.kr

Small-Signal Equivalent Circuit

^

^I d(t)^D i(t)

^^

^RC

I d(t)

D’ i(t)

C dv(t)/dt v(t)/R^

+-

-+

D`v(t)Dvg(t)

L

+ L di(t)/dt -

^

^

(Vg-V)d(t)

^

^

vg(t)^

ig(t)

RC

v(t)/R^

L1 : D

. . .

.

D` : 1

vg(t)^

ig(t)

^I d(t)

+ L di(t)/dt -^

(Vg-V)d(t)^

^I d(t)

+

v(t)

-

^

Use Transformer

36

Page 19: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

Canonical Model

All PWM CCM DC-DC converters perform similar basic function

* They transform voltage and current levels, ideally with 100% efficiency

* Low-pass-filter of waveforms

* Control of waveforms by variation of duty cycle

Canonical Model

* A standard form of equivalent circuit model, which represents above physical properties

* Plug in parameter values for a given specific converter

37

http://soc.hanyang.ac.kr

Development of Canonical Model

DC transformer model.

. .

1 : M(D)

Power input Control input Load

+

V +v(s)

-

R

D

+

Vg +vg(s)

-

^ ^AC variations in vg(t) induce ac

variations in v(t).

38

Page 20: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

Control to output transfer function: )()()()(

)()( DHDMse

sd

svsG evd

Inclusion of ac duty cycle variation.

Development of Canonical Model

39

http://soc.hanyang.ac.kr

Canonical Modeling Example (Buck-Boost Converter)

^

I d RC

+

V+v(s)

-

^

L1 : D

. . .

.

D’ : 1

Vg+vg(s)

I d

(Vg - V )d(t)^

^

^

I d RC

+

V+v(s)

-

^

L1 : D

. . .

.

D’ : 1

Vg+vg(s)

^ d I/D’

d (Vg-V)/D

^

^

I d RC

+

V+v(s)

-

^

L1 : D

. . .

.

D’ : 1

Vg+vg(s)

^

d (Vg-V)/D

d I/D’d I/D’ ^^

.Node A

40

Page 21: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

^

I d RC

+

V+v(s)

-

^

L1 : D

. . .

.

D’ : 1

Vg+vg(s)

^

d (Vg-V)/D

d I/D’^

d (sLI)/D’

^

I d RC

+

V+v(s)

-

^

L1 : D

. . .

.

D’ : 1

Vg+vg(s)

^

d (Vg-V)/D d (sLI)/D’

.d DI/D’

d DI/D’

^

^

Node B

2

RC

+

V+v(s)

-

^

L/D’

.

.

D’ : D

Vg+vg(s)

(I/D’)d(s)

{(Vg-V)/D-(sLI)/(DD`)}d(s)^

^

^

Canonical Modeling Example (Buck-Boost Converter)

41

http://soc.hanyang.ac.kr

Canonical Model Summary

Converter

Buck

Boost

BoostBuck

)(DM Le )(se )(sj

D LD

V2 R

V

'

1

D 2'D

L)

'1( 2 RD

sLV

RD

V2'

'D

D 2'D

L)

'1(

22 RD

sDL

D

V

RD

V2'

42

Page 22: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

Feedback Loop

• Complete DC-DC converter with feedback loop

Transistor gate driver

C

+

v

-

L

Pulse-width modulation

vg D1

Q1

< Switching Converter >

Load

iload

Power input

H(s)

+Gc(s)

vc

+-ve

Hv

Error signal

Sensorgain

Compensator Referenceinput

vref

43

http://soc.hanyang.ac.kr

Effect of Negative Feedback on Network TransferFunctions

Three independent input Control input variation

Power input voltage variation

Load current variation

Output variation can be expressed as

)(sd

loadi

gv

)()()()()()()( sisZsvsGsdsGsv loadoutgvgvd

v

44

Page 23: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

Effect of Negative Feedback

functiontransferouputtocontrolconvertersd

svsG

load

g

i

vd

v

0

0)(

)()(

functiontransferoutputtolineconvertersv

svsG

loadidg

vg

00)(

)()(

impedanceoutputconvertersi

svsZ

gv

dload

out

0

0)(

)()(

45

http://soc.hanyang.ac.kr

Small-Signal Model

46

Page 24: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

Complete Block Diagram

Gc(s)

