pool boiling heat transfer at finned tubes influence of surface roughness and shape of the fins

Upload: hany-elsawy-abdelrahman

Post on 02-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Pool Boiling Heat Transfer at Finned Tubes Influence of Surface Roughness and Shape of the Fins

    1/8

    LS VI R

    P I h S 0 1 4 0 - 7 0 0 7 ( 9 7 ) 0 0 0 3 3 -9

    Int J. Refrig. Vol. 20, No. 8, pp. 575-582, 1997

    1998 Elsevier Science Ltd and IIR

    Printed in Great Britain. All rights reserved

    0140-7007/97/ 17.00+00

    P o o l b o i l i n g h e a t t r a n s f e r a t f i n n e d t u b e s : i n f l u e n c e o f

    s u r f a c e r o u g h n e s s a n d s h a p e o f t h e fin s

    P e t e r H i i b n e r a n d W o l f g a n g K i i n s tl e r

    L a b o r a t o r i u m f i i r W a r m e - u n d K ~ i l t e t e ch n i k , U n i v e r s i t ~ i t - G H P a d e r b o r n ,

    W a r b u r g e r S t r. 1 0 0 , D - 3 3 0 9 8 P a d e r b o r n , G e r m a n y

    R e c e i v e d 3 0 A p r i l 1 9 97 ; a c c e p t e d 1 4 M a y 1 9 9 7

    P o o l b o i l i n g h e a t t r a n s f e r f r o m f i n n e d t u b e s w i t h d i f f e r e n t s h a p e s o f f i n s (t r a p e z o i d - s h a p e d , T -

    s h a p e d , o r Y- s h a p e d ) t o v a r i o u s h y d r o c a r b o n s a n d p a r t l y f l u o r i n a t e d h y d r o c a r b o n s h a s b e e n

    inve s t iga te d a t t he Lab ora to r ium f i i r W~i rme- und K~ i l t et echn ik , Un ive r s i t~ i t -GH Pade rbo rn

    d u r i n g t h e r e c e n t p as t . Co m p a r e d t o c o r r e s p o n d i n g m e a s u r e m e n t s o n p l a i n t u b e s, h e a t t r a n s f e r

    o n t r a d i t i o n a l l y f i n n e d t u b e s w i t h t r a p e z o i d - s h a p e d f i n s i s c o n s i d e r a b l y i m p r o v e d , a n d e v e n

    b e t t e r r e s u lt s a r e a c h i e v e d w i t h T - s h a p e d o r Y- s h a p e d f in s . Th e i n f l u e n c e s o f t h e

    m a c r o s t r u c t u r e ( i .e . f in g e o m e t r y ) o r m i c r o s t r u c t u r e ( i . e . s u r f a c e r o u g h n e s s ) o n t h e h e a t

    t r a n s f e r c o e f f i c i e n t h a v e b e e n s t u d i e d s e p a r a t e l y , i n o r d e r t o e v a l u a t e t h e i m p r o v e m e n t o f h e a t

    t r a n s f e r b y e i t h e r i n f lu e n c e . 1 9 9 8 E l s e v i e r S c i e n c e L t d a n d I I R .

    Keywords: he at transfer; refrigerant; pool bo il ing; geom etry; roughness)

    Transfert de chaleur ~ 6bul l i t ion l ibre sur des tubes ai letrs:

    inf luence de la rugos i t6 des surfaces e t de la forme

    des ai let tes

    Au Labo r a t o r i um f i i r W i i r me - und K i i l t e chn i k , de l Un i v e r s i t d GH Pade r bor n , on s e s t

    r ~c e m me n t a t t ac h~ a I ~ t ude du t r ans f e r t de c h a l e u r f i l dbu l l it i on l i b r e g t par t i r de t ube s

    a i l e t~s de d i f f~r e n t e s f o r m e s ( t r apk ze , T ou Y ) dans c e r t a i n s hy dr o c ar bur e s e t de s

