pop:$person$re+iden.fica.on$post+rankop.misaccloy/files/iccv_2013_poster_reid.pdf · introduction...

1
Incremental Construction of Affinity Graph Introduction POP: Person ReIden.fica.on PostRank Op.misa.on Chen Change Loy The Chinese University of Hong Kong [email protected] Shaogang Gong Queen Mary University of London [email protected] Project page: h"p://personal.ie.cuhk.edu.hk/~ccloy/project_pop/ 1 Negative Propagation over Graph Post-Rank Optimsation by Negative Mining Chunxiao Liu Tsinghua University [email protected] Guijin Wang Tsinghua University [email protected] Problem: Visual ambigui.es and dispari.es Offline learning scalability (minimising user feedback clicks) Contribu.ons: Formulate a systema.c framework for fast reiden.fica.on postrank op.misa.on, with significant increase in recogni.on accuracy (over 30% increase for rank1 recogni4on rate on VIPeR dataset). Minimise humanintheloop effort by oneshot nega.ve feedback selec.on (weak/strong nega.ve). Formulate a new visual expansion model for overcoming insufficient training samples. Incremental affinity graph construc.on for exploi.ng large quan..es of unlabelled data. visual ambigui.es and dispari.es probe weak strong 2 Nega.ve selec.on : A user selects one (any) strong nega.ve from the top N ranked instances, denoted as . Cross-Camera View Visual Expansion 3 Mo.va.on: A single strong nega.ve selected by user is insufficient for learning a postrank func.on. Due to large feature inconsistency between different camera views, a probe image from the probe camera view cannot be readily used as posi.ve sample in the gallery view. Step 1 : Learning an appearance mapping space: Step 2 : Genera.ng synthesised probe instance: Method: Regression forest x p {˜ x p } synthesised probe instances The visual varia4ons between a probe and a gallery camera view are accounted by mul4output regression forest. is the regression predictor for the tth regression tree. The subscript is a randomly sampled index. This process can be repeated to generate more synthesised probe instances if desired. 4 Mo.va.on: Propagate the sparse labelled samples to the large quan.ty of unlabelled set . Method: a) Clustering forest for graph construc.on Its implicit feature selec.on mechanism is beneficial to mi.ga.ng noisy visual features. It offers scalable and tractable solu.on to our incremental graph construc.on requirement so to accommodate varying number of selected nega.ves accumula.ng onthefly. b) Incremental construc.on Step 1: construct a graph for the gallery instances . Step 2: include synthesised posi.ves in the construc.on of the affinity graph. {x g } Comparative Evaluations Ini.al Ranking L1norm RankSVM PRDC MCC VIPeR oneshot 0 R1 R3 R2 0 R1 R3 R2 9.43 31.90 47.56 42.88 9.43 30.41 50.13 44.21 14.87 16.01 17.85 59.05 71.08 67.06 14.87 58.48 71.58 67.85 59.91 72.03 67.88 16.01 59.49 72.22 68.35 60.13 66.87 64.08 17.85 60.06 66.20 63.64 0 R1 R3 R2 0 R1 R3 R2 29.60 67.60 75.60 73.20 29.60 67.60 81.80 75.40 29.80 31.40 30.00 73.40 79.80 77.20 29.80 73.40 82.40 79.40 70.20 78.00 75.60 31.40 70.20 80.00 77.00 69.80 76.60 73.60 30.00 69.20 80.40 74.80 mul.shots iLIDS oneshot mul.shots 5 Informa.on propaga.on Final score: Negative Accumulation 6 (a) Threedimensional embedding of gallery images obtained using mul.dimensional scaling afer the first round of nega.ve selec.on. (b) The embedding afer the second round. Behavioural Studies 8 7 2.6 4mes reduc4on of searching 4me [1] B. Prosser, et al, “Person reidenBficaBon by support vector ranking”, BMVC, 2010 [2] W. Zheng, et al, “ReidenBficaBon by relaBve distance comparison”, TPAMI, 2012. [3] A. Globerson, et al, “Metric learning by collapsing classers”, NIPS, 2005. (a) POP vs. L1norm, RankSVM, PRDC, MCC (b) POP vs. other PostRank Models (c) Benefits from Visual Expansion The rank1 average recogni.on rates are boosted by 38.33% and 40.05% on VIPeR and iLIDS respec.vely for all four different ini.al ranking models. Improvements of over 12.00% and 3.70% at rank5 recogni.on rate on VIPeR and iLIDS respec.vely, afer 4 rounds feedback. Improving POP from 37.66% to 51.39% afer 4 rounds feedback on average. 0 50 100 150 200 250 300 0 50 100 150 200 Initial Rank Order Search Time (/seconds) Exhaustive search POP i-LIDS 5 10 15 20 25 30 0 0.2 0.4 0.6 0.8 1 CMC order Recognition rate PRDC Iteration 1 Iteration 2 Iteration 3 Recognition rate VIPeR 5 10 15 20 25 30 0 0.2 0.4 0.6 0.8 1 CMC order Recognition rate PRDC Iteration 1 Iteration 2 Iteration 3

