positive semidefinite rank

31
Positive Semidefinite Rank Joint work with: Hamza Fawzi (MIT) João Gouveia (U Coimbra) Pablo Parrilo (MIT) Richard Robinson (UW) Rekha R.Thomas University of Washington, Seattle arXiv:1407.4095

Upload: others

Post on 30-Apr-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Positive Semidefinite Rank

Positive Semidefinite Rank

Joint work with:

Hamza Fawzi (MIT)João Gouveia (U Coimbra)

Pablo Parrilo (MIT)Richard Robinson (UW)

Rekha R.Thomas University of Washington, Seattle

arXiv:1407.4095

Page 2: Positive Semidefinite Rank

Definition: Given M 2 Rp⇥q+

rkpsd(M) = min

8<

:k : 9A1, . . . , Ap 2 Sk

+

B1, . . . , Bq 2 (Sk+)

s.t. Mij = hAi, Bji

9=

;

Page 3: Positive Semidefinite Rank

Definition: Given M 2 Rp⇥q+

rkpsd(M) = min

8<

:k : 9A1, . . . , Ap 2 Sk

+

B1, . . . , Bq 2 (Sk+)

s.t. Mij = hAi, Bji

9=

;

M =

2

40 1 11 0 11 1 0

3

5

A1 =

1 00 0

�A2 =

0 00 1

�A3 =

1 �1

�1 1

B1 =

0 00 1

�B2 =

1 00 0

�B3 =

1 11 1

S2+-factorization of M :

rk(M) = 3

rkpsd(M) = 2

Page 4: Positive Semidefinite Rank

Definition: Given M 2 Rp⇥q+

rkpsd(M) = min

8<

:k : 9A1, . . . , Ap 2 Sk

+

B1, . . . , Bq 2 (Sk+)

s.t. Mij = hAi, Bji

9=

;

M =

2

40 1 11 0 11 1 0

3

5

A1 =

1 00 0

�A2 =

0 00 1

�A3 =

1 �1

�1 1

B1 =

0 00 1

�B2 =

1 00 0

�B3 =

1 11 1

S2+-factorization of M :

rk(M) = 3

rkpsd(M) = 2

rkpsd(I3) = 3

Page 5: Positive Semidefinite Rank

Factorizations of matrices/operators:

(i) factoring through subspaces:

rk(M) = min {k : M = AB, A 2 Rp⇥k, B 2 Rk⇥q}

i.e., 9 a1, . . . , ap 2 Rk, b1, . . . , bq 2 (Rk)⇤ s.t. Mij = hai, bji

Page 6: Positive Semidefinite Rank

Factorizations of matrices/operators:

C = {Ci} “closed’’ family of closed convex cones

cone rank of M GPT 2013

(i) factoring through subspaces:

rk(M) = min {k : M = AB, A 2 Rp⇥k, B 2 Rk⇥q}

(ii) factoring through cones:

C = {Rk+}

C = {Sk+}

nonnegative rank

psd rank

rk+(M)

rkpsd(M)

i.e., 9 a1, . . . , ap 2 Rk, b1, . . . , bq 2 (Rk)⇤ s.t. Mij = hai, bji

rkC(M) = min

⇢k : 9 a1, . . . , ap 2 Ck, b1, . . . , bq 2 (Ck)⇤

s.t. Mij = hai, bji

Page 7: Positive Semidefinite Rank

rk(M) = 1 , rkpsd(M) = 1 rk(M) = 2 , rkpsd(M) = 2

1

2

p1 + 8 rk(M)� 1

2 rkpsd(M) rk+(M) min(p, q)

Page 8: Positive Semidefinite Rank

rk(M) = 1 , rkpsd(M) = 1 rk(M) = 2 , rkpsd(M) = 2

1

2

p1 + 8 rk(M)� 1

2 rkpsd(M) rk+(M) min(p, q)

Mabc =

2

4a b cc a bb c a

3

5 , a, b, c � 0

rk = rkpsd = 1 , a = b = c

else, rk = 3 ) rkpsd = 2, 3

rkpsd = 2 ,a2 + b2 + c2 2(ab+ bc+ ac)

Page 9: Positive Semidefinite Rank

rk(M) = 1 , rkpsd(M) = 1 rk(M) = 2 , rkpsd(M) = 2

1

2

p1 + 8 rk(M)� 1

2 rkpsd(M) rk+(M) min(p, q)

Mabc =

2

4a b cc a bb c a

3

5 , a, b, c � 0

rk = rkpsd = 1 , a = b = c

else, rk = 3 ) rkpsd = 2, 3

rkpsd = 2 ,a2 + b2 + c2 2(ab+ bc+ ac)