H(s)H(s)v(s)

1VM

ve(s)Reference

input

vref(s)Errorsignal

CompensatorPulse-widthmodulator

Sensorgain

vc(s)^

^

^^

-+v(s)

Duty cyclevariation

Output voltagevariation

-+

Gvg(s)ac linevariation

Zout(s)

Load currentvariation

Gvd(s) +

iload(s)^

d(s)^

Converter power stage

vg(s)^

^

47

http://soc.hanyang.ac.kr

Effect of Negative Feedback

Mvdc

outload

Mvdc

vgg

Mvdc

Mvdcref

VGHG

Zi

VGHG

Gv

VGHG

VGGvv

/1/1/1

/

T

Zi

T

Gv

T

T

Hvv out

loadvg

gref

111

1

""/)()()()( gainloopVsGsGsHsT Mvdc

: Product of gains around the forward and feedback paths of the loop.

)(sT

48

Page 25: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

Loop Gain T(s)

1Hz 10Hz 100Hz 1kHz 10kHz 100kHz

80dB

60dB

40dB

20dB

0dB

-20dB

-40dB

1pf

1zf

cf

2pf

decadedB /40

decadedB /20

decadedB /40

dBQdBT0

T

f

Example of loop gain T(s)

2

2

11

0

1)(1

)1()(

ppp

z

ssQ

s

s

TsT

49

http://soc.hanyang.ac.kr

T/(1+T)

1

11

TforT

Tfor

2

2

11

0

1)(1

)1()(

ppp

z

ssQ

s

s

TsT

T

T

1

c

c

ffT

frequencycrossoverfT

1

1

50

Page 26: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

Graph of T/(1+T)

1Hz 10Hz 100Hz 1kHz 10kHz 100kHz

80dB

60dB

40dB

20dB

0dB

-20dB

-40dB

1pf

1zf

cf

2pfdecadedB /20

decadedB /40T

T

1

T

f

T

T

1

51

http://soc.hanyang.ac.kr

T/(1+T) & Frequencies

)(1

)(1)(

)(1

)(

)(sHsT

sTsHsv

sv

ref

M

vdc

refV

sGsGsHsT

sTsT

sHsv

sv )()()()(

)(1)(

)(1

)(

)(

At low frequencies, is large (good)T

At high frequencies, is small (bad)-> unable to reject the disturbance

T

52

Page 27: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

1/(1+T)

Line and load variations are rejected by 1/(1+T(s))

11

1)(

1

Tfor

TforsT

)(11

sT

53

http://soc.hanyang.ac.kr

Graph of 1/(1+T)T1

1

1Hz 10Hz 100Hz 1kHz 10kHz 100kHz

80dB

60dB

40dB

20dB

0dB

-20dB

-40dB

-60dB

-80dB

1pf

zf

cf 2pf

decadedB /40

decadedB /20

decadedB /40

dBQdBT0

f

1pf

zf

dBQdB

T0T1

1

decadedB /20

54

Page 28: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

1/(1+T) & Frequencies

)(

)(

)(1

)(

)(

)(

sT

sG

sT

sG

sv

sv vgvg

g

)(

)(

)(1

)(

)(

)(

sT

sZ

sT

sZ

si

sv outout

load

At low frequencies, is largeT

At high frequencies, is smallT

No effect on disturbance transfer function at high frequencies

)()(1

)(

)(

)(sZ

sT

sZ

si

svout

out

load

)()(1

)()(

)(sG

sT

sGsv

svvg

vg

g

55

http://soc.hanyang.ac.kr

Stability

Adding a feedback loop can cause an otherwise stable system to become unstable.