Upload: others

Post on 18-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: POP:$Person$Re+Iden.fica.on$Post+RankOp.misaccloy/files/iccv_2013_poster_reid.pdf · Introduction Incremental Construction of Affinity Graph POP:$Person$Re+Iden.fica.on$Post+RankOp.misa.on

Incremental Construction of Affinity Graph Introduction

POP:  Person  Re-­‐Iden.fica.on  Post-­‐Rank  Op.misa.on Chen  Change  Loy  

The  Chinese  University  of  Hong  Kong  [email protected]  

Shaogang  Gong  Queen  Mary  University  of  London    

[email protected]  

Project page: h"p://personal.ie.cuhk.edu.hk/~ccloy/project_pop/

1

Negative Propagation over Graph

Post-Rank Optimsation by Negative Mining

Chunxiao  Liu  Tsinghua  University  

[email protected]  

Guijin  Wang  Tsinghua  University  

[email protected]  

Problem:   •  Visual  ambigui.es  and  dispari.es  •  Off-­‐line  learning  scalability  (minimising  user  feedback  clicks)

Contribu.ons:   •  Formulate  a  systema.c  framework  for  fast  re-­‐iden.fica.on  post-­‐rank  op.misa.on,  with  significant  

increase  in  recogni.on  accuracy  (over  30%  increase  for  rank-­‐1  recogni4on  rate  on  VIPeR  dataset).  •  Minimise  human-­‐in-­‐the-­‐loop  effort  by  one-­‐shot  nega.ve  feedback  selec.on  (weak/strong  nega.ve).  •  Formulate  a  new  visual  expansion  model  for  overcoming  insufficient  training  samples.  •  Incremental  affinity  graph  construc.on  for  exploi.ng  large  quan..es  of  unlabelled  data.

visual  ambigui.es  and  dispari.es          probe                  weak                            strong

2

Nega.ve  selec.on  :  A  user  selects  one  (any)  strong  nega.ve  from  the  top  N  ranked  instances,  denoted  as                    .                  

Cross-Camera View Visual Expansion 3

Mo.va.on:  

•  A  single  strong  nega.ve  selected  by  user  is  insufficient  for  learning  a  post-­‐rank  func.on.  •  Due   to   large   feature   inconsistency   between   different   camera   views,   a   probe   image   from   the   probe  

camera  view  cannot  be  readily  used  as  posi.ve  sample  in  the  gallery  view.  

p  Step  1  :  Learning  an  appearance  mapping  space:  

 

 

p  Step  2  :  Genera.ng  synthesised  probe  instance:  

Method: Regression forest

x

p

{x̃p}synthesised probe instances

The  visual  varia4ons  between  a  probe  and  a  gallery  camera  view  are  accounted  by  mul4-­‐output  regression  forest.

•               is  the  regression  predictor  for  the  t-­‐th  regression  tree.  •  The  subscript                                                                              is  a  randomly  sampled  index.    

This  process  can  be  repeated  to  generate  more  synthesised  probe  instances  if  desired.

4

Mo.va.on: Propagate  the  sparse  labelled  samples  to  the  large  quan.ty  of  unlabelled  set.