Mp⇥qrkpsd=2 ⇢ Mp⇥q

rk=3 Kubjas-Robeva-Robinson 2014

Page 10: Positive Semidefinite Rank

Square root rank

rkp(M) := min {rkpM}

pM Hadamard square root of M

Page 11: Positive Semidefinite Rank

Square root rank

rkp(M) := min {rkpM}

pM Hadamard square root of M

pM =

2

41 2 33 �1 22 �3 �1

3

5 , rkpM = 2

M =

2

41 4 99 1 44 9 1

3

5 rkp(M) = 2

rk

p(M) 2

,(a, b, c) on this surface

Page 12: Positive Semidefinite Rank

Square root rank

rkp(M) := min {rkpM}

pM Hadamard square root of M

pM =

2

41 2 33 �1 22 �3 �1

3

5 , rkpM = 2

M =

2

41 4 99 1 44 9 1

3

5 rkp(M) = 2

rk

p(M) 2

,(a, b, c) on this surface

rk

p(M) = min {k : 9 Sk

+-factorization of M with rank one factors}

rkpsd(M) rkp(M)

M 2 {0, 1}p⇥q ) rkpsd(M) rk(M)Corollaries:

Page 13: Positive Semidefinite Rank

rk rk+ rkpsd rkp

rk = ⌧ ⌧, > ⌧, >rk+ � = � ⌧,�rkpsd <,� ⌧ = ⌧rkp <,� ⌧,� � =

Euclidean distance matrices:

Mij = (i� j)2rk(M) = 3, rkpsd(M) = 2

rk+(M) = ⇥(log2 n) Hrubes 2012

Cannot assume all factors have rank one to study psd rank.

Page 14: Positive Semidefinite Rank

Geometric Interpretation

⇡ linear map, L a�ne space

Def: P ✓ Rn(convex set) has a psd lift of size k if P = ⇡(Sk

+ \ L)

Page 15: Positive Semidefinite Rank

Geometric Interpretation

⇡ linear map, L a�ne space

Def: P ✓ Rn(convex set) has a psd lift of size k if P = ⇡(Sk

+ \ L)

P = conv(p1, . . . , pv) ⇢ Rn

Q = {x 2 Rn : aTj x �j , j = 1, . . . , f}

SP,Q 2 Rv⇥f , (SP,Q)ij := �j � a>j pislack matrix:

P ✓ Q

Page 16: Positive Semidefinite Rank

Geometric Interpretation

⇡ linear map, L a�ne space

Def: P ✓ Rn(convex set) has a psd lift of size k if P = ⇡(Sk

+ \ L)

P = conv(p1, . . . , pv) ⇢ Rn

Q = {x 2 Rn : aTj x �j , j = 1, . . . , f}

SP,Q 2 Rv⇥f , (SP,Q)ij := �j � a>j pislack matrix:

rkpsd(SP,Q) = min {k : 9 ⇡, L s.t. P ✓ ⇡(Sk+ \ L) ✓ Q}

rkpsd(SP,P ) = min {k : s.t. P = ⇡(Sk+ \ L)}

Thm:

Yannakakis 91:

GPT 2013: cone-lifts, P convex set, rkC(slack operators)

polyhedral-lifts, P polytope, rk+(SP,P )

Page 17: Positive Semidefinite Rank

SP =

2

664

1 1 0 00 1 1 00 0 1 11 0 0 1

3

775 , rkpsd = 3

P = [�1, 1]2 =

8<

:(x, y, z) 2 R3 :

2

41 x y

x 1 z

y z 1

3

5 ⌫ 0

9=

;

Page 18: Positive Semidefinite Rank

SP =

2

664

1 1 0 00 1 1 00 0 1 11 0 0 1

3

775 , rkpsd = 3

P = [�1, 1]2 =

8<

:(x, y, z) 2 R3 :

2

41 x y

x 1 z

y z 1

3

5 ⌫ 0

9=

;

Q = [�1, 1]2, P = [�a, a]⇥ [�b, b]

�a a

�b

b

0

0�1�1

1

1

SP,Q =

2

664

1 + a 1 + b 1� a 1� b1� a 1 + b 1 + a 1� b1� a 1� b 1 + a 1 + b1 + a 1� b 1� a 1 + b

3

775

rkpsd =

8><

>:

3 if a2 + b2 > 1

2 if 0 < a2 + b2 1

1 if a = b = 0

Page 19: Positive Semidefinite Rank

PSD ranks of polytopes

Briet-Dadush-Pokutta 2013: not all {0, 1}-polytopes in Rn

have small psd lifts

no concrete 0/1-polytope family so far with large psd rank

favorite candidate: COR(n) = conv(aa> : a 2 {0, 1}n)