    hy dr oc a r bur e s par t i e l l e me n t f l uor ~s . Pa r r appor t aux me s u r e s c or r e s pondan t e s e f f e c t ude s

    s ur de s t ube s s i mp l e s , l e t r ans f e r t de c ha l e ur e s t c ons i d~r ab l e m e n t am l i o r ~ s u r l e s t ube s ?J

    a i l e t t e s c l a s s i que s t rap~zo i da le s ; on pe u t o b t e n i r de s r d s u l ta t s e nc or e me i l l e u r s a v e c de s

    a i l e t t e s e n f o r m e de T ou de Y . On t ud i e s ~par ~m e n t l e s i n f l ue nc e s de l a ma c r os t r uc t u r e

    ( gdombt r i e de s a i l e t t e s ) ou de l a m i c r os t r uc t u r e ( r ugos i t g de s s u r f ac e s ) s u r l e c oe f f ic i e n t de

    t r ans f e r t de c ha l e ur , a f i n d dv a l ue r l e u r r f i le dans l am l i o r a t i on du t r ans f e r t de e ha l e ur .

    1998 E l s e v i e r Sc i e nc e L t d e t I I R .

    (Mots cl~s: transfert de chaleur; frigorig~ne; ~bullition libre; g~om ~trie; rogosit~)

    I n t r o duc t i o n

    Ch l o r o f l u o r o c a r b o n s ( CF Cs ) a n d h y d r o c h l o r o f l u o r o -

    c a r b o n s ( HCF Cs ) u s e d a s r e f r i g e r a n t s u n t i l n o w h a v e

    b e e n p h a s e d o u t b e c a u s e o f t h e i r o z o n e d e p l e t i o n

    p o t e n t i a l a n d t h e i r c o m p a r a t i v e l y h i g h g l o b a l wa r m i n g

    p o t e n t i a l a n d h a v e t o b e r e p l a c e d b y n e w s u b s t a n c e s . Th e

    s u b s t i t u t e s w i l l b e p a r t l y f l u o r i n a t e d h y d r o c a r b o n s

    ( HF C s ) o r , i f f l a m m a b i l i t y c a n b e t o l e r a t e d , p u r e

    h y d r o c a r b o n s . En e r g y c o n s u m p t i o n a s a b a s i c f a c t o r

    f o r g l o b a l wa r m i n g c a n b e r e d u c e d f u r t h e r i f f i n n e d t u b e s

    * Dedicated to Prof. Dr.-lng D ieter Gorenflo on the occasion o f

    his 60th birthday

    i n s t e a d o f p l a i n t u b e s a r e u s e d f o r h e a t t r a n s f e r

    a p p l i c a t i o n s . W i t h t h i s r e s p e c t , n u m e r o u s e x p e r i m e n t s

    w i t h d i f f e r e n t e n h a n c e d t u b e s ( K 1 9, K3 6 , T 1 9 , TX 1 9 a n d

    Y X 2 6 ) ( m a n u f a c t u r e r : W i e l a n d - W e r k e A G U l m , F R G ;

    t r a d e n a m e : GEW A) a n d w i t h v a r i o u s b o i l i n g l i q u i d s

    h a v e b e e n p e r f o r m e d ( s e e Tab l e I Tab l e 2 ) . Th e t u b e

    s u r f a c e s a s m a n u f a c t u r e d c o n t a i n r e g i o n s w i t h c l e a r l y

    d i s t i n c t r o u g h n e s s l e v e l s (Table 3) . Ad d i t i o n a l h e a t

    t r a n s f e r m e a s u r e m e n t s h a v e b e e n c a r r i e d o u t w i t h

    t wo t r a p e z o i d - s h a p e d f i n n e d t u b e s ( K1 9 o r K3 6 ,

    r e s p e c t i v e l y ) u n d e r m o d i f i e d r o u g h n e s s c o n d i t i o n s . Th e

    r e s u l t s a r e c o m p a r e d w i t h d a t a f o r p l a i n t u b e s .

