positron annihilation spectroscopy in material studies

27
Positron annihilation spectroscopy in material studies Supervisors: Pawel Horodek, Ph.D. Krzysztof Siemek, Ph.D. Dzelepov Laboratory of Nuclear Problems 22.07.2016, JINR Dubna K. Bilko, M. Jurczyk, M. Kamiński, S. Nekvinda, K. Skowron Positron annihilation spectroscopy in material studies 1 / 22

Upload: others

Post on 29-Jan-2022

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Positron annihilation spectroscopy in material studies

Positron annihilation spectroscopy in materialstudies

Supervisors: Paweł Horodek, Ph.D.Krzysztof Siemek, Ph.D.

Dzelepov Laboratory of Nuclear Problems

22.07.2016, JINR Dubna

K. Biłko, M. Jurczyk, M. Kamiński, S. Nekvinda, K. Skowron Positron annihilation spectroscopy in material studies 1 / 22

Page 2: Positron annihilation spectroscopy in material studies

Authors

Kacper Biłko - AGH University of Science and Technology inKrakow

Marta Jurczyk - AGH University of Science and Technologyin Krakow

Michał Kamiński - University of Silesia in Katowice

Stepan Nekvinda - Charles University in Prague

Konrad Skowron - AGH University of Science andTechnology in Krakow

K. Biłko, M. Jurczyk, M. Kamiński, S. Nekvinda, K. Skowron Positron annihilation spectroscopy in material studies 2 / 22

Page 3: Positron annihilation spectroscopy in material studies

Outline

1 Introduction

2 Theoretical background

3 Sample preparation

4 Apparatus and measurements

5 Results

6 Conclusions

7 References

K. Biłko, M. Jurczyk, M. Kamiński, S. Nekvinda, K. Skowron Positron annihilation spectroscopy in material studies 3 / 22

Page 4: Positron annihilation spectroscopy in material studies

Introduction

Aim of the project:

Determination of size ofdefected zones in coppersamples using positronannihilation spectroscopy(PAS).

All measurements were performed at LEPTA facility

K. Biłko, M. Jurczyk, M. Kamiński, S. Nekvinda, K. Skowron Positron annihilation spectroscopy in material studies 4 / 22

Page 5: Positron annihilation spectroscopy in material studies

β+ decay

Fig. 1: Schema of β+ decay [1]

p → n + e+ + νe

Fig. 2: Energy spectrum of positrons from 22Na

K. Biłko, M. Jurczyk, M. Kamiński, S. Nekvinda, K. Skowron Positron annihilation spectroscopy in material studies 5 / 22

Page 6: Positron annihilation spectroscopy in material studies

Interaction with matter and annihilation

Fig. 3: Path of implanted positron [2]Fig. 4: Process of annihilation described

in CM and LAB systems [3]

Eγ = mec2 ±

√12mec2E , E − energy of electron

K. Biłko, M. Jurczyk, M. Kamiński, S. Nekvinda, K. Skowron Positron annihilation spectroscopy in material studies 6 / 22

Page 7: Positron annihilation spectroscopy in material studies

Doppler spectroscopy

Fig. 5: Visualization of S and W parameters

S =AS

Atotal

W =AW 1 + AW 2

Atotal

K. Biłko, M. Jurczyk, M. Kamiński, S. Nekvinda, K. Skowron Positron annihilation spectroscopy in material studies 7 / 22

Page 8: Positron annihilation spectroscopy in material studies

Sample preparation

Fig. 6: Polishing Fig. 7: Annealing Fig. 8: Surface treatmentprocess (e.g. sandblasting)

Fig. 9: A sample before and after polishingK. Biłko, M. Jurczyk, M. Kamiński, S. Nekvinda, K. Skowron Positron annihilation spectroscopy in material studies 8 / 22

Page 9: Positron annihilation spectroscopy in material studies

Sandblasting

Fig. 10: Sample before and aftersandblasting

Diameter of glass balls: 125µm

Fig. 11: Beforesandblasting

Fig. 12: Aftersandblasting

No. Pressure [bar] Time [min]I 1 1II 5 1III 5 3

Tab. 1: Parameters of sandblasting

K. Biłko, M. Jurczyk, M. Kamiński, S. Nekvinda, K. Skowron Positron annihilation spectroscopy in material studies 9 / 22

Page 10: Positron annihilation spectroscopy in material studies

Pressing

Fig. 13: Change of diameter and thickness

Pressure: 15 MPa

Fig. 14: Change of diameter and thickness

Strain of samples

ε =∆l

l= 0, 32

K. Biłko, M. Jurczyk, M. Kamiński, S. Nekvinda, K. Skowron Positron annihilation spectroscopy in material studies 10 / 22