Page 20: Positive Semidefinite Rank

PSD ranks of polytopes

Briet-Dadush-Pokutta 2013: not all {0, 1}-polytopes in Rn

have small psd lifts

no concrete 0/1-polytope family so far with large psd rank

no family so far with large gap between psd and nonnegative rank

GPT 13: rkpsd(P ) = k ) P has at most kO(k2n)facets

eg. psd rank of n-gons grow to infinity with n

rkpsd(generic n-gon) = ⌦(

4pn)GRT 13:

favorite candidate: COR(n) = conv(aa> : a 2 {0, 1}n)

Page 21: Positive Semidefinite Rank

Equivariant psd lifts of polytopes:

(lifts that respect the symmetries of the polytope -- a la Yannakakis)

FSP 2014:

Fawzi-Parrilo-Saunderson 2013:

Lee-Raghavendra-Steurer-Tan 2013

GPT 13:

provides exponential gap in sizes of LP and PSD equivariant lifts

n prime power

rk

eq+ (regular n-gon) = n

rk

eqpsd(regular n-gon) = ⇥(log n)

rkeqpsd(CUT(n)) �✓

n

dn/4e

Page 22: Positive Semidefinite Rank

Lower bounds on psd rank

rkpsd(M2) rk(M)support not powerful: Lee-Theis 12

Barvinok 12:M has k distinct entries ) rkpsd(M)

✓k � 1 + rk(M)

k � 1

Page 23: Positive Semidefinite Rank

Lower bounds on psd rank

rkpsd(M2) rk(M)support not powerful: Lee-Theis 12

Barvinok 12:M has k distinct entries ) rkpsd(M)

✓k � 1 + rk(M)

k � 1

A lower bounding technique using results of Renegar:

(1) L \ Sk+ is bounded by polynomials of degree k

(2) bound poly describing algebraic boundary of ⇡(L \ Sk+) = P

(3) degree of this boundary poly � # facets of P

rkpsd(n-gon) = ⌦

slog n

log log n

!

GPT 13:e.g. ... deWolf-Lee-Wei 14

Page 24: Positive Semidefinite Rank

Polytopes of min psd rank Gouveia-Robinson-T. 13:

rk(SP ) = n+ 1 rkpsd(P )

equality holds , rk

p(SP ) = n+ 1

Theorem:

Page 25: Positive Semidefinite Rank

Polytopes of min psd rank Gouveia-Robinson-T. 13:

rk(SP ) = n+ 1 rkpsd(P )

equality holds , rk

p(SP ) = n+ 1

Theorem:

Theorem: rkpsd(STAB(G)) = n+ 1 , G perfect

in R2 :

in R3 : and their polars

biplanar

psd minimal matroid polytopesGrande-Sanyal 14:

Page 26: Positive Semidefinite Rank

a corollary ....

Fawzi-Gouveia-Robinson 14

M is the slack matrix of a biplanar cuboid

Open for nonnegative rank

2

66666666664

0 0 2 1 0 11 0 0 2 0 10 1 2 0 0 11 2 0 0 0 10 0 2 1 1 01 0 0 2 1 00 1 2 0 1 01 2 0 0 1 0

3

77777777775

9M : rkQpsd(M) > rkRpsd(M)

Page 27: Positive Semidefinite Rank

PSD rank of convex sets

Helton-Nie Conjecture: Every convex semi-algebraic set has finite psd rank.

Long history of constructing psd lifts of interesting convex sets in optimization/control/real algebraic geometry ....

i.e. show rkpsd(C) < 1

Scheiderer 12: true for convex hulls of algebraic curves

C ⇢ Rn ( rkpsd(C) = rkpsd(slack operator of C)

Page 28: Positive Semidefinite Rank

Complexity issues:

Robinson 14: Square root rank is NP-hard to compute.

2

666664

1 0 · · · 0 a210 1 · · · 0 a22...

...0 0 · · · 1 a2n1 1 · · · 1 0

3

777775

Page 29: Positive Semidefinite Rank

Complexity issues:

Robinson 14: Square root rank is NP-hard to compute.

Is psd rank NP-hard to compute?Vavasis 2009: nonnegative rank is NP-hard

2

666664

1 0 · · · 0 a210 1 · · · 0 a22...

...0 0 · · · 1 a2n1 1 · · · 1 0

3

777775

Page 30: Positive Semidefinite Rank

Complexity issues:

Robinson 14: Square root rank is NP-hard to compute.

Is psd rank NP-hard to compute?Vavasis 2009: nonnegative rank is NP-hard

For fixed k, is it NP-hard to decide if rkpsd(M) k?

poly-time decidable for nonnegative rankArora-Ge-Kannan-Moitra 12, Moitra 13:

2

666664

1 0 · · · 0 a210 1 · · · 0 a22...

...0 0 · · · 1 a2n1 1 · · · 1 0

3

777775

Page 31: Positive Semidefinite Rank

Some of the things I did not talk about ...

• Space of psd factorizations• Quantum information interpretation of psd rank• Approximate factorizations and approximations of polytopes • Symmetric psd factorizations