    F o r l o w n o r m a l i z e d s a t u r a ti o n p r e s su r e s 0 .0 1 1 - p * - 1 4 W / m 2 K h e a t c o n d u c t i o n

    w i t h i n t h e f i n s - - e v e n w i t h c o p p e r a s w a l l m a t e r i a l - -

    c a n n o t b e n e g l e c t e d a s it c a n f o r a < - 1 04 W / m 2 K . T h e

    c o n t r i b u t i o n o f t h is e f f e c t i s d e m o n s t r a t e d b y c a l c u l a t i n g

    t h e h e a t t r a n s f e r c o e f f i c i e n t a R r e l a t e d t o t h e m e a n

    s u r f a c e t e m p e r a t u r e o f t h e f i n n e d t u b e , c a l c u l a t e d

    a c c o r d i n g t o R e f . s i n t h e c a s e o f t h e t u b e w i t h e m e r i e d

    f i n t o p s ( d o t t e d l i n e s i n F i g u r e 3 , b o t t o m ) . T h e n i t i s

    e v i d e n t t h a t a t t h e h i g h e s t f l u x e s i n v e s t i g a t e d h e a t

    t r a n s f e r o n t h e f i n n e d t u b e i s s o m e w h a t b e t t e r t h a n o n t h e

    p l a i n , d u e t o t h e e f f e c t o f t h e v e r y m a n y t i n y b u b b l e s

    s t r e a m i n g u p w a r d s b e t w e e n t h e f i n s .

    A p o s s i b l e e x p l a n a t i o n f o r t h e r e s u l t s a t p * = 0 . 0 3 7 f o r

    n - h e x a n e m a y b e t h e s a m e a s g i v e n a b o v e u n d e r t h e

    s e c o n d r e a s o n ( 2 ) , b e c a u s e t h e b u b b l e s i z e s a t d e p a r t u r e

    a r e e v e n c l o s e r t o t h e f r e e f i n d i s t a n c e ( 0 . 7 t o 0 . 9 m m ~ ) .

    H o w e v e r , t h e f o r m e r p l a i n t u b e u s e d f o r n - h e x a n e i n

    1 9 9 0 h a d a s ig n i f i c a n t l y r o u g h e r s u r f a c e (R ~ = 0 . 5 8 m ,

    T a b l e s 2 , a n d 4 ) , s o t h e c o m p a r i s o n i s n o t a s

    s t r a i g h t f o r w a r d a s w i t h p r o p a n e a n d t h e t e s t s s h o u l d b e

    r e p e a t e d w i t h t h e n e w p l a i n t u b e i n o r d e r t o g e t a

    c o h e r e n t c o m p a r i s o n f o r t h e e n t i r e p r e s s u r e r a n g e .

    C o m p a r i s o n o f t h e t u b e s u n d e r a s p e c t s o f t e c h n i c a l

    a p p l i c a t i o n

    F o r t h e a p p l i c a t i o n o f p l a i n o r f i n n e d t u b e s i n p r a c t i c e ,

    t h e c o m p a r i s o n o f d i f f e r e n t t y p e s o f t u b e s s h o u l d b e

    m a d e a t th e s a m e h e a t l u x p e r t u b e l en g t h . T h e r e f o r e , t h e

    r e s u l t s f o r p r o p a n e b o i l i n g a t t h e d i f f e r e n t t u b e s a r e

    p l o t t e d i n F i g u r e 4 i n t e r m s o f ~ o n r e l a t e d t o t h e

    a r e a A n n o f a p l a i n t u b e w i t h t h e o u t e r d i a m e t e r

    o f t h e f i n n e d , a n d a t c o n s t a n t h e a t f lu x p e r t u b e l e n g t h ,

    q o o = 2 0 0 0 0 W / m 2. T h e o u t e r d i a m e t e r d a o f t h e t u b e

    h a s b e e n c h o s e n f o r c o m p a r i s o n , b e c a u s e m o d e r n f i n n e d