Page 11: Positron annihilation spectroscopy in material studies

Milling

Fig. 15: Milling schema [4]

Fig. 16: Sample in milling machine

Fig. 17: Milling machine

Fig. 18: Sample after milling

K. Biłko, M. Jurczyk, M. Kamiński, S. Nekvinda, K. Skowron Positron annihilation spectroscopy in material studies 11 / 22

Page 12: Positron annihilation spectroscopy in material studies

Measuring system

Fig. 19: Schema of measuring system

Energy resolution of the detector:

1,2 keV for 511 keV Fig. 20: Measuring system

K. Biłko, M. Jurczyk, M. Kamiński, S. Nekvinda, K. Skowron Positron annihilation spectroscopy in material studies 12 / 22

Page 13: Positron annihilation spectroscopy in material studies

22Na source

Fig. 21: Schema of the sodium source

K. Biłko, M. Jurczyk, M. Kamiński, S. Nekvinda, K. Skowron Positron annihilation spectroscopy in material studies 13 / 22

Page 14: Positron annihilation spectroscopy in material studies

Apparatus

Fig. 22: Schema of measuring system

Fig. 23: Detector and positron source

K. Biłko, M. Jurczyk, M. Kamiński, S. Nekvinda, K. Skowron Positron annihilation spectroscopy in material studies 14 / 22

Page 15: Positron annihilation spectroscopy in material studies

Measurements

Fig. 24: Etching in HNO3 acid

Mean implantation depth in Cu

l ' 23, 1 µm

Fig. 25: Measuring the size of the sample

K. Biłko, M. Jurczyk, M. Kamiński, S. Nekvinda, K. Skowron Positron annihilation spectroscopy in material studies 15 / 22

Page 16: Positron annihilation spectroscopy in material studies

Results

K. Biłko, M. Jurczyk, M. Kamiński, S. Nekvinda, K. Skowron Positron annihilation spectroscopy in material studies 16 / 22

Page 17: Positron annihilation spectroscopy in material studies

Comparison of results - pressing

Fig. 26: Our resultsFig. 27: Comparable resultsobtained by Dryzek et al. [5]

K. Biłko, M. Jurczyk, M. Kamiński, S. Nekvinda, K. Skowron Positron annihilation spectroscopy in material studies 17 / 22

Page 18: Positron annihilation spectroscopy in material studies

Comparison of results - milling

Fig. 28: Our resultsFig. 29: Comparable results obtained by

Dryzek et al. [6]

K. Biłko, M. Jurczyk, M. Kamiński, S. Nekvinda, K. Skowron Positron annihilation spectroscopy in material studies 18 / 22

Page 19: Positron annihilation spectroscopy in material studies

Comparison of results - sandblasting

Fig. 30: Our results Fig. 31: Results obtained by Horodeket al. [7]

K. Biłko, M. Jurczyk, M. Kamiński, S. Nekvinda, K. Skowron Positron annihilation spectroscopy in material studies 19 / 22

Page 20: Positron annihilation spectroscopy in material studies

Conclusions

1 The Doppler broadening of the positron annihilation linemethod was successfully used to determine the size ofdefected zone in examined copper samples.

2 It has been found that all the examined samples possess somestructural defects.

3 The results obtained for pressed sample showed that thedefects are probably present in the whole sample’s volume.

4 For the milled sample it was observed that the defected zoneis relatively big and reaches up to 0,3 mm.

5 Samples exposed to sandblasting for 1 min and differentpressure did not show big differences in the level of defects.The sample sandblasted for 3 min possesses more structuraldefects.

K. Biłko, M. Jurczyk, M. Kamiński, S. Nekvinda, K. Skowron Positron annihilation spectroscopy in material studies 20 / 22

Page 21: Positron annihilation spectroscopy in material studies

Conclusions

1 The Doppler broadening of the positron annihilation linemethod was successfully used to determine the size ofdefected zone in examined copper samples.

2 It has been found that all the examined samples possess somestructural defects.

3 The results obtained for pressed sample showed that thedefects are probably present in the whole sample’s volume.

4 For the milled sample it was observed that the defected zoneis relatively big and reaches up to 0,3 mm.

5 Samples exposed to sandblasting for 1 min and differentpressure did not show big differences in the level of defects.The sample sandblasted for 3 min possesses more structuraldefects.