Phase margin test is sufficient for designing most voltage regulators.

56

Page 29: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

Phase Margin Test Positive phase margin: stable system

1Hz 10Hz 100Hz 1kHz 10kHz 100kHz

60dB

40dB

20dB

0dB

-20dB

-40dB

-60dB

-80dB

1pf

cf

frequencyC rossover

dBQ

T

f

zf

m

T

T

0

-90

-180

T

57

http://soc.hanyang.ac.kr

Phase Margin Test Negative phase margin: unstable system

1Hz 10Hz 100Hz 1kHz 10kHz 100kHz

60dB

40dB

20dB

0dB

-20dB

-40dB

-60dB

-80dB

1pf

cf frequencyCrossover

dBQ

T

f

)0(m

T

T

0

-90

-180

-270

T

2pf

58

Page 30: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

Stability and Circuit Design

Examples

59

http://soc.hanyang.ac.kr

Current-Mode Boost Converter• Boost Converter

– Deliver only DC power to the load

Vout

Buffer

Vg

Error Amp

CO

Clock

Comparator

S Q

R

Latch

D1

M1

+

-

Compensator vref

LR3

R4

+

-

RL

fc Ri

fs Ri

60

Page 31: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

AC Simulation: Control-To-Output• Current-mode boost converter without compensation

– Sufficient phase margin, but DC gain is too low

61

http://soc.hanyang.ac.kr

AC Simulation: Compensator• PI compensator

– Adds two poles and one zero

62

Page 32: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

AC Simulation: Complete Loop• Complete feedback loop gain

– Higher DC gain for accurate output control

– Phase margin: 59

63

http://soc.hanyang.ac.kr

• Energy source detected, then harvested.

• Harvested energy converted and saved in a capacitor or a secondary cell.

64

Energy Harvesting

* IDTechEX (England)“-The Energy Harvesting Market will growto 4.4 billion dollars in 2020 from 650 million dollars in 2010 “

Page 33: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

Energy Sources for Harvesting

65

http://soc.hanyang.ac.kr

Energy Harvesting – Example 1

66

Page 34: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

Energy Harvesting – Example 2

67

http://soc.hanyang.ac.kr

Energy Source Example – Solar Cell

68

Page 35: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

Energy Harvesting Circuits – Example 1

69

“An 80 mV Startup Dual-Mode Boost Converter by Charge-Pumped Pulse Generator and Threshold Voltage Tuned Oscillator With Hot Carrier Injection”, IEEE JSSC 2012

http://soc.hanyang.ac.kr

Start-Up from Low Harvesting Voltage

70

“An 80 mV Startup Dual-Mode Boost Converter by Charge-Pumped Pulse Generator and Threshold Voltage Tuned Oscillator With Hot Carrier Injection”, IEEE JSSC 2012

Page 36: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

Energy Harvesting Circuits - Example 2

71

“A 10mV-input boost converter with inductor peak current control and zero detection for thermoelectric and solar energy harvesting with 220mV cold-start and -14.5 dBm, 915MHz RF kick-start”, IEEE JSSC 2015

http://soc.hanyang.ac.kr 72

Battery Charger

Page 37: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

- 최근 이동성과 편리함, 그리고 다양한 기능을 갖춘 스마트 제품 등이 등장하면서, 전력을 공급하는 2차 배터리가 핵심 부품으로 자리 잡고 있다.