Method: a)    Clustering  forest    for  graph  construc.on

•  Its  implicit  feature  selec.on  mechanism  is  beneficial  to  mi.ga.ng  noisy  visual  features.  •  It  offers  scalable  and  tractable  solu.on  to  our  incremental  graph  construc.on  requirement            so  to  accommodate  varying  number  of  selected  nega.ves  accumula.ng  on-­‐the-­‐fly.

b)    Incremental  construc.on

p Step  1:    construct  a  graph  for  the  gallery  instances                        .  p Step  2:    include  synthesised  posi.ves  in  the  construc.on  of  the  affinity  graph.  

{xg}

Comparative Evaluations

Ini.al  Ranking

L1-­‐norm RankSVM PRDC MCC

VIPeR one-­‐shot

0 R1 R3 R2 0 R1 R3 R2 9.43 31.90 47.56 42.88 9.43 30.41 50.13 44.21

14.87 16.01 17.85

59.05 71.08 67.06 14.87 58.48 71.58 67.85 59.91 72.03 67.88 16.01 59.49 72.22 68.35 60.13 66.87 64.08 17.85 60.06 66.20 63.64

0 R1 R3 R2 0 R1 R3 R2 29.60 67.60 75.60 73.20 29.60 67.60 81.80 75.40 29.80 31.40 30.00

73.40 79.80 77.20 29.80 73.40 82.40 79.40 70.20 78.00 75.60 31.40 70.20 80.00 77.00 69.80 76.60 73.60 30.00 69.20 80.40 74.80

mul.-­‐shots i-­‐LIDS

one-­‐shot mul.-­‐shots

5

Informa.on  propaga.on

Final  score:

Negative Accumulation 6

(a)  Three-­‐dimensional  embedding  of  gallery  images  obtained  using  mul.-­‐dimensional  scaling  afer  the  first  round  of  nega.ve  selec.on.  

(b)  The  embedding  afer  the  second  round.

Behavioural Studies

8

7

2.6  4mes  reduc4on  of  searching  4me

[1]  B.  Prosser,  et  al,  “Person  re-­‐idenBficaBon  by  support  vector  ranking”,  BMVC,  2010  [2]  W.  Zheng,  et  al,  “Re-­‐idenBficaBon  by  relaBve  distance  comparison”,  TPAMI,  2012.  [3]  A.  Globerson,  et  al,  “Metric  learning  by  collapsing  classers”,  NIPS,  2005.  

(a)  POP  vs.  L1-­‐norm,  RankSVM,  PRDC,  MCC

(b)  POP  vs.  other  Post-­‐Rank  Models

(c)  Benefits  from  Visual  Expansion

ü   The  rank-­‐1  average  recogni.on  rates  are  boosted  by  38.33%  and  40.05%  on  VIPeR  and  i-­‐LIDS  respec.vely    for  all  four  different  ini.al  ranking  models.  

ü   Improvements  of  over  12.00%  and  3.70%  at  rank-­‐5  recogni.on  rate  on  VIPeR  and  i-­‐LIDS  respec.vely,  afer  4  rounds  feedback.

ü  Improving  POP  from  37.66%  to  51.39%  afer  4  rounds  feedback  on  average.  

0 50 100 150 200 250 3000

50

100

150

200

Initial Rank Order

Sear

ch T

ime

(/sec

onds

)

Exhaustive searchPOP

5 10 15 20 25 300

0.2

0.4

0.6

0.8

1

CMC order

Rec

ogni

tion

rate

RankSVMIteration 1Iteration 2Iteration 3

VIPeR VIPeR i-LIDS i-LIDS

5 10 15 20 25 300

0.2

0.4

0.6

0.8

1

CMC order

Rec

ogni

tion

rate

PRDCIteration 1Iteration 2Iteration 3

5 10 15 20 25 300

0.2

0.4

0.6

0.8

1

CMC order

Rec

ogni

tion

rate

RankSVMIteration 1Iteration 2Iteration 3

VIPeR VIPeR i-LIDS i-LIDS

5 10 15 20 25 300

0.2

0.4

0.6

0.8

1

CMC order

Rec

ogni

tion

rate

viper(one click)

RankSVMIteration 1Iteration 2Iteration 3

5 10 15 20 25 300

0.2

0.4

0.6

0.8

1

CMC order

Rec

ogni

tion

rate

viper(one click)

PRDCIteration 1Iteration 2Iteration 3