K. Biłko, M. Jurczyk, M. Kamiński, S. Nekvinda, K. Skowron Positron annihilation spectroscopy in material studies 20 / 22

Page 22: Positron annihilation spectroscopy in material studies

Conclusions

1 The Doppler broadening of the positron annihilation linemethod was successfully used to determine the size ofdefected zone in examined copper samples.

2 It has been found that all the examined samples possess somestructural defects.

3 The results obtained for pressed sample showed that thedefects are probably present in the whole sample’s volume.

4 For the milled sample it was observed that the defected zoneis relatively big and reaches up to 0,3 mm.

5 Samples exposed to sandblasting for 1 min and differentpressure did not show big differences in the level of defects.The sample sandblasted for 3 min possesses more structuraldefects.

K. Biłko, M. Jurczyk, M. Kamiński, S. Nekvinda, K. Skowron Positron annihilation spectroscopy in material studies 20 / 22

Page 23: Positron annihilation spectroscopy in material studies

Conclusions

1 The Doppler broadening of the positron annihilation linemethod was successfully used to determine the size ofdefected zone in examined copper samples.

2 It has been found that all the examined samples possess somestructural defects.

3 The results obtained for pressed sample showed that thedefects are probably present in the whole sample’s volume.

4 For the milled sample it was observed that the defected zoneis relatively big and reaches up to 0,3 mm.

5 Samples exposed to sandblasting for 1 min and differentpressure did not show big differences in the level of defects.The sample sandblasted for 3 min possesses more structuraldefects.

K. Biłko, M. Jurczyk, M. Kamiński, S. Nekvinda, K. Skowron Positron annihilation spectroscopy in material studies 20 / 22

Page 24: Positron annihilation spectroscopy in material studies

Conclusions

1 The Doppler broadening of the positron annihilation linemethod was successfully used to determine the size ofdefected zone in examined copper samples.

2 It has been found that all the examined samples possess somestructural defects.

3 The results obtained for pressed sample showed that thedefects are probably present in the whole sample’s volume.

4 For the milled sample it was observed that the defected zoneis relatively big and reaches up to 0,3 mm.

5 Samples exposed to sandblasting for 1 min and differentpressure did not show big differences in the level of defects.The sample sandblasted for 3 min possesses more structuraldefects.

K. Biłko, M. Jurczyk, M. Kamiński, S. Nekvinda, K. Skowron Positron annihilation spectroscopy in material studies 20 / 22

Page 25: Positron annihilation spectroscopy in material studies

References

[1] https://commons.wikimedia.org/wiki/File:Beta-minus Decay.svg

[2] M. Butterling, Helmholtz Zentrum Dresden Rossendorf

[3] J. Dryzek, Wstęp do spektroskopii anihilacji pozytonów wciele stałym, Krakow 1997

[4] http://web.mit.edu/2.670/www/Tutorials/Machining/mill/Description.html

[5] J. Dryzek, E. Dryzek, T. Stegemann, B. Cleff, TribologyLetters 3 (1997) 269-275, 1997

[6] J. Dryzek, S. Nojiri, M. Fujinami, E. Dryzek, K. Siemek,W. Pachla, Tribol Lett (2015) 60:16, 2015

[7] P. Horodek, J. Dryzek, Acta Physica Polonica B Vol. 9 (2016)No 2

K. Biłko, M. Jurczyk, M. Kamiński, S. Nekvinda, K. Skowron Positron annihilation spectroscopy in material studies 21 / 22

Page 26: Positron annihilation spectroscopy in material studies

Acknowledgements

We would like to thank:

I. N. Meshkov

A. G. Kobets

S. Z. Pakuliak

K. I. Kriukowa

I. Stekl

R. Zawodny

K. Horodek

Thank you for your attention

K. Biłko, M. Jurczyk, M. Kamiński, S. Nekvinda, K. Skowron Positron annihilation spectroscopy in material studies 22 / 22

Page 27: Positron annihilation spectroscopy in material studies

Acknowledgements

We would like to thank:

I. N. Meshkov

A. G. Kobets

S. Z. Pakuliak

K. I. Kriukowa

I. Stekl

R. Zawodny

K. Horodek

Thank you for your attention

K. Biłko, M. Jurczyk, M. Kamiński, S. Nekvinda, K. Skowron Positron annihilation spectroscopy in material studies 22 / 22