- 한번 사용하고 버리는 1차 배터리와 달리 충전할 수 있는 2차 배터리는 충전하여 사용할 수 있다.- 2차 배터리인 Li-ion 배터리는 에너지 밀도가 높고 소형화에 유리하며, 수명이 길다.- Ni-Cd에서 발생되는 메모리 효과 없어 최근 휴대용 기기에 많이 채택됨

73

Battery Charger

http://soc.hanyang.ac.kr

Charger

LinearRegulator

SwitchingRegulator

VBAT

+

-+

-~ ~

Rectifier

AC

DC

VDD

ConstantCurrent

VBAT < VREF

RS

ConstantVoltage

VREF

VBAT

+

-

Icharge Icharge

>_VBAT VREF

- 배터리를 충전시키기 위하여 AC전압을 rectifier를 이용하여 DC로 변환- 변환된 DC는 battery charger를 통해 배터리를 충전시킨다.- Charger는 크게 linear charger와 switching charger로 분류됨

74

Battery Charger

Page 38: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

Itc

VCT

Charge current

Charge voltage

Constant current

Constant voltage

Trickle current

End of charge

Iend

(1/40C)

Ichg

VBAT

Time (s)

Vol

tage

(V

)

Cu

rren

t (A

)

■ Trickle current (TC) 방식- 작은 전류를 이용하여 안정적으로 배터리

를 충전시킴- 충전 시간이 길다

■ Constant current (CC) 방식- 큰 전류를 공급- 충전시간 단축- Overcharge에 대한 위험성 (배터리 손상)

■ Constant voltage (CV) 방식- 전압이 일정하게 해줌

- 안정적으로 배터리를 충전하기 위해 TC, CC, CV 방식이 모두 이용됨

75

Li-ion 배터리의 충전 방식에 따른 전압 및 전류

http://soc.hanyang.ac.kr

VIN

VOUT

BatteryCIN

+

-

Blocking diode

Q1

Isense Vsense

Linear controller

■ Linear charger의 장점- 최소한의 외부소자를 이용함으로 전체 시스템 크기가 작다- 스위칭 동작이 없으므로 노이즈가 없는 출력전압 생성

■ Linear charger의 단점- 큰 입출력 전압차로 파워 트랜지스터에 소모되는 전력이 크다- Charging 전류가 증가할 수록 발열 문제가 심각

76

Linear battery charger

Page 39: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

Rce

llC

cell

Bat

tery

■ Switching charger의 장점- 스위칭 동작에 의한 높은 전력변환효율- 높은 부하 전류를 공급- 발열이 적다- 넓은 입력전압 범위 가짐

■ Switching charger의 단점- Linear charger에 비해 설계 복잡도 증가- 큰 인덕터 사용으로 전체 시스템 크기 증가- 스위칭 동작에 의한 노이즈 발생

77

Switching battery charger

http://soc.hanyang.ac.kr

Linear chargerSwitching charger

Buck SEPIC

장점

⦿구현이 쉽다

⦿시스템 크기가 작다

⦿비용이 낮다

⦿넓은 입출력 전압 범위를

가진다

⦿효율이 높다

⦿하나의 인덕터를 사용한다.

⦿넓은 입출력 전압 범위를 가진다

⦿효율이 높다

⦿입력, 출력 사이 DC isolation 가

단점⦿효율이 낮다

⦿열문제가 크다

⦿시스템 설계가 복잡하다

⦿시스템 크기가 크다

⦿비용이 높다

⦿EMI 문제

⦿시스템 설계가 복잡하다

⦿시스템 크기가 크다 (두 개의 인

덕터 및 energy transfer 커패시터

가 필요하다)

⦿비용이 높다

78

Linear charger와 switching charger의 비교

Page 40: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr 79

Multiple Output System

http://soc.hanyang.ac.kr

Single-inductor multi-output DC-DC converter- Footprint of conventional boost converter

TLV61225 PCB LayoutSupply voltage: 2.3 ~ 6.0VOutput voltage: 3.0 ~ 6.5V

Power inductor (LQH3NP)TLV61225 package

0.8mm

1.85mm

3mm

3mm

1.1mm

80

Page 41: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

Single-inductor multi-output DC-DC converter

[1] Single-inductor multi-output (SIMO) dc-dc converters with high light-load efficiency and minimized cross-regulation for portable devices