    t u b e s a r e f i x e d i n t u b e b u n d l e s a t t h i s d i a m e t e r ( a n d n o t a t

    t h e d i a m e t e r d k w i t h o u t f i n s , a s e a r l i e r ) . S i g n i f i c a n t

    e n h a n c e m e n t o f h e a t t r a n s f e r o v e r t h e p l a i n t u b e i s

    d e m o n s t r a t e d u n d e r t h i s c o n d i t i o n , w i t h t h e Y X t u b e

    b e i n g b e s t . A t 7 % o f t h e c r i t i c al p r e s s u r e , a n n i s

    a u g m e n t e d o v e r t h e p l a i n t u b e b y a f a c t o r o f 4 . 0 ( Y X ) ,

    3 . 0 ( T X ) , 2 . 4 ( T ) , o r 1 . 6 ( K 3 6 ) , r e s p e c t i v e l y , w h i l e

    a t 2 0 % o f p ~ t h e a u g m e n t a t i o n i s r e d u c e d t o f a c t o r s o f

    2 . 7 / 2 . 0 / 1 . 9 / 1 . 6 . T h i s d e m o n s t r a t e s t h e a d v a n t a g e o f

  • 8/10/2019 Pool Boiling Heat Transfer at Finned Tubes Influence of Surface Roughness and Shape of the Fins

    8/8

    5 8 P H O b n e r a n d W K b n s t l e r

    the finned tubes investigated when applied at low

    normalized saturation pressures.

    Conclusions

    Pool boiling heat transfer measurements of various

    new refrigerants and hydrocarbons at finned tubes

    with different surface structures have shown the

    following.

    The enhancement of pool boiling heat transfer at

    finned tubes with trapezoid-shaped fins over the plain

    tube is mainly due to enhanced bubble formation at the

    tops of the fins which are very rough as a result of the

    manufacturing process. After sandblasting the whole

    surface of the tube with fine grain particles and achievin g

    a uniform surface roughness similar to that of the plain

    tube, the enhancement is reduced, resulting in more or

    less the same heat transfer coefficients for the plain and

    finned tubes, if comparin g at ~ and q related to the total

    outer area of the finned tube. Especially favourable

    conditions seem to occur when the departure diameters of

    the bubbles corre spond to the free distance between the fins.

    Heat transfer from finned tubes with special shape of

    the fins T-shape d or Y-shap ed) is consider ably

    improved over the plain tube at low normalized

    saturation pressures, especially if compared at the same

    heat flux per tube length, being important for technical

    applications. The relative increase of the heat transfer

    coefficient with heat flux and pressure differs consider-

    ably from the results for plain tubes and finned tubes with

    traditionally shaped fins = trapezoid- shaped).

    cknowledgements

    Thanks are due to Deutsche Forschungsgemeinschaft,Bonn,

    for financial support. The authors are also indebted to Dr

    Andrea Luke for measuring the surface roughness.

    e f e r e n c e s

    1. Fath, W., W~irmeiibergangsmessungen an Glatt- und

    Rippenrohren in einer Standardapparatur far

    Siedeversuehe. Dissertation, Universit~it-GH Paderborn,

    1987.

    2. Fath, W. and Gorenflo, D,, Zum Einsatz von Rippenrohren

    in iiberfluteten Verdampfern bei hohen Siededriacken.

    DKV-Tagungsbericht,

    1986, 13, 315-332.

    3. Gorenflo, D. and Fath, W., Heat transfer at pool boiling on

    the outside of finned tubes at high saturation pressures. In

    Proceedings of the 17th International Congress ~ [

    Refrigeration, Vol. B. Wien, 1987, pp. 955-960.

    4. G6tz, J., Entwicklung und Erprobung einer Normapparatur

    zur Messung des Wfirmeiibergangs beim Blasensieden.

    Disscrtation, Universitiit Karlsruhe TH), 1980.

    5. Gorenflo, D., Goetz, J. and Bier, K., Vorschlag fii r einc

    Standardapparatur zur Messung des W~irmeiibergangs

    beim Blasensieden. Wiirme- und St()/fiibertragung, 1982,

    16, 69-78.

    6. Sokol, P., Sch6mann, H., Rott, W., Caplanis, S. and

    Gorenflo, D., WO.rmetibergang beim Blasensieden neuer

    K/ihemittel. DKV-Tagungsber ich t , 1990, 17, 323-340.

    7. Gorenflo, D., Sokol, P. and Caplanis, S., W~irmetibergang

    bei dcr Verdampfung neuer K/iltemittel und -gemische an

    Glatt- und Rippenrohren.

    DKV-Statusbericht,

    1992, 10.

    79-88.

    8. Gutwald, T., Untersuchungen zum Wiirmeiibergang beim

    Blasensieden an Glan- und Rippenrohren. Diplomarbeit.

    Universit~it-GH Paderborn, 1987.

    9. Gorenflo, D., Caplanis, S. and Ktinstler, W., Enhanced pool

    boiling heat transfer to new refrigerants. Proc. Int. Inst.

    Refrig. Comm., 1993, B1/B2, 327-334.

    10. Luke, A., Beitrag zum Einflug der Mikrostruktur yon Heiz-

    fliichen auf den W~irmetibergang beim Blasensieden.

    Dissertation, Universit/it-GH Paderborn, 1996.

    11. Gorenflo, D.. Influence of pressure on heat transfer from

    horizontal tubes to boiling refrigerants. In Proceedings of

    the 1 2th. International Congress q[ Refrigeration, Vol. 2.

    Madrid, 1967, pp. 587-599.

    12. Gorenflo, D., Sokol, P. and Caplanis, S., Zum W~irme

    tibergang beim Blasensieden yon Kohlenwasserstoffen

    und Halogenk/iltemitteln an einem Glattrohr und einem

    Hochleistungs-Rippenrohr. Wiirme- und Stc~ffiibertragung,

    1991, 26, 273-281.

    13. Gorenflo, D., Blein, P., Caplanis, S. and Sokol, P., Pool

    boiling heat transfer from GEWA-TX finned tube to low

    boiling hydrocarbons. Proc. Int. Inst. Refrig., 1990, B1,

    249-256.

    14. Gorenflo, D., Sokol, P., Blein, P., Ron, W., Sch6mann, H.~

    Pool boiling heat transfer from plain and finned tubes to

    propane and propylene. In Proceedings of the 9th

    Internationa l H eat Trans2~ r Con[erence, Vol. 2. Jerusalem,

    1990, pp. 75-80.

    15. Gorenflo, D., Sokol, P., Caplanis, S., Measurements of

    enhanced pool boiling heat transfer. In Proceedings of the

    1st European Thermal Sciences Conference, Vol. 1.

    Birmingham, 1992, pp. 89-96.

    16. Rott, W., Zmn Wiirmefibergang und Phasengleichgewicht

    siedender R22/R114-K/iltemittel-Gemische in einem gros-

    sen Druckbereich. Dissertation, Universit~it-GHPaderborn,

    1990.

    17. Gorenflo, D., Blein, P. and Herres, G., Heat transfer at pool

    boiling of mixtures with R22 and R114.

    International

    Jou rna l (~f Refrigeration, 1988, 11,257-263.

    18. Pinto, A. D., WfirmeiJbergang und Blasenbildung beim

    Sieden yon Propan an einem geschmirgelten Kupferrohr

    in einem grogen Druckbereich. Dissertation, UniversitS.t-

    GH Paderborn, 1995.

    19. Gorenflo, D., Sokol, P. and Caplanis, S., Zum WS_rme-

    iibergang beim Blasensieden yon Kohlenwasserstoffen

    und Halogen-Kgltemitteln an einem Glattrohr und einem

    Hochleistungs-Rippenrohr.

    Wiirme- und Stoffiibertragung,

    1990, 25. 265-272.