Many LDO regulators Many switching converters SIMO

81

http://soc.hanyang.ac.kr

Design issues■ Cross-regulation■ Load/Line-regulation■ Stability■ Load current

Single-inductor multi-output DC-DC converter

SIMO structure Timing diagram

Cross-regulation

82

Page 42: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

Single-inductor multi-output DC-DC converter

Multiple energizing cycles per switching period

[2] Single-inductor-multiple-output switching dc-dc converters

Single energizing cycles per switching period

83

http://soc.hanyang.ac.kr

Single-inductor multi-output DC-DC converter

Schematic of SIMO example

[3] A pseudo-CCM/DCM SIMO switching converter with freewheel switching

84

Page 43: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr 85

Dynamic Voltage Scaling

http://soc.hanyang.ac.kr

fVCP DDdyn 2

DVS embedded power management

[4] A DVS embedded power management for high efficiency integrated SoC in UWB system

Embedded power management module in UWB systems The DVS function in UWB system operation

86

Page 44: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

Design issues■ Fast transient time ■ Variable output voltages■ Low power system

DVS embedded power management

[4] A DVS embedded power management for high efficiency integrated SoC in UWB system

Full structure of the power management module

87

http://soc.hanyang.ac.kr 88

Boost Converter for LEDs

Page 45: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

Boost converter for display

Smart phones (Galaxy[left] and iPhone[right])

LEDs

89

http://soc.hanyang.ac.kr

Design issues■ Efficiency■ Constant current driving ■ Fast transient

Boost converter for display

[5] A charge-recycling buck-store and boost-restore (BSBR) technique with dual outputs for RGB LED backlight and flashlight module

Function block of the conventional LCD panelWith LED backlight module

Power dissipation

90

Page 46: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

A Multiphase buck converter with a rotating phase-shedding scheme for efficient light-load control.

Youngkook Ahn, Inho Jeon, and Jeongjin Roh, IEEE Journal of Solid-State Circuits, vol. 49, no. 11, pp. 2673-2683, Nov. 2014.

91

Multiphase DC-DC Converters

http://soc.hanyang.ac.kr

(a) Heavy load, (b) Light load92

Operation of 4-phase converter.

Page 47: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr 93

Block diagram of 4-phase converter

http://soc.hanyang.ac.kr 94

Chip and measurement results

Page 48: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

A 50-MHz fully-integrated low-swing buck converter using packaging inductors

Youngkook Ahn, Hyunseok Nam, and Jeongjin Roh, IEEE Transactions on Power Electronics, vol. 27, no. 10, pp. 4347-4356, Oct. 2012.

95

Fully-integrated DC-DC Converter

http://soc.hanyang.ac.kr 96

Full integration of dc-dc converters

- Recently, according as miniaturization of portable appliance is accelerated, dc-dc converter's fullintegration is required.

- The dc-dc converter has difficulty doing full integration with large external passive components.

- The size of the filter inductor and capacitor can decrease with increased switching frequency.

- There are several challenges in the development of fully integrated dc-dc converters.

Page 49: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr 97

Comparison of low & high frequency operation

■ Low frequency operation (1 ~ 3MHz)

1. Advantages- High efficiency- Small inductor ripple current

2. Disadvantages- Large external passive component

( inductor, capacitor) - Require the number of I/O pins- Packaging parasitic

■ High frequency operation (50MHz ~ )

1. Advantages- Reduce the size of inductor and capacitor- Fast transient response- Full integration

2. Disadvantages- Low efficiency - Large inductor ripple current- Switching power loss

http://soc.hanyang.ac.kr 98

Inductor design for fully-integrated dc-dc converters

1. On-chip spiral inductor

- Suffer from high parasitic resistance and capacitor- A significant die area- Process variation- Low Q factor

2. Bonding-wire inductor

- Small parasitic components- High Q factor- Variations are depend on the accuracy of bonding machines (<5%)- It may require an additional bonding process

3. Packaging inductor

- It includes both parasitic inductance of bonding wires and lead frames- Small parasitic components

- High Q factor- Major errors are determined by the variation of the bond-wire length

On-chip spiral inductor

Packaging inductor

Page 50: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr 99

Example RLC values for different packages [*]

- Packages have different R-L-C values due to different characteristics, including size, layout, andlead counts.

-The value of packaging inductance can be controlled by compromising between pin counts used forimplementing the packaging inductor and the switching frequency of a dc-dc converter.

PackageBody size

(mm)Leadcount

R (Ω) L (nH) C (pF)

corner center corner center corner center

QFP 28 x 28 208 0.9 0.65 12.0 8.0 0.2 0.06

SSOP 5.3 x 10.2 28 0.3 0.25 2.9 1.3 0.2 0.08

MDIP 19 x 6.35 14 0.15 0.05 7.0 3.0 0.65 0.25

EBGA 27 x 27 215 0.75-0.9 0.6-0.8 5.0-7.8 2.5-4.0 0.08-0.12

■ Bonding wire parasitic elements are not included in this table

[*] National Semiconductor Application Note AN-1205, Electrical performance of packages. (2001). [Online]. Available:http://www.national.com.

http://soc.hanyang.ac.kr 100

Equivalent circuit model of package inductors and electrical data

Pac

kage

[*] MQFP data sheet, [Online]. Available: http://www.amkor.com.

Page 51: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr 101

Geometric reconfiguration of packaging inductors

- Positive mutual inductance increase the realinductance of packaging inductors, whereas negativemutual inductance decreases it.

-The spiral-shaped structure of the packaginginductor can suppress the negative coupling effect aswell as increase the total inductance

-The total inductance of the spiral-shaped packaginginductor can be written as [*]:

■ Spiral-shaped packaging inductor

negativepositiveStot MMLL

[*] J. Aguilera and R. Berenguer, “General consideration,” inDesign and test of integrated inductors for RF applications,Dordrecht, The Netherlands: KAP, 2003, ch. 2.

http://soc.hanyang.ac.kr 102

Fully-integrated buck converter

Vso

ft

PW

M1

- The designed chip employs the voltage-mode control to generate the PWM signal.

- The package lead and bonding wire inductance exiting in a package is to implement a high Q inductor.

Page 52: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr 103

Micrograph of the fabricated chip

Components Area (mm2)

Decoupling capacitor 3.53

Output capacitor 3.90

Power transistors 0.28

Controller 0.85

■ Area breakdown of a chip

* MIM capacitance = 1fF/um2

http://soc.hanyang.ac.kr 104

Test setup and performance summary

Technology 0.13-um CMOS

Die size 3.6 x 2.8 mm2

Peak efficiency 68.7% @VIN/VOUT =3.3 V/2.0 V76.8% @VIN/VOUT =2.5 V/1.8 V

Switching frequency 50 MHz

Inductor 19.9 nH (packaging inductance)

Output capacitor 3.4 nF (MIM capacitance)

Decoupling capacitor 3 nF (MIM capacitance)

Input voltage 2.5–3.3 V

Load current Maximum 300 mA

Output voltage ripple 300 mV

Output voltage drop 9% @100% IMAX

Line regulation 7.14%/V@VIN=2.8 V to 3.3 V, Io=50 mA

Load regulation 0.046%/mA@Io=100 mA to 300 mA, VIN=2.8 V

■ Performance of the fabricated chip

■ Load and line transient test setup

Page 53: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr 105

Measured load and line regulation waveforms

■ Load regulation (40 mA to 120 mA) ■ Line regulation (2.8V to 3.3 V)

http://soc.hanyang.ac.kr 106

Measured power efficiency

■ 68.7% @VIN=3.3 V, VOUT =2.0 V

■ 76.8% @VIN=2.5 V, VOUT =1.8 V

Page 54: Power Management Circuits - SoC Labsoc.hanyang.ac.kr/kor/classes/undergraduate... · 2016-10-17 ·  DC-DC Converter 3  4 Example of Power Management

http://soc.hanyang.ac.kr

Thank you.

107